首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Inhibition of methanogenesis by several heavy metals using pure cultures   总被引:1,自引:0,他引:1  
The effect of different concentrations of nickel, copper and zinc on methanogenesis using pure cultures of Methanobacterium formicicum, Methanobrevibacter arboriphilicus, Methanosarcina thermophila and Methanospirillum hungatei over time (1, 15 and 30 d) was evaluated. methanobacterium formicicum showed the highest resistance to all the metals tested, while Methanospirillum hungatei was the most sensitive strain. All strains were sensitive to copper and zinc (10–250 mg 1-1, but were much more resistant to nickel (200–1200 mg 1-1). An adaptation process of the methanogenic pure culture with the toxicants was observed over time, which indicates that the inhibitory effects of heavy metals may be reverted in optimal anaerobic conditions.  相似文献   

2.
An endospore-forming, butyrate-degrading bacterium (strain BH) was grown on butyrate in monoxenic coculture with a methanogen. The culture formed dense aggregates when Methanobacterium formicicum was the methanogenic partner, but the culture was turbid when Methanospirillum hungatei was the partner. In contrast, a propionate-degrading, lemon-shaped bacterium (strain PT) did not form aggregates with Methanobacterium formicicum unless an acetate-degrading Methanosaeta sp. was also included in the culture. Fatty acid-degrading methanogenic granules were formed in a laboratory-scale upflow reactor at 35(deg)C fed with a medium containing a mixture of acetate, propionate, and butyrate by using defined cultures of Methanobacterium formicicum T1N, Methanosaeta sp. strain M7, Methanosarcina mazei T18, propionate-degrading strain PT, and butyrate-degrading strain BH. The maximum substrate conversion rates of these granules for acetate, propionate, and butyrate were 43, 9, and 17 mmol/g (dry weight)/day, respectively. The average size of the granules was about 1 mm. Electron microscopic observation of the granules revealed that the cells of Methanobacterium formicicum, Methanosaeta sp., butyrate-degrading, and propionate-degrading bacteria were dispersed in the granules. Methanosarcina mazei existed inside the granules as aggregates of its own cells, which were associated with the bulk of the granules. The interaction of different species in aggregate formation and granule formation is discussed in relation to polymer formation of the cell surface.  相似文献   

3.
Methanogenesis by Methanobacterium thermoautotrophicum strains was extremely sensitive to gramicidin, total inhibition being observed at 0.2 μg/ml. In contrast, methane synthesis by Methanococcus voltae, Methanogenium marisnigri, Methanosarcina mazei, and Methanospirillum hungatei were resistant to the highest concentrations of gramicidin tested (40 μg/ml), although spheroplasts of Methanospirillum hungatei were extremely sensitive. Other species tested showed intermediate sensitivity to gramicidin, methanogenesis inhibition occurring at 4 to 20 μg/ml.  相似文献   

4.
A methanogenic consortium able to use 3-chlorobenzoic acid as its sole energy and carbon source was enriched from anaerobic sewage sludge. Seven bacteria were isolated from the consortium in mono- or coculture. They included: one dechlorinating bacterium (strain DCB-1), one benzoate-oxidizing bacterium (strain BZ-2), two butyrate-oxidizing bacteria (strains SF-1 and NSF-2), two H(2)-consuming methanogens (Methanospirillum hungatei PM-1 and Methanobacterium sp. strain PM-2), and a sulfate-reducing bacterium (Desulfovibrio sp. strain PS-1). The dechlorinating bacterium (DCB-1) was a gram-negative, obligate anaerobe with a unique "collar" surrounding the cell. A medium containing rumen fluid supported minimal growth; pyruvate was the only substrate found to increase growth. The bacterium had a generation time of 4 to 5 days. 3-Chlorobenzoate was dechlorinated stoichiometrically to benzoate, which accumulated in the medium; the rate of dechlorination was ca. 0.1 pmol bacterium day. The benzoate-oxidizing bacterium (BZ-2) was a gram-negative, obligate anaerobe and could only be grown as a syntroph. Benzoate was the only substrate observed to support growth, and, when grown in coculture with M. hungatei, it was fermented to acetate and CH(4). One butyrate-oxidizing bacterium (NSF-2) was a gram-negative, non-sporeforming, obligate anaerobe; the other (SF-1) was a gram-positive, sporeforming, obligate anaerobe. Both could only be grown as syntrophs. The substrates observed to support growth of both bacteria were butyrate, 2-dl-methylbutyrate, valerate, and caproate; isobutyrate supported growth of only the sporeforming bacterium (SF-1). Fermentation products were acetate and CH(4) (from butyrate, isobutyrate, or caproate) or acetate, propionate, and CH(4) (from 2-dl-methylbutyrate or valerate) when grown in coculture with M. hungatei. A mutualism among at least the dechlorinating, benzoate-oxidizing, and methane-forming members was apparently required for utilization of the 3-chlorobenzoate substrate.  相似文献   

