首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bacterial genus Collimonas has the remarkable characteristic that it grows at the expense of living fungal hyphae under laboratory conditions. Here, we report the first field inventory of the occurrence and abundance of Collimonas in soils (n = 45) with naturally different fungal densities, which was performed in order to test the null hypothesis that there is a relationship between the presence of Collimonas and fungal biomass. Estimates of fungal densities were based on ergosterol measurements. Each soil was also characterized in terms of its physical and chemical properties and vegetation and management types. Culturable Collimonas was identified in plate-spread soil samples by its ability to clear colloidal chitin, in combination with a Collimonas-specific restriction fragment length polymorphism analysis of 16S rRNA PCR amplified from individual colonies. Using this approach, we found culturable collimonads only in (semi)natural grasslands. A real-time PCR assay for the specific quantification of Collimonas 16S rRNA in total soil DNA was developed. Collimonas was detectable in 80% of the soil samples, with densities up to 10(5) cells g(-1) (dry weight) soil. The numbers of Collimonas cells per gram of soil were consistently lowest in fungus-poor arable soils and, surprisingly, also in fungus-rich organic layers of forest soils. When all soils were included, no significant correlation was observed between the number of Collimonas cells and ergosterol-based soil fungal biomass. Based on this result, we rejected our null hypothesis, and possible explanations for this were addressed.  相似文献   

2.
Sodium salicylate (1,000 μg/ml) was delivered through a drip irrigation system to agricultural field soils planted to tomato and infested with Pseudomonas putida PpG7, the host of the salicylate catabolic plasmid NAH7. In nonfumigated soils infested with approximately 103 CFU of PpG7 per g in the top 30 cm, population densities were increased up to 112-fold within 14 days of the initial application of salicylate compared with the densities in the respective nonamended soils. Mean season-long population densities of PpG7 in the top 30 cm of soil were significantly increased (P < 0.01) from 216 CFU/g in nonamended soils to 1,370 CFU/g in salicylate-amended soils. In the respective rhizosphere soils, mean population densities of PpG7 were significantly increased (P < 0.01) from 92 to 2,066 CFU/cm of root. Soil fumigation interacted (P < 0.01) with salicylate amendment and further increased the mean population densities of PpG7 in nonrhizosphere soil by an additional 5,689 CFU/g of soil. This fumigation effect was not detected in rhizosphere soils. The effect of salicylate in increasing population densities of PpG7 in soil also was affected by inoculum level, field site, and soil depth. Proportionate differences were greater in soils infested with approximately 103 CFU of PpG7 per g than in comparable soils infested with 105 CFU/g. In low-inoculum soils, increases from salicylate amendments were 26- and 29-fold in rhizosphere and nonrhizosphere soils, respectively, and in high-inoculum soils, the respective increases were 5.6- and 5-fold. No increases of fungi able to utilize salicylate were detected in soils amended with salicylate. However, soil fumigation with metham-sodium significantly reduced (P < 0.01) population densities of fungal salicylate utilizers in rhizosphere and nonrhizosphere soils.  相似文献   

3.
The symbiosis between plant roots and arbuscular mycorrhizal (AM) fungi has been shown to affect both the diversity and productivity of agricultural communities. In this study, we characterized the AM fungal communities of Solanum tuberosum L. (potato) roots and of the bulk soil in two nearby areas of northern Italy, in order to verify if land use practices had selected any particular AM fungus with specificity to potato plants. The AM fungal large-subunit (LSU) rRNA genes were subjected to nested PCR, cloning, sequencing, and phylogenetic analyses. One hundred eighty-three LSU rRNA sequences were analyzed, and eight monophyletic ribotypes, belonging to Glomus groups A and B, were identified. AM fungal communities differed between bulk soil and potato roots, as one AM fungal ribotype, corresponding to Glomus intraradices, was much more frequent in potato roots than in soils (accounting for more than 90% of sequences from potato samples and less than 10% of sequences from soil samples). A semiquantitative heminested PCR with specific primers was used to confirm and quantify the AM fungal abundance observed by cloning. Overall results concerning the biodiversity of AM fungal communities in roots and in bulk soils from the two studied areas suggested that potato roots were preferentially colonized by one AM fungal species, G. intraradices.  相似文献   

