首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Perfusion of isolated sheep lungs with blood causes spontaneous edema and hypertension preceded by decreases in perfusate concentrations of leukocytes (WBC) and platelets (PLT). To determine whether these decreases were caused by pulmonary sequestration, we continuously measured blood flow and collected pulmonary arterial and left atrial blood for cell concentration measurements in six lungs early in perfusion. Significant sequestration occurred in the lung, but not in the extracorporeal circuit. To determine the contribution of these cells to spontaneous injury in this model, lungs perfused in situ with a constant flow (100 ml.kg-1.min-1) of homologous leukopenic (WBC = 540 mm-3, n = 8) or thrombocytopenic blood (PLT = 10,000 mm-3, n = 6) were compared with control lungs perfused with untreated homologous blood (WBC = 5,320, PLT = 422,000, n = 8). Perfusion of control lungs caused a rapid fall in WBC and PLT followed by transient increases in pulmonary arterial pressure, lung lymph flow, and perfusate concentrations of 6-ketoprostaglandin F1 alpha and thromboxane B2. The negative value of reservoir weight (delta W) was measured as an index of fluid entry into the lung extravascular space during perfusion. delta W increased rapidly for 60 min and then more gradually to 242 g at 180 min. This was accompanied by a rise in the lymph-to-plasma oncotic pressure ratio (pi L/pi P). Relative to control, leukopenic perfusion decreased the ratio of wet weight to dry weight, the intra- plus extravascular blood weight, and the incidence of bloody lymph. Thrombocytopenic perfusion increased lung lymph flow and the rate of delta W, decreased pi L/pi P and perfusate thromboxane B2, and delayed the peak pulmonary arterial pressure. These results suggest that perfusate leukocytes sequestered in the lung and contributed to hemorrhage but were not necessary for hypertension and edema. Platelets were an important source of thromboxane but protected against edema by an unknown mechanism.  相似文献   

2.
To determine whether hypoxic pulmonary vasoconstriction was associated with release of sulfidopeptide leukotrienes (SPLTs) from the lung, we measured SPLT activity by bioassay (guinea pig ileum) and radioimmunoassay in lymph, perfusate, and bronchoalveolar lavage (BAL) fluid from sheep lungs (n = 20) isolated and perfused in situ with a constant flow of autologous blood (100 ml.kg-1.min-1) containing indomethacin (60 micrograms/ml). The protocol consisted of three periods, each at least 1 h in duration. In experimental lungs, inspired O2 concentration (FIO2) was 28.2% in periods 1 and 3 and 4.2% in period 2. In control lungs, FIO2 was 28.2% throughout. Hypoxia increased pulmonary arterial pressure but did not alter peak tracheal pressure, lung lymph flow, or weight gain measured during the last 30 min of each period. SPLT activity was greatest in lung lymph and least in BAL fluid. Hypoxia did not alter SPLT activity in any fluid. Similar results were obtained in lungs not treated with indomethacin (n = 15). These data do not support the hypothesis that hypoxic pulmonary vasoconstriction is mediated by SPLTs.  相似文献   

3.
Pulmonary microvascular response to LTB4: effects of perfusate composition   总被引:1,自引:0,他引:1  
We examined the effects of leukotriene B4 (LTB4) on pulmonary hemodynamics and vascular permeability using isolated perfused guinea pig lungs and cultured monolayers of pulmonary arterial endothelial cells. In lungs perfused with Ringer solution, containing 0.5 g/100 ml albumin (R-alb), LTB4 (4 micrograms) transiently increased pulmonary arterial pressure (Ppa) and capillary pressure (Pcap). Pulmonary edema developed within 70 min after LTB4 injection despite a normal Pcap. The LTB4 metabolite, 20-COOH-LTB4 (4 micrograms), did not induce hemodynamic and lung weight changes. In lungs perfused with autologous blood hematocrit = 12 +/- 1%; protein concentration = 1.5 +/- 0.2 g/100 ml), the increases in Ppa and Pcap were greater, and both pressures remained elevated. The lung weight did not increase in blood-perfused lungs. In lungs perfused with R-alb (1.5 g/100 ml albumin) to match the blood perfusate protein concentration, LTB4 induced similar hemodynamic changes as R-alb (0.5 g/100 ml) perfusate, but the additional albumin prevented the pulmonary edema. LTB4 (10(-11)-10(-6) M) with or without the addition of neutrophils to the monolayer did not increase endothelial 125I-albumin permeability. Therefore LTB4 induces pulmonary edema when the perfusate contains a low albumin concentration, but increasing the albumin concentration or adding blood cells prevents the edema. The edema is not due to increased endothelial permeability to protein and is independent of hemodynamic alterations. Protection at higher protein-concentration may be the result of LTB4 binding to albumin.  相似文献   

