首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Yih-Kuang Lu 《BBA》2007,1767(6):633-638
The effects of Cl, Mn2+, Ca2+, and pH on extrinsic and intrinsic photosystem II carbonic anhydrase activity were compared. Under the conditions of our in vitro experiments, extrinsic CA activity, located on the OEC33 protein, was optimum at about 30 mM Cl, and strongly inhibited above this concentration. This enzyme is activated by Mn2+ and stimulated somewhat by Ca2+. The OEC33 showed dehydration activity that is optimum at pH 6 or below. In contrast, intrinsic CA activity found in the PSII complex after removal of extrinsic proteins was stimulated by Cl up to 0.4 M. Ca2+ appears to be the required cofactor, which implies that the location of the intrinsic CA activity is in the immediate vicinity of the CaMn4 complex. Up to now, intrinsic CA has shown only hydration activity that is nearly pH independent.  相似文献   

2.
分泌系统对于具有特殊细胞被膜结构的分枝杆菌,尤其是致病性分枝杆菌的存活和毒力非常重要.不少重要的致病因子或存活因子都通过特定的分泌系统进入环境,包括宿主体内.本文从分泌系统的基因、结构组成、分泌底物、转运机制及其与致病菌毒力的关系等几个方面介绍了分枝杆菌(mycobacteria)通用型分泌系统(general secretion pathway,SecA1)、替代型分泌系统(accessory Sec system,SecA2)、双精氨酸分泌系统(twin-arginine translocation,Tat)和Ⅶ型分泌系统(typeⅦsecretion systems,T7S system or ESX)4种分泌系统,并重点分析了Tat分泌系统.这些知识有利于从分泌系统及其底物的角度揭示结核分枝杆菌等胞内致病菌存活和逃避宿主免疫的机理,将为研发新的结核病控制措施提供依据.  相似文献   

3.
Small heat shock proteins (sHsps) exist in almost all organisms. Most organisms have more than one sHsp, but their number can be as high as 65, as found in the eukaryote, Vitis vinifera. The function of sHsps is well-known; they confer thermotolerance to cellular cultures and proteins in cellular extracts during prolonged incubations at elevated temperatures. This demonstrates the ability of sHsps to protect cellular proteins, and to maintain cellular viability under conditions of intensive stress, such as heat shock or chemical treatments. sHsps have several properties that distinguish them from heat shock proteins (Hsps): they function as ATP-independent chaperones, require the flexible assembly and reassembly of oligomeric complex structures for their activation, and exhibit a wide range of substrate-binding capacities. Recent studies indicate that sHsps have important biological functions in thermostability, disaggregation, and proteolysis inhibition. These functions can be harnessed for various applications, including nanobiotechnology, proteomics, bioproduction, and bioseparation. In this review, we discuss the properties and diversity of microbial sHsps, as well as their potential uses in the biotechnology industry.  相似文献   

4.
5.
6.
Leucine-rich repeat kinase 2 (LRRK2) has been associated with Parkinson’s disease (PD) and other disorders. However, its normal physiological functions and pathogenic properties remain elusive. Here we show that LRRK2 regulates the anterograde ER–Golgi transport through anchoring Sec16A at the endoplasmic reticulum exit sites (ERES). LRRK2 interacted and co-localized with Sec16A, a key protein in the formation of ERES. Lrrk2 depletion caused a dispersion of Sec16A from ERES and impaired ER export. In neurons, LRRK2 and Sec16A showed extensive co-localization at the dendritic ERES (dERES) that locally regulate the transport of proteins to the dendritic spines. A loss of Lrrk2 affected the association of Sec16A with dERES and impaired the activity-dependent targeting of glutamate receptors onto the cell/synapse surface. Furthermore, the PD-related LRRK2 R1441C missense mutation in the GTPase domain interfered with the interaction of LRRK2 with Sec16A and also affected ER–Golgi transport, while LRRK2 kinase activity was not required for these functions. Therefore, our findings reveal a new physiological function of LRRK2 in ER–Golgi transport, suggesting ERES dysfunction may contribute to the pathogenesis of PD.  相似文献   

7.
Chlorophyll fluorescence decay kinetics was measured in sulfur deprived cells of green alga Chlamydomonas reinhardtii with a home made picosecond fluorescence laser spectrometer. The measurements were carried out on samples either shortly adapted to the dark (‘Fo conditions’) or treated to reduce Qa (‘Fm conditions’). Bi-exponential fitting of decay kinetics was applied to distinguish two components one of them related to energy trapping (fast component) and the other to charge stabilization and recombination in PS 2 reaction centers (slow component). It was found that the slow component yield increased by 2.0 and 1.2 times when measured under ‘Fo’ and ‘Fm conditions’, respectively, in sulfur deprived cells as compared to control ones. An additional rapid rise of the slow component yield was observed when incubation was carried out in a sealed bioreactor and cell culture turned to anaerobic conditions. The obtained results strongly indicate the existence of the redox control of PS 2 activity during multiphase adaptation of C. reinhardtii to sulfur deficiency stress. Probable mechanisms responsible for the observed increased recombinant fluorescence yield in starved cells are discussed.  相似文献   

8.
9.
10.
    