5.
Abstract Washed whole cells of Methanospirillum hungatei incubated in TES buffer retained methanogenic activity in the absence of any reducing agents. Washed cells grown with 80% H2-20% CO2 and acetate produced methane from H2/CO2 and 50 mM formate at 1.1 to 1.8 and 15 μmol methane · h−1· mg−1 protein, respectively. Cadmium at a concentration of 15 μM and 50 μM mercury, copper or zinc completely inhibited methane production from H2/CO2 by M. hungatei . The chelating agent, EDTA, protected the cells from inhibition by cadmium but acetate and citrate did not. The activity of formate dehydrogenase and hydrogenase remaining in cells after incubation with copper, mercury, zinc or cadmium was reduced with formate dehydrogenase being the more sensitive.  相似文献   

6.
Two mesophilic methanogenic bacteria, Methanobacterium bryantii strain MOH and Methanospirillum hungatei strain GP1 were demonstrated, using several different experimental approaches, to fix dinitrogen. Evidence includes (1) growth with N2 as the sole nitrogen source; (2) incorporation of 15N2 into cellular material (both soluble amino acid pools and insoluble cell protein and other macromolecules) detected by 15N-NMR spectroscopy; (3) acetylene reduction to ethylene by the cells, and inhibition of this reaction by bromoethanesulfonic acid (BES), a methanogen inhibitor. High-resolution 15N-NMR analysis of ethanol extracts of these organisms and cross-polarization magic-angle sample spinning analysis of the solid debris from these extracts are compared to labeled material from Methanococcus thermolithotrophicus, a methanogen previously determined to fix dinitrogen.  相似文献   

7.
The butyrate-degradingSyntrophospora bryantii degrades butyrate and a propionate-degrading strain (MPOB) degrades propionate in coculture with the hydrogen- and formate-utilizingMethanospirillum hungatii orMethanobacterium formicicum. However, the substrates are not degraded in constructed cocultures with twoMethanobrevibacter arboriphilus strains which are only able to consume hydrogen. Pure cultures of the acetogenic bacteria form both hydrogen and formate during butyrate oxidation with pentenoate as electron acceptor and during propionate oxidation with fumarate as electron acceptor. Using the highest hydrogen and formate levels which can be reached by the acetogens and the lowest hydrogen and formate levels which can be maintained by the methanogens it appeared that the calculated formate diffusion rates are about 100 times higher than the calculated hydrogen diffusion rates.  相似文献   

8.
Five heavy metals detected in distillery waste were lead (1.0–8.8 μg/ml), copper (1.7–15.7 μg/ml), zinc (3.1–11.8 μg/ml), iron (36.0–43.5 μg/ml), and manganese (3.0–5.1 μg/ml). Their toxicity to biomethanogenesis in a synthetic medium containing 1% sodium acetate, propionate, or butyrate was measured by batch fermentation, after cultivating the bacterial biomass semicontinuously. Lead, copper, and zinc in decreasing order were found to be toxic to biomethanogenesis. Lead at the concentration of 10 μg/ml completely stopped methane production. Iron did not produce any notable change in the process while manganese stimulated the rate of methane production. The toxicity of lead, copper, and zinc to methanogenic bacteria and methane production was dose-dependent but the growth of acetogenic bacteria was impaired at higher concentrations (2.5–10.0 μg/ml) of lead, copper, and zinc. Manganese stimulated the growth of only methanogenic bacteria, but not that of non-methanogenic bacteria or acetic acid production. The reduction in the synthesis of acetic acid via butyrate was more in the presence of these three metals than the synthesis of this acid via propionate.  相似文献   

