首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
中华按蚊实验室饲养的研究   总被引:5,自引:0,他引:5  
中华按蚊(Anopheles sinensis Wiedemann)是疟疾和丝虫病的主要传染媒介,在我国分布很广,危害甚大。无论是研究药物防治、抗药性机理、生物防治以及流行病学等方面的工作中,都需要大量的按蚊作为研究材料。为此我们开展了中华按蚊室内人工饲养的研究。 在按蚊人工饲养方面,国外已有报道(Gerberg,1970)。中华按蚊复合体中的雷氏按蚊嗜人血亚种(A.lesteri anthropophagus.Xu and Feng)已在国内饲养成功。对中华按蚊的饲养,也进行过一些摸索,由于成蚊交配困难、吸血率低和幼虫死亡率高等缘故,均未获  相似文献   

2.
张肖肖  雷丹  李香盈  陈斌 《昆虫学报》2021,64(9):1050-1060
【目的】在全基因组鉴定中华按蚊Anopheles sinensis 含LY结构域的胰蛋白酶(LY-trypsin)基因,探究其分子特征、表达模式以及系统发育关系。【方法】以NCBI数据库中冈比亚按蚊An. gambiae、埃及伊蚊Aedes aegypti、黑腹果蝇Drosophila melanogaster和致倦库蚊Culex quinquefasciatus胰蛋白酶家族基因的氨基酸序列为询问序列,通过本地Blast搜索鉴定中华按蚊基因组中胰蛋白酶基因,将中华按蚊LY-trypsin基因依据其结构域特征及系统发生关系进行命名LY-trypsin。运用生物信息学方法预测中华按蚊LY-trypsin基因的结构、在scaffold的定位、结构域、系统发育关系,及其在中华按蚊不同发育时期、成蚊不同组织和吸血前后雌成蚊中的表达模式。【结果】在中华按蚊全基因组上共鉴定得到27个中华按蚊LY-trypsin基因;在黑腹果蝇、冈比亚按蚊、致倦库蚊和埃及伊蚊基因组中未鉴定到LY-trypsin基因。中华按蚊27个LY-trypsin基因分别编码329~1 125个氨基酸,分子量在36.8~125.5 kD之间,等电点在4.73~8.94间。其中, 20个LY-trypsin具有信号肽,信号肽长度在10~62个氨基酸之间。这27个中华按蚊LY-trypsin基因的外显子数为1~5个,内含子长62~20 093 bp。这27个中华按蚊LY-trypsin基因被定位在11个scaffold上,其编码蛋白均有YWTD保守基序(LY基序);其中16个LY-trypsin基因所编码的氨基酸序列具有含丝氨酸、组氨酸和天冬氨酸催化三联体的活性位点。系统发育结果表明,27个中华按蚊LY-trypsin基因聚类为4个分支。在不同发育阶段,半数以上的中华按蚊LY-trypsin基因显示出相似的表达模式,在幼虫阶段均高水平表达;在中华按蚊不同成蚊组织中,LY-trypsin基因均有不同程度的表达;吸血前后雌蚊中仅有个别基因表达,并未发现表达特异性。【结论】本研究在中华按蚊基因组中首次鉴定出LY trypsin基因,并揭示了这些LY-trypsin基因的分子特征和表达模式,为LY-trypsin基因的进一步研究提供了信息框架。  相似文献   

3.
仇鑫  孟晨  王明斌  陈斌  张玉娟 《昆虫学报》2023,(9):1183-1191
【目的】探讨野生环境下不同地区中华按蚊Anopheles sinensis共生微生物群落与杀虫剂抗性的关系。【方法】采集分别来自中国重庆、云南和安徽野生中华按蚊雌成虫,采用WHO标准体外生物测定法和0.05%拟除虫菊酯类试验纸,对中华按蚊雌成虫进行拟除虫菊酯类药敏试验,获得杀虫剂敏感(FS)和杀虫剂抗性(FR)的中华按蚊雌成虫并通过Illumina Hiseq 2000平台进行全基因组高通量测序,比对16S rRNA和18S rRNA基因序列鉴定杀虫剂敏感和杀虫剂抗性中华按蚊共生微生物,并进行α多样性分析、β多样性分析、聚类分析、主坐标分析(principal coordinates analysis, PCoA)和共生微生物群落差异分析。【结果】从来自重庆、云南和安徽FS和FR野生中华按蚊雌成虫中鉴定到共生微生物3 284种,分属14门52属。安徽FR野生中华按蚊雌成虫共生微生物多样性差异及群落丰富度最高,重庆FS野生中华按蚊雌成虫的最低。野生中华按蚊雌成虫共生微生物群落首先按地区聚类,其中重庆和云南野生中华按蚊共生微生物群落多样性更相似。FR野生中华按蚊雌成虫共生微生物中10株细菌...  相似文献   