4.
Forest ecosystems need to be sustainably managed, as they are major reservoirs of biodiversity, provide important economic resources and modulate global climate. We have a poor knowledge of populations responsible for key biomass degradation processes in forest soils and the effects of forest harvesting on these populations. Here, we investigated the effects of three timber-harvesting methods, varying in the degree of organic matter removal, on putatively hemicellulolytic bacterial and fungal populations 10 or more years after harvesting and replanting. We used stable-isotope probing to identify populations that incorporated 13C from labeled hemicellulose, analyzing 13C-enriched phospholipid fatty acids, bacterial 16 S rRNA genes and fungal ITS regions. In soil microcosms, we identified 104 bacterial and 52 fungal hemicellulolytic operational taxonomic units (OTUs). Several of these OTUs are affiliated with taxa not previously reported to degrade hemicellulose, including the bacterial genera Methylibium, Pelomonas and Rhodoferax, and the fungal genera Cladosporium, Pseudeurotiaceae, Capronia, Xenopolyscytalum and Venturia. The effect of harvesting on hemicellulolytic populations was evaluated based on in situ bacterial and fungal OTUs. Harvesting treatments had significant but modest long-term effects on relative abundances of hemicellulolytic populations, which differed in strength between two ecozones and between soil layers. For soils incubated in microcosms, prior harvesting treatments did not affect the rate of incorporation of hemicellulose carbon into microbial biomass. In six ecozones across North America, distributions of the bacterial hemicellulolytic OTUs were similar, whereas distributions of fungal ones differed. Our work demonstrates that diverse taxa in soil are hemicellulolytic, many of which are differentially affected by the impact of harvesting on environmental conditions. However, the hemicellulolytic capacity of soil communities appears resilient.  相似文献   

5.
Soil microbes play an essential role in the forest ecosystem as an active component. This study examined the hypothesis that soil microbial community structure and metabolic activity would vary with the increasing stand ages in long-term pure plantations of Pinus elliottii. The phospholipid fatty acids (PLFA) combined with community level physiological profiles (CLPP) method was used to assess these characteristics in the rhizospheric soils of P. elliottii. We found that the soil microbial communities were significantly different among different stand ages of P. elliottii plantations. The PLFA analysis indicated that the bacterial biomass was higher than the actinomycic and fungal biomass in all stand ages. However, the bacterial biomass decreased with the increasing stand ages, while the fungal biomass increased. The four maximum biomarker concentrations in rhizospheric soils of P. elliottii for all stand ages were 18:1ω9c, 16:1ω7c, 18:3ω6c (6,9,12) and cy19:0, representing measures of fungal and gram negative bacterial biomass. In addition, CLPP analysis revealed that the utilization rate of amino acids, polymers, phenolic acids, and carbohydrates of soil microbial community gradually decreased with increasing stand ages, though this pattern was not observed for carboxylic acids and amines. Microbial community diversity, as determined by the Simpson index, Shannon-Wiener index, Richness index and McIntosh index, significantly decreased as stand age increased. Overall, both the PLFA and CLPP illustrated that the long-term pure plantation pattern exacerbated the microecological imbalance previously described in the rhizospheric soils of P. elliottii, and markedly decreased the soil microbial community diversity and metabolic activity. Based on the correlation analysis, we concluded that the soil nutrient and C/N ratio most significantly contributed to the variation of soil microbial community structure and metabolic activity in different stand ages of P. elliottii plantations.  相似文献   

6.
7.
Soil bacterial population dynamics were examined in several crude-oil-contaminated soils to identify those organisms associated with alkane degradation and to assess patterns in microbial response across disparate soils. Seven soil types obtained from six geographically distinct areas of the United States (Arizona, Oregon, Indiana, Virginia, Oklahoma, and Montana) were used in controlled contamination experiments containing 2% (wt/wt) crude oil spiked with [1-14C]hexadecane. Microbial populations present during hydrocarbon degradation were analyzed using both 16S rRNA gene sequence analysis and by traditional methods for cultivating hydrocarbon-oxidizing bacteria. After a 50-day incubation, all seven soils showed comparable hydrocarbon depletion, where >80% of added crude oil was depleted and approximately 40 to 70% of added [14C]hexadecane was converted to 14CO2. However, the initial rates of hydrocarbon depletion differed up to 10-fold, and preferential utilization of shorter-chain-length n-alkanes relative to longer-chain-length n-alkanes was observed in some soils. Distinct microbial populations developed, concomitant with crude-oil depletion. Phylogenetically diverse bacterial populations were selected across different soils, many of which were identical to hydrocarbon-degrading isolates obtained from the same systems (e.g., Nocardioides albus, Collimonas sp., and Rhodococcus coprophilus). In several cases, soil type was shown to be an important determinant, defining specific microorganisms responding to hydrocarbon contamination. However, similar Rhodococcus erythropolis-like populations were observed in four of the seven soils and were the most common hydrocarbon-degrading organisms identified via cultivation.  相似文献   