Previous studies have unraveled that peroxiredoxin 2 (Prdx2) inhibits atherogenesis in mice, whereas its role in macrophage lipid accumulation or the underlying mechanisms remain unknown. THP-1 monocyte-derived foam cells were transfected with Prdx2-overexpressing plasmid vectors (pcDNA3.1-Prdx2) or Prdx2 siRNA. The expression of ABCA1, NF-κB p65 and miR-33a were detected by RT-PCR and Western blotting. Percentage of cholesterol efflux was evaluated by liquid scintillation counting. Cellular lipid droplets were assessed using Oil Red O staining. Intracellular cholesterol contents were measured using high performance liquid chromatography (HPLC). Furthermore, cells were pre-treated with NF-κB inhibitor PDTC and/or miR-33a inhibitor, followed by detection of the indices above. The results showed that overexpression of Prdx2 in THP-1 monocyte-derived foam cells significantly increased ABCA1 expression and the percentage of [3H]-cholesterol efflux to apoA-1 (P<0.05), whereas NF-κB p65 and miR-33a levels as well as lipid accumulation were decreased (P<0.05). After pre-treatment with PDTC and/or miR-33a inhibitor, these effects were more obvious (P<0.05). In contrast, silencing of Prdx2 significantly diminished ABCA1 expression and increased NF-κB p65 and miR-33a levels. At last, we found that Prdx2 overexpression obviously down-regulated the ROS level in THP-1 monocyte-derived foam cells. Altogether, Prdx2 promotes macrophage cholesterol efflux and inhibits intracellular lipid accumulation through the ROS-NF-κB-miR-33a-ABCA1 pathway.  相似文献   

11.
Hana Popelkova  Alan Commet 《FEBS letters》2010,584(18):4009-4014
The W241F mutation in spinach manganese-stabilizing protein (PsbO) decreases binding to photosystem II (PSII); its thermostability is increased and reconstituted activity is lower [Wyman et al. (2008) Biochemistry 47, 6490-6498]. The results reported here show that W241F cannot adopt a normal solution structure and fails to reconstitute efficient Cl retention by PSII. An N-terminal truncation of W241F, producing the ΔL6MW241F double mutant that resembles some features of cyanobacterial PsbO, significantly repairs the defects in W241F. Our data suggest that the C-terminal F → W mutation likely evolved in higher plants and green algae in order to preserve proper PsbO folding and PSII binding and assembly, which promotes efficient Cl retention in the oxygen-evolving complex.  相似文献   

12.
Heng Li 《BBA》2006,1757(11):1512-1519
The state transition in cyanobacteria is a long-discussed topic of how the photosynthetic machine regulates the excitation energy distribution in balance between the two photosystems. In the current work, whether the state transition is realized by “mobile phycobilisome (PBS)” or “energy spillover” has been clearly answered by monitoring the spectral responses of the intact cells of the cyanobacterium Spirulina platensis. Firstly, light-induced state transition depends completely on a movement of PBSs toward PSI or PSII while the redox-induced one on not only the “mobile PBS” but also an “energy spillover”. Secondly, the “energy spillover” is triggered by dissociation of PSI trimers into the monomers which specially occurs under a case from light to dark, while the PSI monomers will re-aggregate into the trimers under a case from dark to light, i.e., the PSI oligomerization is reversibly regulated by light switch on and off. Thirdly, PSI oligomerization is regulated by the local H+ concentration on the cytosol side of the thylakoid membranes, which in turn is regulated by light switch on and off. Fourthly, PSI oligomerization change is the only mechanism for the “energy spillover”. Thus, it can be concluded that the “mobile PBS” is a common rule for light-induced state transition while the “energy spillover” is only a special case when dark condition is involved.  相似文献   

13.
The twin-arginine translocase (Tat) pathway transports folded proteins across bacterial and thylakoid membranes. In Escherichia coli, a membrane-bound TatA complex, which oligomerizes to form complexes of less than 100 to more than 500 kDa, is considered essential for translocation. We have studied the contributions of various TatA domains to the assembly and function of this heterogeneous TatA complex. The TOXCAT assay was used to analyze the potential contribution of the TatA transmembrane (TM) domain. We observed relatively weak interactions between TatA TM domains, suggesting that the TM domain is not the sole driving force behind oligomerization. A potential hydrogen-bonding role for a TM domain glutamine was also investigated, and it was found that mutation blocks transport at low expression levels, while assembly is unaffected at higher expression levels. Analysis of truncated TatA proteins instead highlighted an acidic motif directly following the TatA amphipathic helix. Mutating these negatively charged residues to apolar uncharged residues completely blocks activity, even at high levels of TatA, and appears to disrupt ordered complex formation.  相似文献   

14.
There are many great reports of polyamine stabilization of the Z-DNA by bridge conformation between neighboring, symmetry-related Z-DNA in the packing of crystals. However, polyamine binding to the minor groove of Z-DNA and stabilizing the Z-DNA structure has been rarely reported. We proved that the synthesized polyamines bind to the minor groove of Z-DNA and stabilize the conformation under various conditions, by X-ray crystallographic study. These polyamines consist of a polyamine nano wire structure. The modes of the polyamine interaction were changed under different conditions. It is the first example that the crystals consisted of metal free structure. This finding provides a basis for clarifying B-Z transition mechanics.  相似文献   