4.
5.
We examined the factors that influence the permeability characteristics of isolated perfused rat lungs and compared the ex vivo permeability-surface area product (PS) with that obtained in vivo. In lungs perfused for 20 min with homologous blood or a physiological salt solution (PSS) containing 4 g/100 ml albumin, mean PS values, obtained by the single-sample method of Kern et al. [Am. J. Physiol. 245 (Heart Circ. Physiol. 14): H229-H236, 1983], were 9.9 +/- 0.6 (SE) and 6.8 +/- 0.3 cm3.min-1.g wet lung-1.10(-2), respectively. These values were similar to lung PS obtained in intact rats (7.7 +/- 0.4 cm3.min-1.g wet lung-1.10(-2). In perfused lungs, PS values were influenced by the perfusate albumin concentration, the length of perfusion time, and the degree of vascular recruitment. Twenty minutes after lung isolation, PS was 126% higher in lungs perfused with albumin-free PSS containing Ficoll than in lungs perfused with albumin-PSS. Moreover, PS in Ficoll-PSS-perfused lungs increased even higher after 2 h of perfusion, and this time-dependent increase in PS was attenuated by addition of 0.1 g/100 ml albumin to the perfusate. Two hours of ex vivo ventilation with hypoxic (0 or 3% 0(2)) or hyperoxic (95% 0(2)) gas mixture did not affect PS values in perfused lungs. However, PS was elevated in lungs perfused ex vivo with protamine, which causes endothelial cell injury, or in lungs from rats exposed in vivo to human recombinant tumor necrosis factor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We determined the effects of extracorporeal perfusion with a constant flow (75 ml . min-1 . kg-1) of autologous blood on hemodynamics and fluid balance in sheep lungs isolated in situ. After 5 min, perfusate leukocyte and platelet counts fell by two-thirds. Pulmonary arterial pressure (Ppa) increased to a maximum of 32.0 +/- 3.4 Torr at 30 min and thereafter fell. Lung lymph flow (QL), measured from the superior thoracic duct, and perfusate thromboxane B2 (TXB2) concentrations followed similar time courses but lagged behind Ppa, reaching maxima of 4.1 +/- 1.2 ml/h and 2.22 +/- 0.02 ng/ml at 60 min. Lung weight gain, measured as the opposite of the weight change of the extracorporeal reservoir, and perfusate 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) concentration increased rapidly during the first 60 min and then more gradually. After 210 min, weight gain was 224 +/- 40 g and 6-keto-PGF1 alpha concentration, 4.99 +/- 0.01 ng/ml. The ratio of lymph to plasma oncotic pressure (pi L/pi P) at 30 min was 0.61 +/- 0.06 and did not change significantly. Imidazole (5 mM) reduced the changes in TXB2, Ppa, QL, and weight and platelet count but did not alter 6-keto-PGF1 alpha, pi L/pi P, or leukocyte count. Indomethacin (0.056 mM) reduced TXB2, 6-keto-PGF1 alpha, and the early increases in weight, Ppa, and QL but did not alter the time courses of leukocyte or platelet counts. Late in perfusion, however, Ppa and QL were greater than in either untreated or imidazole-treated lungs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Huang KL  Shaw KP  Wang D  Hsu K  Huang TS  Chen HI 《Life sciences》2002,71(11):1237-1244
Intravenous amphetamine abuse may cause serious cardiopulmonary complications via unknown mechanisms. We investigated the role of free radicals in the amphetamine-induced lung injury using isolated rat lungs. Adding amphetamine into the perfusate caused dose-dependent increases in perfusion pressure and lung weight. Amphetamine increased the filtration coefficient (K(f)) by 90 +/- 20% and 210 +/- 10% at doses of 10 microM and 50 microM, respectively, as compared to the baseline level. Pretreatment with dimethylthiourea (DMTU), an oxygen radical scavenger, abolished the pulmonary hypertension, lung weight gain, and permeability changes. We also examined the effect of amphetamine on free radical generation in polymorphonuclear leukocytes (PMN). Adding phorbol myristate acetate (PMA, 1 nM) enhanced the chemiluminescence indicating the functional viability of the isolated PMN. Amphetamine (50 microM) significantly enhanced the chemiluminescence generation of PMN by 152 +/- 26% as compared with the baseline value. Combination of amphetamine and PMA increased free radical formation by 360 +/- 85%. In summary, our results showed that amphetamine may cause acute lung injury by overproduction of free radicals. Although amphetamine can activate PMN, the source of free radicals remains to be determined.  相似文献   