4.
冯鲁柏 《昆虫学报》1964,(4):581-586
1.中华按蚊不同类型在长江下游各省极为普遍。贵州虽深居内地我们也发现中华按蚊有宽卵型、中间卵型、窄卵型与最窄卵型,把贵阳按蚊包括在内,共有5个类型。 2.从成虫的形态来看五个类型,可依腿基节白鳞片丛的有无分为二大类。基节外侧面有白磷片丛的一类,除这个特点外,个体比较大,腹部腹板的三角形白斑极明显,第七腹节腹板上的棕色鳞丛大。贵阳按蚊、宽卵型中华按蚊、中间型中华按蚊属于这一类。腿基节上无白色鳞片丛的一类,除这个特点外,个体较小,腹部腹板的三角形白斑不明显,第七腹节腹板上的棕色鳞丛小。窄卵型及最窄卵型中华按蚊属于这一类。 3.经比较后认为我俩的中华按蚊各类型与马来亚的、日本的和菲律宾的类型有所不同,它们在分类学上的位置尚需进一步研究。 4.对贵州五个类型的雌成虫作了简单的描述,并列了一个检索表。  相似文献   

5.
【目的】应用PCR技术检测甘肃地区中华按蚊Anopheles sinensis蚊胃血来源,研究其吸血习性。【方法】根据中华按蚊可能吸血对象(人、牛、猪、羊、鼠、鸡)的线粒体DNA细胞色素b序列的差异,设计种特异引物,建立聚合酶链反应(PCR)体系鉴定中华按蚊蚊胃血来源。同时,对人血、猪血、牛血、羊血、鼠血、鸡血及未吸血中华按蚊中提取的DNA进行检测,验证该方法的特异性;对吸饲人血后不同时间(6、12、24、36、48、60 h)的中华按蚊进行检测,测试该方法的敏感性。【结果】该方法可从已知动物血样和中华按蚊提取的DNA中分别扩增得到689 bp(人)、271 bp(牛)、453 bp(猪)、225 bp(羊)、485 bp(鼠)、266 bp(鸡)和468 bp(中华按蚊)大小的特异性条带;吸人血36 h内的中华按蚊均能扩增出特异性条带,在吸人血后48 h、60 h的中华按蚊中,均未扩出特异性条带。共检测10只现场中华按蚊,血源来自人、牛、猪分别为5只、2只、3只,其中1只蚊子兼吸人血和猪血。【结论】建立的PCR检测方法可鉴定中华按蚊蚊胃血来源,结果稳定可靠;甘肃地区中华按蚊不仅嗜吸人血,也可兼吸其他动物血。  相似文献   

6.
一.中华按蚊产卵数及吸血至 产卵所需的时间 1956年我们在湘西吉首镇南郊外,采集牛栏、人房的中华按蚊以浸30%葡萄糖的棉球饲养一个时期,待其胃血消化、腹面呈黄白色,即将此蚊转入产卵罩内产卵。产卵罩用12厘米培养皿上盖—个大小适度的圆铁纱罩制成。皿中置湿棉花一层,吸水纸一张,并加小草数根,以便蚊虫栖息。中华按蚊一般在下午10时~上午2时以内产卵。个别也有在正午12时产卵的。卵初为白色,逐渐变褐,最后呈黑褐色。每头中华按蚊产卵数目自  相似文献   