8.
The quantification of denitrifying bacteria is a component in the further understanding of denitrification processes in the environment. Real-time PCR primers were designed to target two segments of the denitrifier population (cnorBP [Pseudomonas mandelii and closely related strains] and cnorBB [Bosea, Bradyrhizobium, and Ensifer spp.]) in agricultural soils based on functional cnorB (nitric oxide reductase) gene sequences. Total population numbers were measured using 16S rRNA gene real-time PCR. Two soil microcosm experiments were conducted. Experiment 1 examined the response of the indigenous soil microbial population to the addition of 500 mg/kg glucose-C daily over 7 days in soil microcosms. Changes in the total population were correlated (r = 0.83) between 16S rRNA gene copy numbers and microbial biomass carbon estimates. Members of the cnorBP population of denitrifiers showed typical r-strategy by being able to increase their proportion in the total population from starting levels of <0.1% to around 2.4% after a daily addition of 500 mg/kg glucose-C. The cnorBB guild was not able to increase its relative percentage of the total population in response to the addition of glucose-C, instead increasing copy numbers only in proportion with the total population measured by 16S rRNA genes. Experiment 2 measured population dynamics in soil after the addition of various amounts of glucose-C (0 to 500 mg/kg) and incubation under denitrifying conditions. cnorBP populations increased proportionally with the amount of glucose-C added (from 0 to 500 mg/kg). In soil microcosms, denitrification rates, respiration, and cnorBP population densities increased significantly with increasing rates of glucose addition. cnorBB guild densities did not increase significantly under denitrifying conditions in response to increasing C additions.  相似文献   

9.
Summary The mean annual population density of earthworms was found to be 164.6 m-2 during a period of detailed study between October 1971 and September 1972. In a year of less detailed study between November 1972 and October 1973 the population density was 117.5 m-2 (139.8 m-2 when the type of extraction method was allowed for). Mean biomass densities in the two years of investigation were 41.0 g preserved wet wt m-2 (1971–1972) and 38.6 (possibly 39.2) g preserved wet wt m-2 (1972–1973).Comparison of the Brogden's Belt population and biomass densities with those reported from other woodlands indicates that soil type is more important than leaf litter type in determining the numerical abundance of earthworms. Population densities are lower in beechwoods on mor soils, mor soils also support significantly fewer species. As with numbers, mean biomass density in beechwoods on mor soils was significantly lower than that occurring in beechwoods on mull soils; the latter, in turn, being lower than those found in mixed deciduous woods on mull soils. Unlike population density biomass density is influenced by both soil and litter type, this is discussed by reference to mean body weights and food quality as reflected by tannin, nitrogen and carbohydrate content.The annual respiratory metabolism of the Brogden's Belt earthworms was calculated to be between 10.7 and 13.41 O2 m-2 a-1, which is equivalent to between 4.1 and 5.1% of the total soil metabolism. A production/biomass ratio of 0.49–0.58 was estimated, as was a net population efficiency of 22%.  相似文献   

10.
Anaerobic ammonium-oxidizing (anammox) bacteria have been detected in many marine and freshwater ecosystems. However, little is known about the distribution, diversity, and abundance of anammox bacteria in terrestrial ecosystems. In this study, anammox bacteria were found to be present in various agricultural soils collected from 32 different locations in China. Phylogenetic analysis of the 16S rRNA genes showed “Candidatus Brocadia,” “Candidatus Kuenenia,” “Candidatus Anammoxoglobus,” and “Candidatus Jettenia” in the collected soils, with “Candidatus Brocadia” being the dominant genus. Quantitative PCR showed that the abundance of anammox bacteria ranged from 6.38 × 104 ± 0.42 × 104 to 3.69 × 106 ± 0.25 × 106 copies per gram of dry weight. Different levels of diversity, composition, and abundance of the anammox bacterial communities were observed, and redundancy analysis indicated that the soil organic content and the distribution of anammox communities were correlated in the soils examined. Furthermore, Pearson correlation analysis showed that the diversity of the anammox bacteria was positively correlated with the soil ammonium content and the organic content, while the anammox bacterial abundance was positively correlated with the soil ammonium content. These results demonstrate the broad distribution of diverse anammox bacteria and its correlation with the soil environmental conditions within an extensive range of Chinese agricultural soils.  相似文献   