8.
Histological studies provide evidence that the bronchial veins are a site of leakage in histamine-induced pulmonary edema, but the physiological importance of this finding is not known. To determine if a lung perfused by only the bronchial arteries could develop pulmonary edema, we infused histamine for 2 h in anesthetized sheep with no pulmonary arterial blood flow to the right lung. In control sheep the postmortem extravascular lung water volume (EVLW) in both the right (occluded) and left (perfused) lung was 3.7 +/- 0.4 ml X g dry lung wt-1. Following histamine infusion, EVLW increased to 4.4 +/- 0.7 ml X g dry lung wt-1 in the right (occluded) lung (P less than 0.01) and to 5.3 +/- 1.0 ml X g dry wt-1 in the left (perfused) lung (P less than 0.01). Biopsies from the right (occluded) lungs scored for the presence of edema showed a significantly higher score in the lungs that received histamine (P less than 0.02). Some leakage from the pulmonary circulation of the right lung, perfused via anastomoses from the bronchial circulation, cannot be excluded but should be modest considering the low pressures in the pulmonary circulation following occlusion of the right pulmonary artery. These data show that perfusion via the pulmonary arteries is not a requirement for the production of histamine-induced pulmonary edema.  相似文献   

9.
Phorbol myristate acetate (PMA) and endotoxin cause pulmonary granulocyte sequestration and alteration in lung fluid and solute exchange in awake sheep that are felt to be analogous to the adult respiratory distress syndrome in humans. The basic hypothesis that PMA causes lung injury by activating circulating granulocytes has never been tested. The effects of infused PMA on lung mechanics and the cellular constituents of lung lymph have also not been reported. We therefore characterized the effects of intravenous PMA, 5 micrograms/kg, on lung mechanics, pulmonary hemodynamics, lung fluid and solute exchange, pulmonary gas exchange, blood and lymph leukocyte counts, and plasma and lymph cyclooxygenase products of arachidonate metabolism in 10 awake sheep with normal granulocyte counts and after granulocyte depletion with hydroxyurea. PMA significantly altered lung mechanics from base line in both nongranulocyte depleted and granulocyte-depleted sheep. Dynamic compliance decreased by over 50% and resistance to airflow across the lungs increased over threefold acutely following PMA infusion in both sets of experiments. Changes in lung mechanics, pulmonary hemodynamics, lung fluid and solute exchange, pulmonary gas exchange, and plasma and lymph arachidonate metabolites were not significantly affected by greater than 99% depletion of circulating granulocytes. We conclude that the lung injury caused by PMA in chronically instrumented awake sheep probably is not a result of activation of circulating granulocytes.  相似文献   

