首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In-cell NMR is an application of solution NMR that enables the investigation of protein conformations inside living cells. We have measured in-cell NMR spectra in oocytes from the African clawed frog Xenopus laevis. 15N-labeled ubiquitin, its derivatives and calmodulin were injected into Xenopus oocytes and two-dimensional 1H–15N correlation spectra of the proteins were obtained. While the spectrum of wild-type ubiquitin in oocytes had rather fewer cross-peaks compared to its in vitro spectrum, ubiquitin derivatives that are presumably unable to bind to ubiquitin-interacting proteins gave a markedly larger number of cross-peaks. This observation suggests that protein–protein interactions between ubiquitin and ubiquitin-interacting proteins may cause NMR signal broadening, and hence spoil the quality of the in-cell HSQC spectra. In addition, we observed the maturation of ubiquitin precursor derivative in living oocytes using the in-cell NMR technique. This process was partly inhibited by pre-addition of ubiquitin aldehyde, a specific inhibitor for ubiquitin C-terminal hydrolase (UCH). Our work demonstrates the potential usefulness of in-cell NMR with Xenopus oocytes for the investigation of protein conformations and functions under intracellular environmental conditions.Electronic Supplementary Material Supplementary material is available to authorized users in the online version of this article at .  相似文献   

2.
Su Z  Chai MF  Lu PL  An R  Chen J  Wang XC 《Planta》2007,226(4):1031-1039
Mtm1p is essential for the posttranslational activation of manganese-containing superoxide dismutase (SOD2) in Saccharomyces cerevisiae; however, whether the same holds true for Arabidopsis thaliana is unknown. In this study, by using the yeast mtm1 mutant complementation method, we identified a putative MTM gene (AtMTM1, At4g27940) that is necessary for SOD2 activation. Further, analysis of SOD activity revealed that an SOD2 defect is rescued in the yeast mutant Y07288 harboring the AtMTM1 gene. Related mRNA-level analysis showed the AtMTM1 gene is induced by paraquat but not by hydrogen peroxide, which indicates that this gene is related to the superoxide scavenger SOD. In addition, an AtMTM1::GFP fusion construct was transiently expressed in the protoplasts, and it was localized to the mitochondria. Furthermore, sequence deletion analysis of AtMTM1 revealed that the code region (amino acid (aa) 60–198) of Mtm1p plays an important role in localization of the protein to the mitochondria. Regulation of AtMTM1 gene expression was analyzed using a fusion construct of the 1,766 bp AtMTM1 promoter and the GUS (β-glucuronidase) reporter gene. The screen identified GUS reporter gene expression in the developing cotyledons, leaves, roots, stems, and flowers but not in the siliques. Our results suggest that AtMTM1 encodes a mitochondrial protein that may be playing an important role in activation of MnSOD1 in Arabidopsis.  相似文献   

3.
Studying mitochondrial membrane proteins for ion or substrate transport is technically difficult, as the organelles are hidden within the cell interior and thus inaccessible to many conventional nondisruptive techniques. This technical barrier can potentially be overcome if the mitochondrial membrane proteins are targeted to the cell surface, where they can be more readily studied. We undertook experiments presented here to target two related mitochondrial membrane proteins, mitochondrial ATP-binding cassette-1 and -2 protein (mABC1 and mABC2, respectively) to the cell surface for functional studies. These two proteins have an N-terminal mitochondrial targeting signal (MTS), and we hypothesized that removal of this sequence or addition of a cell surface targeting signal would lead to cell membrane targeting of these proteins. When the MTS was removed from mABC1, it localized to intracellular secretory compartments as well as the plasma membrane. However, truncated mABC2 lacking the MTS aggregated inside the cell. Addition of a cell membrane signal sequence or the transmembrane domain from CD8 to the N-terminus of mABC1 or mABC2 resulted in similar subcellular localizations. We then performed patch clamp on cells expressing mABC1 on their surface. These cells exhibited nonselective transport of K(+) and Na(+) ions and resulted in the loss of membrane potential. Our findings open new ways to study mitochondrial membrane proteins in established cell culture systems by targeting them to the cell surface, where they can more reliably be studied using various molecular and cellular techniques.  相似文献   

