首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
Hepatitis C virus (HCV) morphogenesis and release are closely linked to lipid metabolism. It has been described recently by our group that TIP47 plays an essential role for the targeting of the NS5A-complexed RNA genome from the replicon complex to the lipid droplet. Moreover, apolipoprotein (apo) E was found to be associated with the viral particle. In light of the fact, that TIP47 harbors an apoE like domain and has a high affinity to lipoproteins, the interaction of TIP47 with the viral particle and the potential relevance for the release of the viral particle were investigated. Coimmunoprecipitations and electron microscopy analysis using immunogold labeling revealed that TIP47 binds to the viral particle and stays associated with the released HCV particle. Silencing of the TIP47 binding partner Rab9 by lentiviral transduction abolishes the viral replication. However, destruction of TIP47-Rab9 interactions by deletion/mutation of the Rab9 binding does not abolish the genome replication domain but prevents the release of HCV particles. The binding of these TIP47 mutants to the viral particle is not affected by destruction of the Rab9 binding domain. Moreover, we found that these TIP47 mutants lacking the binding site for Rab9 misdirect the de novo synthesized viral particles to the autophagosomal/lysosomal compartment where the particles are degraded. From this we conclude that the Rab9-complexed TIP47 plays an essential role for the proper release of hepatitis C viral particles.  相似文献   

2.
3.
4.
Target of rapamycin complex 1 (TORC1) has a key role in cellular regulations in response to environmental conditions. In yeast, Tip41 downregulates TORC1 signaling via activation of PP2A phosphatase. We show here that overexpression of TIPRL, a mammalian Tip41, suppressed dephosphorylation of mechanistic TORC1 (mTORC1) substrates under amino acid withdrawal, and knockdown of TIPRL conversely attenuated phosphorylation of those substrates after amino acid refeeding. TIPRL associated with the catalytic subunit of PP2A (PP2Ac), which was required for the TIPRL action on mTORC1 signaling. Collectively, unlike yeast TIP41, TIPRL has a positive effect on mTORC1 signaling through the association with PP2Ac.  相似文献   

5.
6.
Preventing or reducing tau hyperphosphorylation is considered to be a therapeutic strategy in the treatment of Alzheimer’s disease (AD). Rapamycin may be a potential therapeutic agent for AD, because the rapamycin-induced autophagy may enhance the clearance of the hyperphosphorylated tau. However, recent rodent studies show that the protective effect of rapamycin may not be limited in the autophagic clearance of the hyperphosphorylated tau. Because some tau-related kinases are targets of the mammalian target of rapamycin (mTOR), we assume that rapamycin may regulate tau phosphorylation by regulating these kinases. Our results showed that in human neuroblastoma SH-SY5Y cells, treatment with rapamycin induced phosphorylation of the type IIα regulatory (RIIα) subunit of cAMP-dependent kinase (PKA). Rapamycin also induced nuclear translocation of the catalytic subunits (Cat) of PKA and decreases in tau phosphorylation at Ser214 (pS214). The above effects of rapamycin were prevented by pretreatment with the mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibitor U0126. In addition, these effects of rapamycin might not depend on the level of tau expression, because similar results were obtained in both the non-tau-expressing wild type human embryonic kidney 293 (HEK293) cells and HEK293 cells stably transfected with the longest isoform of recombinant human tau (tau441; HEK293/tau441). These findings suggest that rapamycin decreases pS214 via regulation of PKA. Because tau phosphorylation at Ser214 may prime tau for further phosphorylation by other kinases, our findings provide a novel possible mechanism by which rapamycin reduces or prevents tau hyperphosphorylation.  相似文献   