10.
The present study was designed to investigate whether lungs can utilize 5-hydroxytryptophan (5-HTP), formed elsewhere and transported, for the synthesis of 5-hydroxytryptamine (5-HT). [14C]5-HTP uptake was 7.7 +/- 1.1 and 3.9 +/- 0.2% by rabbit and rat lungs, respectively, after 1 h of perfusion with 10 microM [14C]5-HTP. There was an increase in the lung uptake of [14C]5-HTP when the lungs were preperfused with 0.5 mM chlorphentermine (CP) and the uptake was low when the lungs were preperfused with 0.1 mM hydroxybenzylhydrazine dihydrochloride (HBH). The perfusate concentration of 5-hydroxyindole acetic acid (5-HIAA) increased significantly (3-4 micrograms/100 mL) during rabbit lung perfusion with 10 microM [14C]5-HTP and this did not change significantly when the lungs were preperfused with 0.5 mM CP. However, 5-HT increased with time in the perfusate. 5-HT, but not 5-HIAA, was detected in the perfusate and increased with time of perfusion when the rat lungs were perfused either with 10 microM 5-HTP or with 0.5 mM CP and 10 microM 5-HTP. However, no metabolites were detected in either the rabbit lung or rat lung perfusates when they were preperfused with 0.1 mM HBH. Lung contents of 5-HT and 5-HIAA were significantly higher in the rat lungs and only 5-HIAA increased in rabbit lungs after 1 h of perfusion with 10 microM 5-HTP. Preperfusion with 0.5 mM CP resulted in a greater increase in the 5-HT content of both rabbit and rat lungs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Apocynin (4-hydroxy-3-methoxy-acetophenone) inhibits NADPH oxidase in activated polymorphonuclear (PMN) leukocytes, preventing the generation of reactive oxygen species. To determine if apocynin attenuates ischemia-reperfusion lung injury, we examined the effects of apocynin (0.03, 0.3, and 3 mM) in isolated in situ sheep lungs. In diluent-treated lungs, reperfusion with blood (180 min) after 30 min of ischemia (ventilation 28% O(2), 5% CO(2)) caused leukocyte sequestration in the lung and increased vascular permeability [reflection coefficient for albumin (sigma(alb)) 0.47 +/- 0.10, filtration coefficient (K(f)) 0.14 +/- 0.03 g. min(-1). mmHg(-1). 100 g(-1)] compared with nonreperfused lungs (sigma(alb) 0.77 +/- 0. 03, K(f) 0.03 +/- 0.01 g. min(-1). mmHg(-1). 100 g(-1); P < 0.05). Apocynin attenuated the increased protein permeability at 0.3 and 3 mM (sigma(alb) 0.69 +/- 0.05 and 0.91 +/- 0.03, respectively, P < 0. 05); K(f) was decreased by 3 mM apocynin (0.05 +/- 0.01 g. min(-1). mmHg(-1). 100 g(-1), P < 0.05). Diphenyleneiodonium (DPI, 5 microM), a structurally unrelated inhibitor of NADPH oxidase, worsened injury (K(f) 0.32 +/- 0.07 g. min(-1). mmHg(-1). 100 g(-1), P < 0.05). Neither apocynin nor DPI affected leukocyte sequestration. Apocynin and DPI inhibited whole blood chemiluminescence and isolated PMN leukocyte-induced resazurin reduction, confirming NADPH oxidase inhibition. Apocynin inhibited pulmonary artery hypertension and perfusate concentrations of cyclooxygenase metabolites, including thromboxane B(2). The cyclooxygenase inhibitor indomethacin had no effect on the increased vascular permeability, suggesting that cyclooxygenase inhibition was not the explanation for the apocynin results. Apocynin prevented ischemia-reperfusion lung injury, but the mechanism of protection remains unclear.  相似文献   