7.
本文对韩国中华按蚊、雷氏按蚊和八代按蚊核糖体DNA (rDNA)内转录间隔 2区 (ITS2 )序列进行了比较研究。用PCR扩增的rDNA ITS2片段直接测序 ,每种蚊测定 3个个体 ,结果显示 :韩国中华按蚊、雷氏按蚊和八代按蚊的rDNA ITS2序列长度分别为 4 6 8bp、 4 51bp和 4 53bp ,GC含量分别为 4 4 .87%、 4 6 .2 %和 4 5.7% ,3种按蚊序列差异范围为 12 .16 %— 30 .74 %。研究表明 ,rDNA ITS2序列差异可用于韩国中华按蚊、雷氏按蚊和八代按蚊的分子鉴别。  相似文献   

8.
大型中华按蚊室内自然交配传代试验初步报告   总被引:1,自引:0,他引:1  
中华按蚊是我国疟疾和丝虫病的主要媒介之一,为了对其抗药性及种型与疾病关系等研究创造条件,我们于1964年7-9月在室内对大型中华按蚊(Ano-pheles sinensis)进行了自然交配传代试验。 材料及方法 1.实验室为一间砖墙、水泥地面的房屋。向北有  相似文献   

9.
中华按蚊类型的问题,过去已有学者作过研究,早在1935年姚、吴二氏曾指出南京的中华按蚊有宽底和窄底两种类型存在(Yao等,1935)。Reid氏在1953年报告马来亚的中华按蚊类型已有7种(Reid,1953)。1958年冯兰洲等报告了杭州中华按蚊有“大型”与“小型”两种类型。继后有张本华、刘维德等和浙江卫生实验院都对这一问题有研究报告  相似文献   

10.
本文主要内容有以下二个部分: 一、中华按蚊自然感染马来丝虫的情况; 二、中华按蚊的生物气候学。 浙江临海涌泉公社为较低度的马来丝虫流行区, 流行率为25%。当地人帐内白昼捕捉中华按蚊的类型比例大型为小型的20倍。蚊虫的马来丝虫自然感染率大型中华按蚁为12.9%, 小型中华按蚊为76%。有感染期幼虫的蚊数, 大型中华按蚊为阳性蚊数的2.5%, 小型为7.8%。 当地中华按蚊在冬季以成蚊存在为主。雌蚊在冬季仍不断吸血, 卵巢也在发育。生殖营养失调和协调的雌蚊均有发现, 但以协调者为多。全年幼虫高峰在5月中旬, 成蚊高峰在5月下旬。  相似文献   

11.
12.
13.
14.
15.
On the origin of the Hirudinea and the demise of the Oligochaeta   总被引:10,自引:0,他引:10  
The phylogenetic relationships of the Clitellata were investigated with a data set of published and new complete 18S rRNA gene sequences of 51 species representing 41 families. Sequences were aligned on the basis of a secondary structure model and analysed with maximum parsimony and maximum likelihood. In contrast to the latter method, parsimony did not recover the monophyly of Clitellata. However, a close scrutiny of the data suggested a spurious attraction between some polychaetes and clitellates. As a rule, molecular trees are closely aligned with morphology-based phylogenies. Acanthobdellida and Euhirudinea were reconciled in their traditional Hirudinea clade and were included in the Oligochaeta with the Branchiobdellida via the Lumbriculidae as a possible link between the two assemblages. While the 18S gene yielded a meaningful historical signal for determining relationships within clitellates, the exact position of Hirudinea and Branchiobdellida within oligochaetes remained unresolved. The lack of phylogenetic signal is interpreted as evidence for a rapid radiation of these taxa. The placement of Clitellata within the Polychaeta remained unresolved. The biological reality of polytomies within annelids is suggested and supports the hypothesis of an extremely ancient radiation of polychaetes and emergence of clitellates.  相似文献   