9.
Cations, including calcium, magnesium, potassium, sodium, copper, iron, nickel and zinc, inhibited (up to 40%) extracellular binding and intracellular uptake of cadmium by Lemna polyrhiza in solution culture. Test plants showed a high capacity of extracellular cadmium binding which was competitively inhibited by copper, nickel and zinc; however, calcium, magnesium and potassium caused non-competitive inhibition. Iron and sodium increased K m and decreased V max, thereby causing mixed inhibition of extracellular binding. Intracellular cadmium uptake displayed Michaelis-Menten kinetics. It was competitively inhibited by calcium, magnesium, iron, nickel and zinc. Monovalent cations (sodium and potassium) caused non-competitive and copper caused mixed inhibition of intracellular cadmium uptake. Thus, high levels of cations and metals in the external environment should be expected to lower the cadmium accumulation efficiency of L. polyrhiza.  相似文献   

10.
The effectiveness of operating an industrial UASB reactor, treating wastewater from the beer industry, with flows containing heavy metals was evaluated. A pilot-scale UASB reactor, already used to simulate the industrial reactor, was unsuccessfully employed. An easy start-up was obtained arranging it as an EGSB reactor. Considerations about this modification are reported. The effects of Cu(II), Ni(II) and Cr(III) ions on the anaerobic activity were analyzed by measurements of methane production rate and COD removal. The employed biomass was the sludge of the industrial UASB reactor, while a solution of ethanol and sodium acetate with COD of 3000 mg/L and a heavy metal concentration of 50 mg/L were continuously fed. Experimental results proved higher biomass sensitivity for copper and much slighter for nickel and chromium. Moreover, copper inhibition has been demonstrated to be less significant if a metal-free feed was provided to the system before copper addition.  相似文献   

11.
In this work the performance of a Membrane bioreactor (MBR) was assessed for the removal of 3-15 mg/l of copper, lead, nickel and zinc from wastewater. The average removal efficiencies accomplished by the MBR system were 80% for Cu(II), 98% for Pb(II), 50% for Ni(II) and 77% for Zn(II). The addition of 5 g/l vermiculite into the biological reactor enhanced metal removal to 88% for copper, 85% for zinc and 60% for nickel due to adsorption of metal ions on the mineral, while it reduced biomass inhibition and increased biomass growth. The metal ions remaining in soluble form penetrated into the permeate, while those attached to sludge flocs were effectively retained by the ultrafiltration membranes. The average heterotrophic biomass inhibition was 50%, while it reduced to 29% when lower metal concentrations were fed into the reactor in the presence of vermiculite. The respective autotrophic biomass inhibition was 70% and 36%. The presence of heavy metals and vermiculite in the mixed liquor adversely impacted on membrane fouling.  相似文献   

12.
The inhibition of methane production by Methanosaeta concilii GP6, Methanospirillum hungatei GP1, Methanobacterium espanolae GP9, and Methanobacterium bryantii M.o.H. during short-term (6-h) exposure to eight benzene ring compounds was studied. The concentration that caused 50% inhibition of the methane production rate (IC50) was dependent on the species and the toxicant. Pentachlorophenol was the most toxic of the tested compounds, with an IC50 of less than 8 mg/liter for all species except M. hungatei. Abietic acid was the next most toxic compound for all the species, with an IC50 in the range of 21.4 to 203 mg/liter. Sodium benzoate was generally the least toxic, with an IC50 in the range of 1,225 to 32,400 mg/liter. 3-Chlorobenzoate was substantially more toxic (IC50, 450 to 1,460 mg/liter) than benzoate. The inhibition by benzene, phenol, vanillic acid, and toluene was intermediate to that of pentachlorophenol and benzoate. Long-term incubation (days) studies to determine effect on growth indicated that all eight compounds were usually much more toxic than predicted from the short-term data. In these latter studies, there was generally a good correlation in the observed inhibition as determined from growth and methane production.  相似文献   