12.
This study tests whether activated complement leads to a selective entrapment of polymorphonuclear leukocytes (PMN's) in the lungs. Awake sheep were infused for 5 min with zymosan-activated plasma (ZAP, 2.5 mg/ml) at a rate of 5 ml/min into the superior vena cava (IV, n = 4) or intra-arterially into the aortic arch or femoral artery (IA, n = 8). At the end of IV infusion, leukocyte counts fell from 8,862 to 1,631/mm3 (P less than 0.01). PMN counts across the lungs decreased by 74%. There were increases in plasma thromboxane (Tx) B2 from 114 to 2,733 pg/ml (P less than 0.01), mean pulmonary arterial pressure from 12 to 42 mmHg (P less than 0.01), and physiological shunt from 13 to 25% (P less than 0.05). Within 1 h lymph TxB2 levels had risen from 301 to 4,916 pg/ml (P less than 0.01), lung lymph flow (QL) rose from 3.7 to 11.1 ml/30 min (P less than 0.05), lymph-to-plasma protein ratio (L/P) remained unchanged at 0.63, and lymph protein clearance increased from 2.3 to 7.5 ml/30 min (P less than 0.05). Leukosequestration, quantitated by capillary PMN counting and by assaying the granulocyte marker myeloperoxidase, occurred relative to sham animals (P less than 0.05) in the lung and spleen but not in other organs. Intra-arterial ZAP infusion led to changes that were similar in magnitude and timing to the IV group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Pulmonary uptake and metabolism of imipramine (IMP) was investigated in isolated perfused rat (IPrL) and rabbit (IPRL) lung preparations. Perfusate containing 14C-IMP (1.2 μmole/g lung) was recirculated through the pulmonary artery in artificially ventilated lungs. The radioactivity in the perfusate declined rapidly and about 80% of the dose was taken up by the lungs within 10 minutes in both IPrL and IPRL preparations. A steady-state was apparently reached thereafter in the IPRL, while a portion of the radiolabel effluxed into the perfusate of the IPrLs, thus reducing the net lung content to 54% of added IMP by 60 minutes. After 60 minutes perfusion, metabolites of IMP accounted for the major radioactivity (80%) in the perfusate, while the lung contained mainly (83%) the unchanged parent compound. The principal metabolite was identified as IMP-N-oxide (IMP-NO) which was found in the perfusate after 5 minutes of perfusion. Only 3% of the added IMP was metabolized by IPRL in 60 minutes. SKF-525A, an inhibitor of cytochrome P-450-mediated monooxygenase system, did not inhibit but enhanced the metabolism of IMP by IPrL to IMP-NO. IMP was principally metabolized to IMP-NO by incubations of 9,000 g supernatant fractions of rat lungs to a significantly higher extent than similar rabbit lung preparations. Including SKF-525A significantly accelerated the metabolism of IMP to IMP-NO in accordance with the perfusion experiments. These results suggest that in contradiction to publishedd reports, IMP is appreciably metabolized by the rat lung via N-oxidation by non-cytochrome P-450 pathway and the metabolite formed in the lung is released into the circulation indicating its low affinity for the lung tissue.  相似文献   

14.
We tested the hypothesis that neutrophil sequestration is required for the development of tumor necrosis factor- (TNF) induced neutrophil- (PMN) dependent pulmonary edema. TNF (3.2 X 10(5) U/kg ip) was injected into guinea pigs 18 h before lung isolation. After isolation, the lung was perfused with a phosphate-buffered Ringer solution. Dextran sulfate (mol wt 500,000) prevented the changes in pulmonary capillary pressure (Ppc; 8.5 +/- 0.8 vs. 12.8 +/- 0.8 cmH2O), lung weight gain (dW; +0.240 +/- 0.135 vs. +1.951 +/- 0.311 g), and pulmonary edema formation or wet-to-dry wt ratio [(W - D)/D; 6.6 +/- 0.2 vs. 8.3 +/- 0.5] at 60 min induced by PMN infusion into a TNF-pretreated lung. The unsulfated form of dextran had no protective effect [Ppc, dW, and (W - D)/D at 60 min: 11.9 +/- 0.9 cmH2O, +1.650 +/- 0.255 g, and 7.3 +/- 0.2, respectively], whereas the use of another anionic compound, heparin, inhibited the TNF + PMN response [Ppc, dW, and (W - D)/D at 60 min: 5.6 +/- 0.4 cmH2O, +0.168 +/- 0.0.052 g, and 6.4 +/- 0.2, respectively]. Isolated lungs showed increased PMN myeloperoxidase (MPO) activity compared with control in TNF-treated lungs at baseline and 60 min after PMN infusion. Dextran sulfate, dextran, and heparin inhibited the increase in MPO activity. The data indicate that inhibition of PMN sequestration alone is not sufficient for the inhibition of PMN-mediated TNF-induced hydrostatic pulmonary edema and that a charge-dependent mechanism mediates the protective effect of dextran sulfate.  相似文献   