4.
One of the proteins targeted to the peridinin plastid of the dinoflagellate Lingulodinium polyedrum is the iron-containing superoxide dismutase (LpSOD). Like dinoflagellate plastid proteins of class II, LpSOD carries a bipartite presequence comprising a signal peptide followed by a transit peptide. Our bioinformatic studies suggest that its signal peptide is atypical, however, and that the entire presequence may function as a mitochondrial targeting signal. It is possible that LpSOD represents a new class of proteins in algae with complex plastids, which are co-targeted to the plastid and mitochondrion. In addition to the ambiguous N-terminal targeting signal, LpSOD contains a potential type-1 peroxisome-targeting signal (PTS1) located at its C-terminus. In accordance with a peroxisome localization of this dismutase, its mRNA has two in-frame AUG codons. Our bioinformatic analyses indicate that the first start codon resides in a much weaker oligonucleotide context than the second one. This suggests that synthesis of the plastid/mitochondrion-targeted and peroxisome-targeted isoforms could proceed through so-called leaky scanning. Moreover, our results show that expression of the two isoforms could be regulated by a 'hairpin' structure located between the first and second start codons.  相似文献   

5.
Strains of Saccharomyces cerevisiae that express either the wild type or the amyotrophic lateral sclerosis-associated mutant human copper-zinc superoxide dismutase (SOD1) proteins A4V and G93A, respectively, in a yeast SOD1-deficient parent strain were used to investigate the hypothesis that expression of a mutant SOD1 protein causes deficient mitochondrial electron transport as a possible mechanism for disease induction. Mitochondria isolated from the wild type SOD1-expressing yeast were identical to mitochondria from the parent strain in heme content and activities of complexes II, III, and IV. Mitochondria isolated from the A4V-expressing yeast had decreased rates of electron transport in complexes II+III, III, and IV and corresponding decreases in hemes b, c-c1, and a-a3 content compared to mitochondria from wild type human SOD1-expressing yeast. Mitochondria isolated from G93A-expressing yeast had decreased rates of electron transport in complex IV and probably in complex II with a corresponding decrease in heme a-a3 content. These results suggest that mutant SOD1-expression causes defective electron transport complex assembly and that the yeast system will provide an excellent model for the study of the mechanism of mutant SOD1-induced mitochondrial electron transport defects.  相似文献   

6.
Coiled-coil helix coiled-coil helix domain-containing protein 3 (ChChd3) is a mitochondrial inner membrane (IM) protein facing toward the intermembrane space (IMS). In the IMS, ChChd3 complexes with multiple proteins at the crista junctions and contact sites and plays a key role in maintaining crista integrity. ChChd3 is myristoylated at the N terminus and has a CHCH domain with twin CX9C motifs at its C terminus. The CHCH domain proteins are traditionally imported and trapped in the IMS by using a disulfide relay system mediated by Mia40 and Erv1. In this study, we systematically analyzed the role of the myristoylation and the CHCH domain in the import and mitochondrial localization of ChChd3. Based on our results, we predict that myristoylation promotes binding of ChChd3 to the outer membrane and that the CHCH domain translocates the protein across the outer membrane. By analysis of the CHCH domain cysteine mutants, we further show that they have distinct roles in binding to Mia40 in the IMS and proper folding of the protein. The transient disulfide-bonded intermediate with Mia40 is formed preferentially between the second cysteine in helix 1, Cys193, and the active site cysteine in Mia40, Cys55. Although each of the four cysteines is essential for folding of the protein and binding to mitofilin and Sam50, they are not involved in import. Together our results indicate that both the myristoylation and the CHCH domain are essential for the import and mitochondrial localization of ChChd3. Once imported, ChChd3 binds to Mia40 for further folding and assembly into macromolecular complexes.  相似文献   

7.
Human copper-cobalt superoxide dismutase in the reduced form has been investigated through 1H NMR techniques. The aim is to monitor the structural properties of this derivative and to compare them with those of reduced and oxidized native superoxide dismutases. The observed signals of the cobalt ligands have been assigned as well as the signals of the histidines bound to copper(I). The latter signals experience little pseudocontact shifts which allow a rough orientation of the magnetic susceptibility tensor in the molecular frame. The connectivities indicate that, although the histidine bridge is broken in the reduced form, the interproton distances between ligands of both ions are essentially the same.Abbreviations WEFT water eliminated Fourier transform - NOE nuclear Overhauser effect - NOESY NOE spectroscopy - COSY correlation spectroscopy - TOCSY total correlation spectroscopy - SOD superoxide dismutase - E2Co(II)SOD SOD with empty copper site (E=empty) and with cobalt(II) in the Zinc(II) site Offprint requests to: I. Bertini  相似文献   