13.
The inhibition of methane production by Methanosaeta concilii GP6, Methanospirillum hungatei GP1, Methanobacterium espanolae GP9, and Methanobacterium bryantii M.o.H. during short-term (6-h) exposure to eight benzene ring compounds was studied. The concentration that caused 50% inhibition of the methane production rate (IC50) was dependent on the species and the toxicant. Pentachlorophenol was the most toxic of the tested compounds, with an IC50 of less than 8 mg/liter for all species except M. hungatei. Abietic acid was the next most toxic compound for all the species, with an IC50 in the range of 21.4 to 203 mg/liter. Sodium benzoate was generally the least toxic, with an IC50 in the range of 1,225 to 32,400 mg/liter. 3-Chlorobenzoate was substantially more toxic (IC50, 450 to 1,460 mg/liter) than benzoate. The inhibition by benzene, phenol, vanillic acid, and toluene was intermediate to that of pentachlorophenol and benzoate. Long-term incubation (days) studies to determine effect on growth indicated that all eight compounds were usually much more toxic than predicted from the short-term data. In these latter studies, there was generally a good correlation in the observed inhibition as determined from growth and methane production.  相似文献   

14.
The effects of acetate, propionate, and butyrate on the anaerobic thermophilic conversion of propionate by methanogenic sludge and by enriched propionate-oxidizing bacteria in syntrophy with Methanobacterium thermoautotrophicum delta H were studied. The methanogenic sludge was cultivated in an upflow anaerobic sludge bed (UASB) reactor fed with propionate (35 mM) as the sole substrate for a period of 80 days. Propionate degradation was shown to be severely inhibited by the addition of 50 mM acetate to the influent of the UASB reactor. The inhibitory effect remained even when the acetate concentration in the effluent was below the level of detection. Recovery of propionate oxidation occurred only when acetate was omitted from the influent medium. Propionate degradation by the methanogenic sludge in the UASB reactor was not affected by the addition of an equimolar concentration (35 mM) of butyrate to the influent. However, butyrate had a strong inhibitory effect on the growth of the propionate-oxidizing enrichment culture. In that case, the conversion of propionate was almost completely inhibited at a butyrate concentration of 10 mM. However, addition of a butyrate-oxidizing enrichment culture abolished the inhibitory effect, and propionate oxidation was even stimulated. All experiments were conducted at pH 7.0 to 7.7. The thermophilic syntrophic culture showed a sensitivity to acetate and propionate similar to that of mesophilic cultures described in the literature. Additions of butyrate or acetate to the propionate medium had no effect on the hydrogen partial pressure in the biogas of an UASB reactor, nor was the hydrogen partial pressure in propionate-degrading cultures affected by the two acids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The pathway of propionate conversion in a syntrophic coculture of Smithella propionica and Methanospirillum hungatei JF1 was investigated by (13)C-NMR spectroscopy. Cocultures produced acetate and butyrate from propionate. [3-(13)C]propionate was converted to [2-(13)C]acetate, with no [1-(13)C]acetate formed. Butyrate from [3-(13)C]propionate was labeled at the C2 and C4 positions in a ratio of about 1:1.5. Double-labeled propionate (2,3-(13)C) yielded not only double-labeled acetate but also single-labeled acetate at the C1 or C2 position. Most butyrate formed from [2,3-(13)C]propionate was also double labeled in either the C1 and C2 atoms or the C3 and C4 atoms in a ratio of about 1:1.5. Smaller amounts of single-labeled butyrate and other combinations were also produced. 1-(13)C-labeled propionate yielded both [1-(13)C]acetate and [2-(13)C]acetate. When (13)C-labeled bicarbonate was present, label was not incorporated into acetate, propionate, or butyrate. In each of the incubations described above, (13)C was never recovered in bicarbonate or methane. These results indicate that S. propionica does not degrade propionate via the methyl-malonyl-coenzyme A (CoA) pathway or any other of the known pathways, such as the acryloyl-CoA pathway or the reductive carboxylation pathway. Our results strongly suggest that propionate is dismutated to acetate and butyrate via a six-carbon intermediate.  相似文献   