15.
The capacity of the isolated perfused rat lung to metabolize the protein moieties of serum lipoproteins was assessed using homologous (rat) and heterologous (human) plasma lipoproteins. The protein and lipid moieties of the plasma lipoproteins were labeled in vivo with Na[125I]. In selected cases the lipoprotein peptides were labeled in vivo with 14C- or 3H-labeled amino acids. Uptake of lipoprotein label during perfusion was monitored by measure of losses in perfusate label and by rises in pulmonary tissue labeling as shown by radioassay and by light and electron microscope radioautography. Lipoprotein degradation was assessed by fractionation of perfusate and lung tissue radioactive material into trichloroacetic acid (TCA)-isoluble, TCA-soluble, and ether-ethanol-soluble fractions. When heparin was included in the perfusion medium, there was selective degradation of the protein portion of very low density lipoprotein (VLDL) in the perfusate and concomitant uptake of radioactive label by the lungs. Low density lipoprotein (LDL)) was neither taken up nor catabolized by the isolated rat lung in the absence or presence of heparin. By light and electron microscopy, the label was localized over the interalveolar septa, predominantly the capillary endothelium. Disappearance of TCA-insoluble radioactivity from the perfusate was associated with the generation of both TCA-soluble iodide and noniodide radioactivity. Greater than 50% of the radioactive label taken up by the lungs was found in the delipidated TCA-insoluble fraction. This study provides in vitro evidence for pulmonary catabolism of VLDL apolipoproteins and uptake of peptide catabolic products of VLDL by the lung.  相似文献   

16.
Oleic acid lung injury in sheep   总被引:3,自引:0,他引:3  
Intravenous infusion of oleic acid into experimental animals causes acute lung injury resulting in pulmonary edema. We investigated the mechanism of oleic acid lung injury in sheep. In experiments with anesthetized and unanesthetized sheep with lung lymph fistulas, we measured pulmonary arterial and left atrial pressures, cardiac output, lung lymph flow, and lymph and plasma protein concentrations. We injured the lungs with intravenous infusions of oleic acid at doses ranging from 0.015 to 0.120 ml/kg. We found that oleic acid caused reproducible dose-related increases in pulmonary arterial pressure and pulmonary vascular resistance, arterial hypoxemia, and increased protein-rich lung lymph flow and extravascular lung water. The lung fluid balance changes were characteristic of increased permeability pulmonary edema. Infusion of the esterified fat triolein had no hemodynamic or lung fluid balance effects. Depletion of leukocytes with a nitrogen mustard or platelets with an antiplatelet serum had no effect on oleic acid lung injury. Treatment of sheep before injury with methylprednisolone 30 mg/kg or ibuprofen 12.5-15.0 mg/kg also had no effects. Unlike other well-characterized sheep lung injuries, injury caused by oleic acid does not require participation of leukocytes.  相似文献   

17.
Polymorphonuclear leukocyte (PMN) transit through the pulmonary vasculature is slowed during inhalation of cigarette smoke in humans. This study was undertaken to determine the localization of the delayed PMN and whether they release granule-bound enzymes during smoke exposure. Anesthetized New Zealand White rabbits were exposed to cigarette smoke (n = 5) or sham (n = 5) for 10 min while they breathed spontaneously. The cardiac output, pulmonary blood volume and flow, and PMN retention were measured in each of five gravity-defined slices of lung. In three smoke-exposed and three sham animals the lungs were prepared for autoradiography, and the distribution of the radiolabeled PMN was determined. Plasma was assayed for myeloperoxidase in 10 animals. We found that smoke exposure caused increased PMN retention in the top two slices of the lungs without changing hemodynamics. The PMN were randomly distributed in the lobule, and plasma myeloperoxidase was elevated at the beginning of the exposure. We conclude that cigarette smoke may damage the lung by activating PMN in the pulmonary capillary bed.  相似文献   