8.
Summary The water-proton nuclear-magnetic-relaxation dispersion profiles have been analyzed for Cu2Zn2-superoxide dismutase (SOD) and Cu2-alkaline phosphatase (AP). The electronic relaxation times are derived, together with structural information. The effect of magnetic coupling with another copper ion in Cu2Cu2SOD and Cu2Cu2AP is discussed. It is shown that the electronic relaxation times of copper(II) essentially do not change. The opposite happens with Cu2Co2SOD, Cu2Co2AP and Cu2Ni2SOD in which fast-relaxing metal ions provide relaxation mechanisms for copper(II) as well. In these cases the systems can be studied through high-resolution NMR spectroscopy.  相似文献   

9.
Summary 1H-NMR spectra of bovine pancreatic trypsin inhibitor (BPTI) both native and oxidized by chloramine T, are reported. The spectrum of the oxidized form is characterized by the appearance of two singlets for methyl group shifted 0.60 and 0.46 ppm downfield with respect to the native form.  相似文献   

10.
LC1是从枯草杆菌A0 14的分泌物中分离出的一种新型抗菌多肽 ,具有很强的抗水稻白叶枯致病菌的能力。应用 2D NMR技术研究LC1的溶液构象 ,通过分析其在水和重水中的DQF COSY、TOCSY和NOESY等1H NMR谱 ,识别了LC1全部 4 7个氨基酸残基的自旋体系 ,并通过分析NOESY谱中dαN、dNN、dβN和dαδ的联系完成了序列专一谱峰归属 ,标定了全部主链质子和绝大部分侧链质子的化学位移。谱峰归属结果和NMR数据分析表明LC1的二级结构主要为伸展构象 ,其中肽段Phe2 5~Asp3 1和Tyr3 6~Glu42 构成反平行 β折叠 ,并由Ser3 2 ~Gly3 5所形成的β转角相连接。LC1不含或仅含少量α螺旋。同时 ,通过对LC1的大量疏水氨基酸残基之间NOE联系的分析 ,推测LC1具有一个以Trp2 3 为中心的疏水核心。  相似文献   

11.
Mitochondrial oxidative damage contributes to a wide range of pathologies. One therapeutic strategy to treat these disorders is targeting antioxidants to mitochondria by conjugation to the lipophilic triphenylphosphonium (TPP) cation. To date only hydrophobic antioxidants have been targeted to mitochondria; however, extending this approach to hydrophilic antioxidants offers new therapeutic and research opportunities. Here we report the development and characterization of MitoC, a mitochondria-targeted version of the hydrophilic antioxidant ascorbate. We show that MitoC can be taken up by mitochondria, despite the polarity and acidity of ascorbate, by using a sufficiently hydrophobic link to the TPP moiety. MitoC reacts with a range of reactive species, and within mitochondria is rapidly recycled back to the active ascorbate moiety by the glutathione and thioredoxin systems. Because of this accumulation and recycling MitoC is an effective antioxidant against mitochondrial lipid peroxidation and also decreases aconitase inactivation by superoxide. These findings show that the incorporation of TPP function can be used to target polar and acidic compounds to mitochondria, opening up the delivery of a wide range of bioactive compounds. Furthermore, MitoC has therapeutic potential as a new mitochondria-targeted antioxidant, and is a useful tool to explore the role(s) of ascorbate within mitochondria.  相似文献   

12.
This review focuses, in a non-exhaustive manner, on the essential structural and conformational features of protein-carbohydrate interactions and on some applications of NMR spectroscopy to deal with this topic from different levels of complexity.  相似文献   

13.
OPA1 is a cause gene for autosomal dominant optic atrophy and possesses eight alternative splicing variants. Here, we identified two isoforms of OPA1 proteins in HeLa cells and examined their submitochondrial localization and complex formations. RT-PCR shows that HeLa cells mainly express isoforms 7 and 1 of OPA1. Since the third cleavage site is mainly utilized in HeLa cells, the predicted molecular masses of their processed proteins are consistent with the 93- and 88-kDa proteins. Biochemical examinations indicate that both of the OPA1 isoforms are present in the intermembrane space. Submitochondrial fractionation by sucrose density-gradient centrifugation shows that the 88-kDa protein predominantly associates with the mitochondrial outer membrane, on the contrary, the 93-kDa protein associates with the inner membrane. Gel filtration analysis indicates that they compose the different molecular mass complexes in mitochondria. These differences between two isoforms of OPA1 would suggest their crucial role involved in the mitochondrial membrane formation.  相似文献   