11.
Nitrous oxide (N2O) is an important greenhouse gas in the troposphere controlling ozone concentration in the stratosphere through nitric oxide production. In order to quantify bacteria capable of N2O reduction, we developed a SYBR green quantitative real-time PCR assay targeting the nosZ gene encoding the catalytic subunit of the nitrous oxide reductase. Two independent sets of nosZ primers flanking the nosZ fragment previously used in diversity studies were designed and tested (K. Kloos, A. Mergel, C. Rösch, and H. Bothe, Aust. J. Plant Physiol. 28:991-998, 2001). The utility of these real-time PCR assays was demonstrated by quantifying the nosZ gene present in six different soils. Detection limits were between 101 and 102 target molecules per reaction for all assays. Sequence analysis of 128 cloned quantitative PCR products confirmed the specificity of the designed primers. The abundance of nosZ genes ranged from 105 to 107 target copies g−1 of dry soil, whereas genes for 16S rRNA were found at 108 to 109 target copies g−1 of dry soil. The abundance of narG and nirK genes was within the upper and lower limits of the 16S rRNA and nosZ gene copy numbers. The two sets of nosZ primers gave similar gene copy numbers for all tested soils. The maximum abundance of nosZ and nirK relative to 16S rRNA was 5 to 6%, confirming the low proportion of denitrifiers to total bacteria in soils.  相似文献   

12.
Respiration and growth of Pseudomonas putida PpG7, containing catabolic plasmid NAH7, was determined in three agricultural field soils amended with the carbon source salicylate. The addition of salicylate to soil significantly increased the population of PpG7. However, there was a lack of relationship between microbial numbers and activity as determined by evolution of CO2. In soils containing 30 to 1,500 μg of salicylate per g, metabolic activities of PpG7 peaked between 18 and 42 h and population densities increased approximately 101-to 105-fold. However, the metabolic activity of PpG7 rapidly declined after salicylate was utilized, whereas peak population densities were maintained for the duration of the experiments (5 to 7 days). Thus, elevated population densities of PpG7 were represented by inactive cells. Soil type had only minor effects on respiration rates or growth curves of PpG7 when amended with comparable concentrations of salicylate. Respiration and growth rates were optimal at concentrations between 300 and 1,000 μg of salicylate per g in the test soils. At 1,500 to 2,500 μg/g, respiration and growth of PpG7 were initially suppressed, but after a short lag time both attained levels similar to or greater than those resulting from the use of lower concentrations of salicylate. The culturing of PpG7 on a salicylate-amended medium to induce salicylate-degradative enzymes did not affect the lag time before utilization of salicylate in soil. Although PpG7 competed well with fungi for the substrate, suppression of fungal populations with cycloheximide resulted in significantly increased population densities of PpG7 in two of three soils amended with salicylate. The beneficial activities of bacteria in soil are discussed in relation to population density, population metabolic activity, and selective carbon source utilization.  相似文献   

13.
The presence of Escherichia coli in water is used as an indicator of fecal contamination, but recent reports indicate that soil populations can also be detected in tropical, subtropical, and some temperate environments. In this study, we report that viable E. coli populations were repeatedly isolated from northern temperate soils in three Lake Superior watersheds from October 2003 to October 2004. Seasonal variation in the population density of soilborne E. coli was observed; the greatest cell densities, up to 3 × 103 CFU/g soil, were found in the summer to fall (June to October), and the lowest numbers, ≤1 CFU/g soil, occurred during the winter to spring months (February to May). Horizontal, fluorophore-enhanced repetitive extragenic palindromic PCR (HFERP) DNA fingerprint analyses indicated that identical soilborne E. coli genotypes, those with ≥92% similarity values, overwintered in frozen soil and were present over time. Soilborne E. coli strains had HFERP DNA fingerprints that were unique to specific soils and locations, suggesting that these E. coli strains became naturalized, autochthonous members of the soil microbial community. In laboratory studies, naturalized E. coli strains had the ability to grow and replicate to high cell densities, up to 4.2 × 105 CFU/g soil, in nonsterile soils when incubated at 30 or 37°C and survived longer than 1 month when soil temperatures were ≤25°C. To our knowledge, this is the first report of the growth of naturalized E. coli in nonsterile, nonamended soils. The presence of significant populations of naturalized populations of E. coli in temperate soils may confound the use of this bacterium as an indicator of fecal contamination.  相似文献   