16.
Degradation of propionate and butyrate in whole and disintegrated granules from a thermophilic (55 degrees C) upflow anaerobic sludge blanket reactor fed with acetate, propionate, and butyrate as substrates was examined. The propionate and butyrate degradation rates in whole granules were 1.16 and 4.0 mumol/min/g of volatile solids, respectively, and the rates decreased 35 and 25%, respectively, after disintegration of the granules. The effect of adding different hydrogen-oxidizing bacteria (both sulfate reducers and methanogens), some of which used formate in addition to hydrogen, to disintegrated granules was tested. Addition of either Methanobacterium thermoautotrophicum delta H, a hydrogen-utilizing methanogen that does not use formate, or Methanobacterium sp. strain CB12, a hydrogen- and formate-utilizing methanogen, to disintegrated granules increased the degradation rate of both propionate and butyrate. Furthermore, addition of a thermophilic sulfate-reducing bacterium (a Desulfotomaculum sp. isolated in our laboratory) to disintegrated granules improved the degradation of both substrates even more than the addition of methanogens. By monitoring the hydrogen partial pressure in the cultures, a correlation between the hydrogen partial pressure and the degradation rate of propionate and butyrate was observed, showing a decrease in the degradation rate with increased hydrogen partial pressure. No significant differences in the stimulation of the degradation rates were observed when the disintegrated granules were supplied with methanogens that utilized hydrogen only or hydrogen and formate. This indicated that interspecies formate transfer was not important for stimulation of propionate and butyrate degradation.  相似文献   

17.
A mesophilic acetogenic bacterium (MPOB) oxidized propionate to acetate and CO2 in cocultures with the formate- and hydrogen-utilizing methanogens Methanospirillum hungatei and Methanobacterium formicicum. Propionate oxidation did not occur in cocultures with two Methanobrevibacter strains, which grew only with hydrogen. Tricultures consisting of MPOB, one of the Methanobrevibacter strains, and organisms which are able to convert formate into H2 plus CO2 (Desulfovibrio strain G11 or the homoacetogenic bacterium EE121) also degraded propionate. The MPOB, in the absence of methanogens, was able to couple propionate conversion to fumarate reduction. This propionate conversion was inhibited by hydrogen and by formate. Formate and hydrogen blocked the energetically unfavorable succinate oxidation to fumarate involved in propionate catabolism. Low formate and hydrogen concentrations are required for the syntrophic degradation of propionate by MPOB. In triculture with Methanospirillum hungatei and the aceticlastic Methanothrix soehngenii, propionate was degraded faster than in biculture with Methanospirillum hungatei, indicating that low acetate concentrations are favorable for propionate oxidation as well.  相似文献   

18.
有机酸去除污泥重金属前后硝态氮和铵态氮浓度变化   总被引:1,自引:0,他引:1  
研究了柠檬酸、草酸和乙酸溶液对污泥中重金属(Cd、Pb、Cu和Zn)的去除效果,以及处理前后析出液和污泥中硝态氮和铵态氮的浓度变化.结果表明,0.8mol.L-1柠檬酸溶液可去除污泥中76.0%的Pb和92.5%的Zn,是较好的重金属去除剂.污泥经有机酸处理后,有大量的硝态氮和铵态氮溶解于析出液中,与加入蒸馏水的对照处理相比,有机酸可大幅度增加析出液中铵态氮的含量,减少硝态氮含量.由于污泥处理过程中有其他形态的氮的转化,处理后污泥中仍含有较高浓度的硝态氮和铵态氮.0.5mol.L-1草酸处理的析出液中硝态氮和铵态氮浓度分别为2.8和888.1mg.L-1,且重金属含量不高,可作为较好的液体肥料进行回收利用.  相似文献   

19.
Propionate-forming bacteria seem to be abundant in anoxic rice paddy soil, but biogeochemical investigations show that propionate is not a correspondingly important intermediate in carbon flux in this system. Mixed cultures of Opitutus terrae strain PB90-1, a representative propionate-producing bacterium from rice paddy soil, and the hydrogenotrophic Methanospirillum hungatei strain SK maintained hydrogen partial pressures similar to those in the soil. The associated shift away from propionate formation observed in these cultures helps to reconcile the disparity between microbiological and biogeochemical studies.  相似文献   

20.
In this paper experimental data from grass fermentation and simulation results with the Anaerobic Digestion Model (ADM) No. 1 are described. Two laboratory reactors were operated under mesophilic conditions with volumetric loading rates in between 0.3 and 2.5 kg(VS)/(m(3) x d). Two different kinds of grass silage were used as substrates, resulting in an average specific biogas production of 600 L/kg(VS). The ADM 1 was calibrated both manually and with the help of a Genetic Algorithm in Matlab/Simulink. Results from calibration indicate that the NH3 inhibition constant used to model the inhibition of acetate uptake is three to five times higher compared with digested activated sludge. The hydrogen inhibition constants applied for propionate and valerate/butyrate uptake are around two orders of magnitude lower than for sludge digestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号