14.
Cu,Zn SOD1 (superoxide dismutase 1) is implicated in FALS (familial amyotrophic lateral sclerosis) through the accumulation of misfolded proteins that are toxic to neuronal cells. Loop VI (residues 102–115) of the protein is at the dimer interface and could play a critical role in stability. The free cysteine residue, Cys111 in the loop, is readily oxidized and alkylated. We have found that modification of this Cys111 with 2-ME (2-mercaptoethanol; 2-ME-SOD1) stabilizes the protein and the mechanism may provide insights into destabilization and the formation of aggregated proteins. Here, we determined the crystal structure of 2-ME-SOD1 and find that the 2-ME moieties in both subunits interact asymmetrically at the dimer interface and that there is an asymmetric configuration of segment Gly108 to Cys111 in loop VI. One loop VI of the dimer forms a 310-helix (Gly108 to His110) within a unique β-bridge stabilized by a hydrogen bond between Ser105-NH and His110-CO, while the other forms a β-turn without the H-bond. The H-bond (H-type) and H-bond free (F-type) configurations are also seen in some wild-type and mutant human SOD1s in the Protein Data Bank suggesting that they are interconvertible and an intrinsic property of SOD1s. The two structures serve as a basis for classification of these proteins and hopefully a guide to their stability and role in pathophysiology.  相似文献   

15.
The electron transport chain of mitochondria is a major source of reactive oxygen species (ROS), which play a critical role in augmenting the Ca2+-induced mitochondrial permeability transition (MPT). Mitochondrial release of superoxide anions (O2) from the intermembrane space (IMS) to the cytosol is mediated by voltage dependent anion channels (VDAC) in the outer membrane. Here, we examined whether closure of VDAC increases intramitochondrial oxidative stress by blocking efflux of O2 from the IMS and sensitizing to the Ca2+-induced MPT. Treatment of isolated rat liver mitochondria with 5 μM G3139, an 18-mer phosphorothioate blocker of VDAC, accelerated onset of the MPT by 6.8 ± 1.4 min within a range of 100-250 μM Ca2+. G3139-mediated acceleration of the MPT was reversed by 20 μM butylated hydroxytoluene, a water soluble antioxidant. Pre-treatment of mitochondria with G3139 also increased accumulation of O2 in mitochondria, as monitored by dihydroethidium fluorescence, and permeabilization of the mitochondrial outer membrane with digitonin reversed the effect of G3139 on O2 accumulation. Mathematical modeling of generation and turnover of O2 within the IMS indicated that closure of VDAC produces a 1.55-fold increase in the steady-state level of mitochondrial O2. In conclusion, closure of VDAC appears to impede the efflux of superoxide anions from the IMS, resulting in an increased steady-state level of O2, which causes an internal oxidative stress and sensitizes mitochondria toward the Ca2+-induced MPT.  相似文献   

16.
We proposed previously that closure of voltage-dependent anion channels (VDAC) in the mitochondrial outer membrane after ethanol exposure leads to suppression of mitochondrial metabolite exchange. Because ureagenesis requires extensive mitochondrial metabolite exchange, we characterized the effect of ethanol and its metabolite, acetaldehyde (AcAld), on total and ureagenic respiration in cultured rat hepatocytes. Ureagenic substrates increased cellular respiration from 15.8 ± 0.9 nmol O(2)/min/10(6) cells (base line) to 29.4 ± 1.7 nmol O(2)/min/10(6) cells in about 30 min. Ethanol (0-200 mM) suppressed extra respiration after ureagenic substrates (ureagenic respiration) by up to 51% but not base line respiration. Urea formation also declined proportionately. Inhibition of alcohol dehydrogenase, cytochrome P450 2E1, and catalase with 4-methylpyrazole, trans-1,2-dichloroethylene, and 3-amino-1,2,3-triazole restored ethanol-suppressed ureagenic respiration by 46, 37, and 66%, respectively. By contrast, inhibition of aldehyde dehydrogenase with phenethyl isothiocyanate increased the inhibitory effect of ethanol on ureagenic respiration by an additional 60%. AcAld, an intermediate product of ethanol oxidation, suppressed ureagenic respiration with an apparent IC(50) of 125 μM. AcAld also inhibited entry of 3-kDa rhodamine-conjugated dextran in the mitochondrial intermembrane space of digitonin-permeabilized hepatocytes, indicative of VDAC closure. In conclusion, AcAld, derived from ethanol metabolism, suppresses ureagenesis in hepatocytes mediated by closure of VDAC.  相似文献   

