首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Yih-Kuang Lu 《BBA》2007,1767(6):633-638
The effects of Cl, Mn2+, Ca2+, and pH on extrinsic and intrinsic photosystem II carbonic anhydrase activity were compared. Under the conditions of our in vitro experiments, extrinsic CA activity, located on the OEC33 protein, was optimum at about 30 mM Cl, and strongly inhibited above this concentration. This enzyme is activated by Mn2+ and stimulated somewhat by Ca2+. The OEC33 showed dehydration activity that is optimum at pH 6 or below. In contrast, intrinsic CA activity found in the PSII complex after removal of extrinsic proteins was stimulated by Cl up to 0.4 M. Ca2+ appears to be the required cofactor, which implies that the location of the intrinsic CA activity is in the immediate vicinity of the CaMn4 complex. Up to now, intrinsic CA has shown only hydration activity that is nearly pH independent.  相似文献   

2.
Lipoprotein(a), Lp(a), is an atherogenic lipoprotein consisting of an LDL like core particle and a covalently linked glycoprotein of variable size. Lp(a), isolated from serum always contains LDL and HDL(2) as contaminants since Lp(a) floats in the density range 1.05-1.12 g/ml which overlaps that of LDL and HDL(2). Purified Lp(a) is increasingly needed as a standard to overcome various problems in the standardization of Lp(a) measurements and for in vitro biological studies. Problems inherent to the purification of Lp(a) include the aggregation of Lp(a) with LDL, overlapping size distribution and the inability of some fractions to bind to affinity columns. Here, we describe the development of a new method to purify Lp(a) from contaminating LDL and HDL(2) particles. Lp(a) was isolated from serum by sequential ultracentrifugation, resolved by native polyacrylamide gel electrophoresis and the gel segments were electroeluted to obtain pure Lp(a). l-Proline was added to the sample to a final concentration of 0.1 M to prevent the aggregation of Lp(a) with LDL.  相似文献   

3.
Hiroyuki Mino  Shigeru Itoh 《BBA》2005,1708(1):42-49
We investigated a new EPR signal that gives a broad line shape around g=2 in Ca2+-depleted Photosystem (PS) II. The signal was trapped by illumination at 243 K in parallel with the formation of YZ. The ratio of the intensities between the g=2 broad signal and the YZ signal was 1:3, assuming a Gaussian line shape for the former. The g=2 broad signal and the YZ signal decayed together in parallel with the appearance of the S2 state multiline at 243 K. The g=2 broad signal was assigned to be an intermediate S1X state in the transition from the S1 to the S2 state, where X represents an amino acid radical nearby manganese cluster, such as D1-His337. The signal is in thermal equilibrium with YZ. Possible reactions in the S state transitions in Ca2+-depleted PS II were discussed.  相似文献   

4.
Limited uncoupling of oxidative phosphorylation is known to be beneficial in various laboratory models of diseases. The search for cationic uncouplers is promising as their protonophorous effect is self-limiting because these uncouplers lower membrane potential which is the driving force for their accumulation in mitochondria. In this work, the penetrating cation Rhodamine 19 butyl ester (C4R1) was found to decrease membrane potential and to stimulate respiration of mitochondria, appearing to be a stronger uncoupler than its more hydrophobic analog Rhodamine 19 dodecyl ester (C12R1). Surprisingly, C12R1 increased H+ conductance of artificial bilayer lipid membranes or induced mitochondria swelling in potassium acetate with valinomycin at concentrations lower than C4R1. This paradox might be explained by involvement of mitochondrial proteins in the uncoupling action of C4R1. In experiments with HeLa cells, C4R1 rapidly and selectively accumulated in mitochondria and stimulated oligomycin-sensitive respiration as a mild uncoupler. C4R1 was effective in preventing oxidative stress induced by brain ischemia and reperfusion in rats: it suppressed stroke-induced brain swelling and prevented the decline in neurological status more effectively than C12R1. Thus, C4R1 seems to be a promising example of a mild uncoupler efficient in treatment of brain pathologies related to oxidative stress.  相似文献   

5.
In cyanobacteria, Glu-244 and Tyr-246 of the Photosystem II (PS II) D1 protein are hydrogen bonded to two water molecules that are part of a hydrogen-bond network between the bicarbonate ligand to a non-heme iron and the cytosol. Ala substitutions were introduced in Synechocystis sp. PCC 6803 to investigate the roles of these residues and the hydrogen-bond network on electron transfer between the primary plastoquinone acceptor, QA, and the secondary plastoquinone acceptor, QB, of the quinone-Fe-acceptor complex. All mutants assembled PS II; however, an increase in the PS II to PS I ratio was apparent, particularly in the E244A:Y246A double mutant. The mutants also showed impaired oxygen evolution and retarded chlorophyll a fluorescence decays following single turnover actinic flashes, which appeared to be primarily due to reduced QB binding in the E244A strain and an enhanced back reaction with the S2 state of the oxygen-evolving complex in the Y246A mutant. Impaired PS II in the Y246A and E244A:Y246A mutants resulted in inactivation of the psbA gene encoding D1. The Y246A and E244A:Y246A mutants also showed high light sensitivity whereas the E244A mutant showed enhanced resilience towards photodamage. Unlike the control strain, all of the mutants were insensitive to the addition of formate or bicarbonate in assays following chlorophyll decay kinetics that reflect electron transfer between QA and QB, suggesting the bicarbonate binding environment was perturbed. Our data also indicate that waters W582 and W622 (PDB: 4UB6) have essential roles in maintaining the architecture of the acceptor side of PS II.  相似文献   

6.
Electron transport processes were investigated in barley leaves in which the oxygen-evolution was fully inhibited by a heat pulse (48 °C, 40 s). Under these circumstances, the K peak (∼ F400 μs) appears in the chl a fluorescence (OJIP) transient reflecting partial QA reduction, which is due to a stable charge separation resulting from the donation of one electron by tyrozine Z. Following the K peak additional fluorescence increase (indicating QA accumulation) occurs in the 0.2-2 s time range. Using simultaneous chl a fluorescence and 820 nm transmission measurements it is demonstrated that this QA accumulation is due to naturally occurring alternative electron sources that donate electrons to the donor side of photosystem II. Chl a fluorescence data obtained with 5-ms light pulses (double flashes spaced 2.3-500 ms apart, and trains of several hundred flashes spaced by 100 or 200 ms) show that the electron donation occurs from a large pool with t1/2 ∼ 30 ms. This alternative electron donor is most probably ascorbate.  相似文献   

7.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号