18.
Application of respiratory heat exchange for the measurement of lung water.   总被引:2,自引:0,他引:2  
A noninvasive method for measuring pulmonary blood flow and lung mass (called airway thermal volume), based on the measurements of lung heat exchange with environment, is described. The lungs function as a steady-state heat exchange system, having an inner heat source (pulmonary blood flow) and an external heat sink (ventilation). Sudden changes in the steady-state condition, such as caused by hyperventilation of dry air, lead to a new steady state after a few minutes. The expired air temperature difference between the initial and final steady states is proportional to pulmonary blood flow, whereas the rate at which the new steady state is achieved is proportional to airway thermal volume. The method was tested in 20 isolated dogs lungs, 9 perfused goat lungs, and 27 anesthetized sheep. The expired air temperature fall during hyperventilation was inversely proportional to the perfusion rate of the isolated lungs, and half-time of the temperature fall was proportional to the lung tissue mass. Experiments in anesthetized sheep showed that the measured airway thermal volume is close to the total mass of the excised lungs, including its residual blood (r = 0.98). Pulmonary edema and fluid instillation into the bronchial tree increased in the measured lung mass.  相似文献   

19.
We have investigated the role of erythrocyte (RBC) deformability and perfusate viscosity on lung segmental vascular resistance in 12 isolated perfused lungs of 3- to 5-wk-old rabbits. Each lung was perfused alternately with control and formaldehyde-fixed rabbit RBCs at a flow rate of 80 ml.kg-1.min-1, left atrial and airway pressures being 8 and 6 cmH2O, respectively (zone 3). Perfusate RBC concentration was kept constant at 3.2 x 10(6)/mm3 for group I lungs (n = 6) and 7.2 x 10(6)/mm3 for group II lungs (n = 6). In all lungs, we measured pressures in the pulmonary artery and in 20- to 50-microns-diam arterioles and venules with the micropipette servo-null method during both perfusion periods. Compared with control, fixed cells had a 60% decrease in deformability index (i.e., the volume of a dilute solution of RBCs filtered through a 5-microns Nuclepore filter in 1 min). In groups I and II, perfusate viscosity of fixed cells was 15 and 55% greater, respectively, than that of control cells. We found that perfusion with fixed cells in group I lungs did not alter total or segmental vascular pressure drops. However, in group II lungs, perfusion with fixed cells at twice the cell concentration resulted in an increase in total vascular pressure drop, mainly due to an increase in pressure drop in veins (50% of total) and arteries (33%). The relatively small (17%) increase in pressure drop in microvessels was probably due to distension and/or recruitment of capillaries resulting from increased venular pressures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
T E Nicholas  P A Kim 《Steroids》1975,25(3):387-402
Isolated perfused rat lungs removed more than 35% of 3-H-cortisone (1 times 10-9M) from the perfusate during one passage through the pulmonary circulation. The cortisone in the lungs was then rapidly converted to cortisol, which was returned to the perfusate. The tritiated steroid taken up was so rapidly washed from the lung, that only 10% remained after a 12 minute perfusion with steroid-free medium. In recirculating experiments, nearly 60% conversion to cortisol occurred over 32 cycles; in addition, there was a slow increase in the percentage of polar compounds in the medium. Similarly, the perfused hindlimbs preparation from the rat converted cortisone to cortisol and returned the cortisol to the perfusate. In contrast, guinea pig isolated perfused lungs had neglible effect on cortisone. Rat lungs demonstrated only a limited ability to convert 3-H-cortisol to cortisone. The results suggest that the lungs may play an important role in maintaining cortisone/cortisol levels in the plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号