14.
Microorganisms responsible for the degradation of phenanthrene in a clean forest soil sample were identified by DNA-based stable isotope probing (SIP). The soil was artificially amended with either 12C- or 13C-labeled phenanthrene, and soil DNA was extracted on days 3, 6 and 9. Terminal restriction fragment length polymorphism (TRFLP) results revealed that the fragments of 219- and 241-bp in HaeIII digests were distributed throughout the gradient profile at three different sampling time points, and both fragments were more dominant in the heavy fractions of the samples exposed to the 13C-labeled contaminant. 16S rRNA sequencing of the 13C-enriched fraction suggested that Acidobacterium spp. within the class Acidobacteria, and Collimonas spp. within the class Betaproteobacteria, were directly involved in the uptake and degradation of phenanthrene at different times. To our knowledge, this is the first report that the genus Collimonas has the ability to degrade PAHs. Two PAH-RHDα genes were identified in 13C-labeled DNA. However, isolation of pure cultures indicated that strains of Staphylococcus sp. PHE-3, Pseudomonas sp. PHE-1, and Pseudomonas sp. PHE-2 in the soil had high phenanthrene-degrading ability. This emphasizes the role of a culture-independent method in the functional understanding of microbial communities in situ.  相似文献   

15.
Quantitative PCR of denitrification genes encoding the nitrate, nitrite, and nitrous oxide reductases was used to study denitrifiers across a glacier foreland. Environmental samples collected at different distances from a receding glacier contained amounts of 16S rRNA target molecules ranging from 4.9 × 105 to 8.9 × 105 copies per nanogram of DNA but smaller amounts of narG, nirK, and nosZ target molecules. Thus, numbers of narG, nirK, nirS, and nosZ copies per nanogram of DNA ranged from 2.1 × 103 to 2.6 × 104, 7.4 × 102 to 1.4 × 103, 2.5 × 102 to 6.4 × 103, and 1.2 × 103 to 5.5 × 103, respectively. The densities of 16S rRNA genes per gram of soil increased with progressing soil development. The densities as well as relative abundances of different denitrification genes provide evidence that different denitrifier communities develop under primary succession: higher percentages of narG and nirS versus 16S rRNA genes were observed in the early stage of primary succession, while the percentages of nirK and nosZ genes showed no significant increase or decrease with soil age. Statistical analyses revealed that the amount of organic substances was the most important factor in the abundance of eubacteria as well as of nirK and nosZ communities, and copy numbers of these two genes were the most important drivers changing the denitrifying community along the chronosequence. This study yields an initial insight into the ecology of bacteria carrying genes for the denitrification pathway in a newly developing alpine environment.  相似文献   

16.
PCR primers specific for the Mycobacterium tuberculosis complex were used to detect the presence of Mycobacterium bovis BCG (Pasteur) in soil microcosms and Mycobacterium bovis in environmental samples taken from a farm in Ireland with a history of bovine tuberculosis. M. bovis genes were detected in soil at 4 and 21 months after possible contamination. Gene levels were found in the range of 1 × 103 to 3.6 × 103 gene copies g of soil−1, depending on the sampling area. Areas around badger setts had the highest levels of detectable genes and were shown to have the highest levels of gene persistence. M. bovis-specific 16S rRNA sequences were detected, providing evidence of the presence of viable cells in Irish soils. Studies of DNA turnover in soil microcosms proved that dead cells of M. bovis BCG did not persist beyond 10 days. Further microcosm experiments revealed that M. bovis BCG survival was optimal at 37°C with moist soil (−20 kPa; 30% [vol/wt]). This study provides clear evidence that M. bovis can persist in the farm environment outside of its hosts and that climatic factors influence survival rates.  相似文献   