15.
16.
The canonical Wnt signaling pathway, in which β-catenin nuclear localization is a crucial step, plays an important role in osteoblast differentiation. Pin1, a prolyl isomerase, is also known as a key enzyme in osteogenesis. However, the role of Pin1 in canonical Wnt signal-induced osteoblast differentiation is poorly understood. We found that Pin1 deficiency caused osteopenia and reduction of β-catenin in bone lining cells. Similarly, Pin1 knockdown or treatment with Pin1 inhibitors strongly decreased the nuclear β-catenin level, TOP flash activity, and expression of bone marker genes induced by canonical Wnt activation and vice versa in Pin1 overexpression. Pin1 interacts directly with and isomerizes β-catenin in the nucleus. The isomerized β-catenin could not bind to nuclear adenomatous polyposis coli, which drives β-catenin out of the nucleus for proteasomal degradation, which consequently increases the retention of β-catenin in the nucleus and might explain the decrease of β-catenin ubiquitination. These results indicate that Pin1 could be a critical target to modulate β-catenin-mediated osteogenesis.  相似文献   

17.
S Kushinsky  M Anderson 《Steroids》1974,23(4):535-548
A sensitive and efficient non-chromatographic procedure employing the Girard reagent and solvent-partitioning has been developed for the accurate radioimmunoassay (RIA) of estrone (E1) and estradiol-17β(E2) in a single 1.0 ml specimen of male or female serum. Using standard curves which permitted the discrimination of zero from 0.75–1.5 pg (p=0.05), the following mean procedural blanks (pg ± S.D.) were determined (1.0 ml water, n= 24): estrone, 2. 1 ± 1.1 (range 0–4.1); estradiol 1.0± 1.1 (range 0–3.6).A comparison of RIA of estrogens (1) in serum after separation by the Girard procedure and by TLC yielded correlation coefficients of 0.99 and 0.98 for E1 and E2 respectively. The following results (pg/ml ± S.D.) were obtained on RIA of E1 and E2 in 12 different 1.0 ml specimens of male and female serum using the Girard procedure: male. E1 (32.0 ± 9.2), E2 (24.1 ± 10.9); female, E1 (108.5 ± 60.8), E2 (126.4 ± 63.2).The intra-assay variability (c.v.) was found to be 12.6% for E1 and 9.4% for E2. The interassay variability was 14.2% for both estrogens.Twenty-four assays of E1 and E2 can be completed by one person in 2 working days.  相似文献   

18.
19.
The conductance of the BK channel was evaluated in reconstituted bilayers made of POPE/POPS (3.3:1), or POPE/POPS with an added 20% of either SPM (3.3:1:1), CER (3.3:1:1), or CHL (3.3:1:1). The presence of SPM, which is known to increase bilayer thickness, significantly reduced the conductance of the BK channel. To directly test the role of membrane thickness, the conductance of the BK channel was measured in bilayers formed from PCs with acyl chains of increasing length (C14:1-C24:1), all in the absence of SPM. Slope conductance was maximal at a chain length of (C18:1) and much reduced for both thinner (C14:1) and thicker (C24:1) bilayers, indicating that membrane thickness alone can modify slope conductance. Further, in a simplified binary mixture of DOPE/SPM that forms a confined, phase-separated bilayer, the measured conductance of BK channels shows a clear bimodal distribution. In contrast, the addition of CER, which has an acyl chain structure similar to SPM but without its bulky polar head group to POPE/POPS, was without effect, as was the addition of CHL. The surface structure of membranes made from these same lipid mixtures was examined with AFM. Incorporation of both SPM and CER resulted in the formation of microdomains in POPE/POPS monolayers, but only SPM promoted a substantial increase in the amount of the high phase observed for the corresponding bilayers. The addition of CHL to POPE/POPS eliminated the phase separation observed in the POPE/POPS bilayer. The decrease in channel conductance observed with the incorporation of SPM into POPE/POPS membranes was, therefore, attributed to larger SPM-rich domains that appear thicker than the neighboring bilayer.  相似文献   

20.
Hiroyuki Mino  Shigeru Itoh 《BBA》2005,1708(1):42-49
We investigated a new EPR signal that gives a broad line shape around g=2 in Ca2+-depleted Photosystem (PS) II. The signal was trapped by illumination at 243 K in parallel with the formation of YZ. The ratio of the intensities between the g=2 broad signal and the YZ signal was 1:3, assuming a Gaussian line shape for the former. The g=2 broad signal and the YZ signal decayed together in parallel with the appearance of the S2 state multiline at 243 K. The g=2 broad signal was assigned to be an intermediate S1X state in the transition from the S1 to the S2 state, where X represents an amino acid radical nearby manganese cluster, such as D1-His337. The signal is in thermal equilibrium with YZ. Possible reactions in the S state transitions in Ca2+-depleted PS II were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号