7.
Apoptosis in neuronal tissue is an efficient mechanism which contributes to both normal cell development and pathological cell death. The present study explores the effects of extracellular ADP on low [K+]-induced apoptosis in rat cerebellar granule cells. ADP, released into the extracellular space in brain by multiple mechanisms, can interact with its receptor or be converted, through the actions of ectoenzymes, to adenosine. The findings reported in this paper demonstrate that ADP inhibits the proapoptotic stimulus supposedly via: i) inhibition of ROS production during early stages of apoptosis, an effect mediated by its interaction with cell receptor/s. This conclusion is validated by the increase in SOD and catalase activities as well as by the GSSG/GSH ratio value decrease, in conjunction with the drop of ROS level and the prevention of the ADP protective effect by pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS), a novel functionally selective antagonist of purine receptor; ii) safeguard of the functionality of the mitochondrial adenine nucleotide-1 translocator (ANT-1), which is early impaired during apoptosis. This effect is mediated by its plausible internalization into cell occurring as such or after its hydrolysis, by means of plasma membrane nucleotide metabolizing enzymes, and resynthesis into the cell. Moreover, the findings that ADP also protects ANT-1 from the toxic action of the two Alzheimer's disease peptides, i.e. Aβ1–42 and NH2htau, which are known to be produced in apoptotic cerebellar neurons, further corroborate the molecular mechanism of neuroprotection by ADP, herein proposed.  相似文献   

8.
In all eukaryotic cells, the endoplasmic reticulum (ER) and the mitochondria establish a tight interplay, which is structurally and functionally modulated through a proteinaceous tether formed at specific subdomains of the ER membrane, designated mitochondria-associated membranes or MAMs. The tethering function of the MAMs allows the regulation of lipid synthesis and rapid transmission of calcium (Ca2 +) signals between the ER and mitochondria, which is crucial to shape intracellular Ca2 + signaling and regulate mitochondrial bioenergetics. Research on the molecular characterization and function of MAMs has boomed in the last few years and the list of signaling and structural proteins dynamically associated with the ER–mitochondria contact sites in physiological and pathological conditions, is rapidly increasing along with the realization of an unprecedented complexity underlying the functional role of MAMs. Besides their established role as a signaling hub for Ca2 + and lipid transfer between ER and mitochondria, MAMs have been recently shown to regulate mitochondrial shape and motility, energy metabolism and redox status and to be central to the modulation of various key processes like ER stress, autophagy and inflammasome signaling. In this review we will discuss some emerging cell-autonomous and cell non-autonomous roles of the MAMs in mammalian cells and their relevance for important human diseases. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

9.
10.
11.

Background

Hereditary optic neuropathies (HONs) are a heterogeneous group of disorders that affect retinal ganglion cells (RGCs) and axons that form the optic nerve. Leber's Hereditary Optic Neuropathy and the autosomal dominant optic atrophy related to OPA1 mutations are the most common forms. Nonsyndromic autosomal recessive optic neuropathies are rare and their existence has been long debated. We recently identified the first gene responsible for these conditions, TMEM126A. This gene is highly expressed in retinal cellular compartments enriched in mitochondria and supposed to encode a mitochondrial transmembrane protein of unknown function.

Methods

A specific polyclonal antibody targeting the TMEM126A protein has been generated. Quantitative fluorescent in situ hybridization, cellular fractionation, mitochondrial membrane association study, mitochondrial sub compartmentalization analysis by both proteolysis assays and transmission electron microscopy, and expression analysis of truncated TMEM126A constructs by immunofluorescence confocal microscopy were carried out.

Results

TMEM126A mRNAs are strongly enriched in the vicinity of mitochondria and encode an inner mitochondrial membrane associated cristae protein. Moreover, the second transmembrane domain of TMEM126A is required for its mitochondrial localization.

Conclusions

TMEM126A is a mitochondrial located mRNA (MLR) that may be translated in the mitochondrial surface and the protein is subsequently imported to the inner membrane. These data constitute the first step toward a better understanding of the mechanism of action of TMEM126A in RGCs and support the importance of mitochondrial dysfunction in the pathogenesis of HON.