17.
Microfungi and Microbial Activity Along a Heavy Metal Gradient   总被引:4,自引:0,他引:4       下载免费PDF全文
Soil fungal biomass, microfungal species composition, and soil respiration rate of conifer mor soil were studied along a steep copper and zinc gradient (up to 20,000 μg of Cu and 20,000 μg of Zn g−1 dry soil) around a brass mill near the town of Gusum in South Sweden. Fungal biomass and soil respiration rate decreased by about 75% along the metal gradient. Above 1,000 μg of Cu g−1, the decrease was clearly evident; below 1,000 μg of Cu g−1, no obvious effects were observed, but there was a tendency for a decrease in total mycelial length. No decrease in CFU was found along the gradient, but fungal species composition was drastically changed. The frequency of the genera Penicillium and Oidiodendron decreased from about 30 and 20%, respectively, at the control sites to only a few percent close to the mill. Mortierella was most frequently isolated in moderately polluted sites, but at the highest pollution levels, a decrease in isolation frequency was evident. Some fungal taxa increased in abundance towards the mill, e.g., Geomyces (from 1 to 10%), Paecilomyces (0 to 10%), and sterile forms (from 10 to 20%). Analyses with a multivariate statistical method (partial least squares) showed that organic matter content and soil moisture had little influence on the fungal community compared with the heavy metal pollution.  相似文献   

18.
The neutral theory of biodiversity has emerged as a major null hypothesis in community ecology. The neutral theory may sufficiently well explain the structuring of microbial communities as the extremely high microbial diversity has led to an expectation of high ecological equivalence among species. To address this possibility, we worked with microcosms of two soils; the microcosms were either exposed, or not, to a dilution disturbance which reduces community sizes and removes some very rare species. After incubation for recovery, changes in bacterial species composition in microcosms compared with the source soils were assessed by pyrosequencing of bacterial 16S rRNA genes. Our assays could detect species with a proportional abundance ≥ 0.0001 in each community, and changes in the abundances of these species should have occurred during the recovery growth, but not be caused by the disturbance per se. The undisturbed microcosms showed slight changes in bacterial species diversity and composition, with a small number of initially low-abundance species going extinct. In microcosms recovering from the disturbance, however, species diversity decreased dramatically (by > 50%); and in most cases there was not a positive relationship between species initial abundance and their chance of persistence. Furthermore, a positive relationship between species richness and community biomass was observed in microcosms of one soil, but not in those of the other soil. The results are not consistent with a neutral hypothesis that predicts a positive abundance-persistence relationship and a null effect of diversity on ecosystem functioning. Adaptation mechanisms, in particular those associated with species interactions including facilitation and predation, may provide better explanations.  相似文献   

19.
The understanding of microbial interactions and trophic networks is a prerequisite for the elucidation of the turnover and transformation of organic materials in soils. To elucidate the incorporation of biomass carbon into a soil microbial food web, we added 13C-labeled Escherichia coli biomass to an agricultural soil and identified those indigenous microbes that were specifically active in its mineralization and carbon sequestration. rRNA stable isotope probing (SIP) revealed that uncultivated relatives of distinct groups of gliding bacterial micropredators (Lysobacter spp., Myxococcales, and the Bacteroidetes) lead carbon sequestration and mineralization from the added biomass. In addition, fungal populations within the Microascaceae were shown to respond to the added biomass after only 1 h of incubation and were thus surprisingly reactive to degradable labile carbon. This RNA-SIP study identifies indigenous microbes specifically active in the transformation of a nondefined complex carbon source, bacterial biomass, directly in a soil ecosystem.  相似文献   

20.
Phytoremediation is an attractive alternative to excavating and chemically treating contaminated soils. Certain plants can directly bioremediate by sequestering and/or transforming pollutants, but plants may also enhance bioremediation by promoting contaminant-degrading microorganisms in soils. In this study, we used high-throughput sequencing of bacterial 16S rRNA genes and the fungal internal transcribed spacer (ITS) region to compare the community composition of 66 soil samples from the rhizosphere of planted willows (Salix spp.) and six unplanted control samples at the site of a former petrochemical plant. The Bray–Curtis distance between bacterial communities across willow cultivars was significantly correlated with the distance between fungal communities in uncontaminated and moderately contaminated soils but not in highly contaminated (HC) soils (>2000 mg kg−1 hydrocarbons). The mean dissimilarity between fungal, but not bacterial, communities from the rhizosphere of different cultivars increased substantially in the HC blocks. This divergence was partly related to high fungal sensitivity to hydrocarbon contaminants, as demonstrated by reduced Shannon diversity, but also to a stronger influence of willows on fungal communities. Abundance of the fungal class Pezizomycetes in HC soils was directly related to willow phylogeny, with Pezizomycetes dominating the rhizosphere of a monophyletic cluster of cultivars, while remaining in low relative abundance in other soils. This has implications for plant selection in phytoremediation, as fungal associations may affect the health of introduced plants and the success of co-inoculated microbial strains. An integrated understanding of the relationships between fungi, bacteria and plants will enable the design of treatments that specifically promote effective bioremediating communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号