16.
17.
18.
19.
Data on the ontogeny of the posterior haptor of monogeneans were obtained from more than 150 publications and summarised. These data were plotted into diagrams showing evolutionary capacity levels based on the theory of a progressive evolution of marginal hooks, anchors and other attachment components of the posterior haptor in the Monogenea (Malmberg, 1986). 5 + 5 unhinged marginal hooks are assumed to be the most primitive monogenean haptoral condition. Thus the diagrams were founded on a 5 + 5 unhinged marginal hook evolutionary capacity level, and the evolutionary capacity levels of anchors and other haptoral attachement components were arranged according to haptoral ontogenetical sequences. In the final plotting diagram data on hosts, type of spermatozoa, oncomiracidial ciliation, sensilla pattern and protonephridial systems were also included. In this way a number of correlations were revealed. Thus, for example, the number of 5 + 5 marginal hooks correlates with the most primitive monogenean type of spermatozoon and with few sensillae, many ciliated cells and a simple protonephridial system in the oncomiracidium. On the basis of the reviewed data it is concluded that the ancient monogeneans with 5 + 5 unhinged marginal hooks were divided into two main lines, one retaining unhinged marginal hooks and the other evolving hinged marginal hooks. Both main lines have recent representatives at different marginal hook evolutionary capacity levels, i.e. monogeneans retaining a haptor with only marginal hooks. For the main line with hinged marginal hooks the name Articulon-choinea n. subclass is proposed. Members with 8 + 8 hinged marginal hooks only are here called Proanchorea n. superord. Monogeneans with unhinged marginal hooks only are here called Ananchorea n. superord. and three new families are erected for its recent members: Anonchohapteridae n. fam., Acolpentronidae n. fam. and Anacanthoridae n. fam. (with 7 + 7, 8 + 8 and 9 + 9 unhinged marginal hooks, respectively). Except for the families of Articulonchoinea (e.g. Acanthocotylidae, Gyrodactylidae, Tetraonchoididae) Bychowsky's (1957) division of the Monogenea into the Oligonchoinea and Polyonchoinea fits the proposed scheme, i.e. monogeneans with unhinged marginal hooks form one old group, the Oligonchoinea, which have 5 + 5 unhinged marginal hooks, and the other group form the Polyonchoinea, which (with the exception of the Hexabothriidae) has a greater number (7 + 7, 8 + 8 or 9 + 9) of unhinged marginal hooks. It is proposed that both these names, Oligonchoinea (sensu mihi) and Polyonchoinea (sensu mihi), will be retained on one side and Articulonchoinea placed on the other side, which reflects the early monogenean evolution. Except for the members of Ananchorea [Polyonchoinea], all members of the Oligonchoinea and Polyonchoinea have anchors, which imply that they are further evolved, i.e. have passed the 5 + 5 marginal hook evolutionary capacity level (Malmberg, 1986). There are two main types of anchors in the Monogenea: haptoral anchors, with anlages appearing in the haptor, and peduncular anchors, with anlages in the peduncle. There are two types of haptoral anchors: peripheral haptoral anchors, ontogenetically the oldest, and central haptoral anchors. Peduncular anchors, in turn, are ontogenetically younger than peripheral haptoral anchors. There may be two pairs of peduncular anchors: medial peduncular anchors, ontogentically the oldest, and lateral peduncular anchors. Only peduncular (not haptoral) anchors have anchor bars. Monogeneans with haptoral anchors are here called Mediohaptanchorea n. superord. and Laterohaptanchorea n. superord. or haptanchoreans. All oligonchoineans and the oldest polyonchoineans are haptanchoreans. Certain members of Calceostomatidae [Polyonchoinea] are the only monogeneans with both (peripheral) haptoral and peduncular anchors (one pair). These monogeneans are here called Mixanchorea n. superord. Polyonchoineans with peduncular anchors and unhinged marginal hooks are here called the Pedunculanchorea n. superord. The most primitive pedunculanchoreans have only one pair of peduncular anchors with an anchor bar, while the most advanced have both medial and lateral peduncular anchors; each pair having an anchor bar. Certain families of the Articulonchoinea, the Anchorea n. superord., also have peduncular anchors (parallel evolution): only one family, the Sundanonchidae n. fam., has both medial and lateral peduncular anchors, each anchor pair with an anchor bar. Evolutionary lines from different monogenean evolutionary capacity levels are discussed and a new system of classification for the Monogenea is proposed.In agreeing to publish this article, I recognise that its contents are controversial and contrary to generally accepted views on monogenean systematics and evolution. I have anticipated a reaction to the article by inviting senior workers in the field to comment upon it: their views will be reported in a future issue of this journal. EditorIn agreeing to publish this article, I recognise that its contents are controversial and contrary to generally accepted views on monogenean systematics and evolution. I have anticipated a reaction to the article by inviting senior workers in the field to comment upon it: their views will be reported in a future issue of this journal. Editor  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号