General significance

Local translation of nuclearly encoded mitochondrial mRNAs might be a mechanism for rapid onsite supply of mitochondrial membrane proteins.  相似文献   

12.
13.
14.
Redox transients of chlorophyll P700, monitored as absorbance changes ΔA810, were measured during and after exclusive PSI excitation with far-red (FR) light in pea (Pisum sativum, cv. Premium) leaves under various pre-excitation conditions. Prolonged adaptation in the dark terminated by a short PSII + PSI− exciting light pulse guarantees pre-conditions in which the initial photochemical events in PSI RCs are carried out by cyclic electron transfer (CET). Pre-excitation with one or more 10 s FR pulses creates conditions for induction of linear electron transport (LET). These converse conditions give rise to totally different, but reproducible responses of P700 oxidation. System analyses of these responses were made based on quantitative solutions of the rate equations dictated by the associated reaction scheme for each of the relevant conditions. These provide the mathematical elements of the P700 induction algorithm (PIA) with which the distinguishable components of the P700+ response can be resolved and interpreted. It enables amongst others the interpretation and understanding of the characteristic kinetic profile of the P700+ response in intact leaves upon 10 s illumination with far-red light under the promotive condition for CET. The system analysis provides evidence that this unique kinetic pattern with a non-responsive delay followed by a steep S-shaped signal increase is caused by a photoelectrochemically controlled suppression of the electron transport from Fd to the PQ-reducing Qr site of the cytb6f complex in the cyclic pathway. The photoelectrochemical control is exerted by the PSI-powered proton pump associated with CET. It shows strong similarities with the photoelectrochemical control of LET at the acceptor side of PSII which is reflected by release of photoelectrochemical quenching of chlorophyll a fluorescence.  相似文献   

15.
Glioblastoma is the most common and aggressive brain tumor type, with a mean patient survival of approximately 1 year. Many previous analyses of the glioma kinome have identified key deregulated pathways that converge and activate mammalian target of rapamycin (mTOR). Following the identification and characterization of mTOR-promoting activity in gliomagenesis, data from preclinical studies suggested the targeting of mTOR by rapamycin or its analogs (rapalogs) as a promising therapeutic approach. However, clinical trials with rapalogs have shown very limited efficacy on glioma due to the development of resistance mechanisms. Analysis of rapalog-insensitive glioma cells has revealed increased activity of growth and survival pathways compensating for mTOR inhibition by rapalogs that are suitable for therapeutic intervention. In addition, recently developed mTOR inhibitors show high anti-glioma activity. In this review, we recapitulate the regulation of mTOR signaling and its involvement in gliomagenesis, discuss mechanisms resulting in resistance to rapalogs, and speculate on strategies to overcome resistance. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).  相似文献   

16.
Tight junctions (TJs) regulate the passage of ions and molecules through the paracellular pathway in epithelial and endothelial cells. TJs are highly dynamic structures whose degree of sealing varies according to external stimuli, physiological and pathological conditions. In this review we analyze how the crosstalk of protein kinase C, protein kinase A, myosin light chain kinase, mitogen-activated protein kinases, phosphoinositide 3-kinase and Rho signaling pathways is involved in TJ regulation triggered by diverse stimuli. We also report how the phosphorylation of the main TJ components, claudins, occludin and ZO proteins, impacts epithelial and endothelial cell function.  相似文献   

17.
The epithelial and endothelial barriers of the human body are major obstacles for drug delivery to the systemic circulation and to organs with unique environment and homeostasis, like the central nervous system. Several transport routes exist in these barriers, which potentially can be exploited for enhancing drug permeability. Beside the transcellular pathways via transporters, adsorptive and receptor-mediated transcytosis, the paracellular flux for cells and molecules is very limited. While lipophilic molecules can diffuse across the cellular plasma membranes, the junctional complexes restrict or completely block the free passage of hydrophilic molecules through the paracellular clefts. Absorption or permeability enhancers developed in the last 40 years for modifying intercellular junctions and paracellular permeability have unspecific mode of action and the effective and toxic doses are very close. Recent advances in barrier research led to the discovery of an increasing number of integral membrane, adaptor, regulator and signalling proteins in tight and adherens junctions. New tight junction modulators are under development, which can directly target tight or adherens junction proteins, the signalling pathways regulating junctional function, or tight junction associated lipid raft microdomains. Modulators acting directly on tight junctions include peptides derived from zonula occludens toxin, or Clostridium perfringens enterotoxin, peptides selected by phage display that bind to integral membrane tight junction proteins, and lipid modulators. They can reversibly increase paracellular transport and drug delivery with less toxicity than previous absorption enhancers, and have a potential to be used as pharmaceutical excipients to improve drug delivery across epithelial barriers and the blood-brain barrier.  相似文献   

18.
19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号