17.
Ingrid Leroy  Alan Diot 《FEBS letters》2010,584(14):3153-3157
Mitochondrial fusion depends on the evolutionary conserved dynamin, OPA1/Mgm1p/Msp1p, whose activity is controlled by proteolytic processing. Since processing diverges between Mgm1p (Saccharomyces cerevisiae) and OPA1 (mammals), we explored this process in another model, Msp1p in Schizosaccharomyces pombe. Generation of the short isoform of Msp1p neither results from the maturation of the long isoform nor correlates with mitochondrial ATP levels. Msp1p is processed by rhomboid and a protease of the matrix ATPase associated with various cellular activities (m-AAA) family. The former is involved in the generation of short Msp1p and the latter in the stability of long Msp1p. These results reveal that Msp1p processing may represent an evolutionary switch between Mgm1p and OPA1.  相似文献   

18.
Elucidation of high-resolution protein structures by NMR spectroscopy requires a large number of distance constraints that are derived from nuclear Overhauser effects between protons (NOEs). Due to the high level of spectral overlap encountered in 2D NMR spectra of proteins, the measurement of high quality distance constraints requires higher dimensional NMR experiments. Although four-dimensional Fourier transform (FT) NMR experiments can provide the necessary kind of spectral information, the associated measurement times are often prohibitively long. Covariance NMR spectroscopy yields 2D spectra that exhibit along the indirect frequency dimension the same high resolution as along the direct dimension using minimal measurement time. The generalization of covariance NMR to 4D NMR spectroscopy presented here exploits the inherent symmetry of certain 4D NMR experiments and utilizes the trace metric between donor planes for the construction of a high-resolution spectral covariance matrix. The approach is demonstrated for a 4D (13)C-edited NOESY experiment of ubiquitin. The 4D covariance spectrum narrows the line-widths of peaks strongly broadened in the FT spectrum due to the necessarily short number of increments collected, and it resolves otherwise overlapped cross peaks allowing for an increase in the number of NOE assignments to be made from a given dataset. At the same time there is no significant decrease in the positive predictive value of observing a peak as compared to the corresponding 4D Fourier transform spectrum. These properties make the 4D covariance method a potentially valuable tool for the structure determination of larger proteins and for high-throughput applications in structural biology.  相似文献   

19.
The Mia40 import pathway facilitates the import and oxidative folding of cysteine-rich protein substrates into the mitochondrial intermembrane space. Here we describe the in vitro and in organello oxidative folding of Cmc1, a twin CX(9)C-containing substrate, which contains an unpaired cysteine. In vitro, Cmc1 can be oxidized by the import receptor Mia40 alone when in excess or at a lower rate by only the sulfhydryl oxidase Erv1. However, physiological and efficient Cmc1 oxidation requires Erv1 and Mia40. Cmc1 forms a stable intermediate with Mia40 and is released from this interaction in the presence of Erv1. The three proteins are shown to form a ternary complex in mitochondria. Our results suggest that this mechanism facilitates efficient formation of multiple disulfides and prevents the formation of non-native disulfide bonds.  相似文献   

20.
Using solid-state NMR approaches, it is now possible to define the structure and dynamics of binding for a small, isotopically (2H, 13C, 19F, 15N) labelled ligand, prosthetic group or solute in its binding site of a membrane-bound protein at near physiological conditions in natural membrane fragments or in reconstituted complexes. Studies of oriented membranes permit the orientational bond vectors of labelled groups to be determined to good precision, as shown for retinal in bacteriorhodopsin and bovine rhodopsin. Using novel magic angle spinning NMR methods on membrane dispersions, high-resolution NMR spectra can be obtained. Dipolar couplings can be reintroduced into the spectrum of labelled ligands in their binding sites of membrane-bound proteins to give interatomic distances to high precision (±0.5 Å). Relaxation and cross-polarization data give estimates for the kinetics for on-off rates for binding. In addition, chemical shifts can be measured directly to help provide details of the binding environment for a bound ligand, as shown for analogues of drugs used in peptic ulcer treatment in the gastric ATPase, and for acetylcholine in the acetylcholine receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号