首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Adult mice abundantly express neudesin, an extracellular heme-binding protein with neurotrophic activity, in white adipose tissues. At the early stage of adipocyte differentiation during adipogenesis, however, the expression of neudesin decreased transiently. Neudesin-hemin significantly suppressed adipogenesis in 3T3-L1 cells. The knockdown of neudesin by RNA interference markedly promoted adipogenesis in 3T3-L1 cells and decreased MAPK activation during adipocyte differentiation. The addition or knockdown of neudesin affected the expression of C/EBPα and PPARγ but not of C/EBPβ. These findings suggest that neudesin plays a critical role in the early stage of adipocyte differentiation in which C/EBPβ induces PPARγ and C/EBPα expressions, by controlling the MAPK pathway.  相似文献   

3.
4.
5.
6.
Dave S  Kaur NJ  Nanduri R  Dkhar HK  Kumar A  Gupta P 《PloS one》2012,7(1):e30831
The phytotherapeutic protein stem bromelain (SBM) is used as an anti-obesity alternative medicine. We show at the cellular level that SBM irreversibly inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression and induces apoptosis and lipolysis in mature adipocytes. At the molecular level, SBM suppressed adipogenesis by downregulating C/EBPα and PPARγ independent of C/EBPβ gene expression. Moreover, mRNA levels of adipocyte fatty acid-binding protein (ap2), fatty acid synthase (FAS), lipoprotein lipase (LPL), CD36, and acetyl-CoA carboxylase (ACC) were also downregulated by SBM. Additionally, SBM reduced adiponectin expression and secretion. SBM's ability to repress PPARγ expression seems to stem from its ability to inhibit Akt and augment the TNFα pathway. The Akt-TSC2-mTORC1 pathway has recently been described for PPARγ expression in adipocytes. In our experiments, TNFα upregulation compromised cell viability of mature adipocytes (via apoptosis) and induced lipolysis. Lipolytic response was evident by downregulation of anti-lipolytic genes perilipin, phosphodiestersae-3B (PDE3B), and GTP binding protein G(i)α(1), as well as sustained expression of hormone sensitive lipase (HSL). These data indicate that SBM, together with all-trans retinoic-acid (atRA), may be a potent modulator of obesity by repressing the PPARγ-regulated adipogenesis pathway at all stages and by augmenting TNFα-induced lipolysis and apoptosis in mature adipocytes.  相似文献   

7.
KLF转录因子家族与脂肪细胞分化   总被引:3,自引:0,他引:3  
Kruppel样转录因子(Kruppel-like factors, KLF)是一类具有锌指结构的转录因子,其典型结构特征是在其羧基端具有3个C2H2锌指结构. KLF广泛参与细胞增殖、凋亡、分化以及胚胎发育等多个生命活动的调控. 近年来脂肪细胞分化研究的结果显示,KLF家族的多个成员参与脂肪细胞分化过程的调控,既有促进脂肪细胞分化的,也有抑制脂肪细胞分化的. 其中KLF4通过与Krox20协同作用,激活C/EBPβ(CCAAT-enhancer-binding protein β)基因表达,促进脂肪细胞分化;KLF5和 KLF15都通过直接结合到氧化物酶增殖体激活受体γ(peroxisome proliferator-activated receptor γ, PPARγ)基因的启动子,激活PPARγ基因表达,促进脂肪细胞分化;而KLF6则通过抑制前脂肪细胞因子(pre-adipocyte factor 1, PREF1)基因表达,促进脂肪细胞分化. 抑制脂肪细胞分化的KLF2通过结合于PPARγ的启动子,抑制PPARγ基因表达,从而抑制脂肪细胞的分化;KLF3通过募集辅助抑制因子C-末端结合蛋白(c-terminal binding protein, CtBP)形成KLF3 CtBP抑制复合体,结合于C/EBPα(CCAAT-enhancer-binding protein α)基因的启动子,抑制C/EBPα表达,进而抑制脂肪细胞的分化;KLF7通过抑制葡萄糖转运蛋白2(glucose transporter2,GLUT2)基因的表达抑制脂肪细胞的成熟. 本文综述这些KLF转录因子在脂肪细胞分化过程的作用及其作用的机制.  相似文献   

8.
9.
Bone marrow mesenchymal stromal cells (BMSCs) are the common precursors for both osteoblasts and adipocytes. With aging, BMSC osteoblast differentiation decreases whereas BMSC differentiation into adipocytes increases, resulting in increased adipogenesis and bone loss. In the present study, we investigated the effect of asiatic acid (AA) on adipocytic differentiation of BMSCs. AA inhibited the adipogenic induction of lipid accumulation, activity of glycerol-3-phosphate dehydrogenase, and expression of marker genes in adipogenesis: peroxisome proliferation-activated receptor (PPAR)γ, adipocyte fatty acid-binding protein (ap) 2, and adipsin. Further, we found that AA did not alter clonal expansion rate and expression of C/EBPβ, upstream key regulator of PPARγ, and binding activity of C/EBPβ to PPARγ promoter was not affected by AA as well. These findings suggest that AA may modulate differentiation of BMSCs to cause a lineage shift away from the adipocytes, and inhibition of PPARγ by AA is through C/EBPβ-independent mechanisms. Thus, AA could be a potential candidate for a novel drug against osteoporosis.  相似文献   

10.
11.
12.
13.
Fibroblastic preadipocyte cells are recruited to differentiate into new adipocytes during the formation and hyperplastic growth of white adipose tissue. Peroxisome proliferator-activated receptor γ (PPARγ), the master regulator of adipogenesis, is expressed at low levels in preadipocytes, and its levels increase dramatically and rapidly during the differentiation process. However, the mechanisms controlling the dynamic and selective expression of PPARγ in the adipocyte lineage remain largely unknown. We show here that the zinc finger protein Evi1 increases in preadipocytes at the onset of differentiation prior to increases in PPARγ levels. Evi1 expression converts nonadipogenic cells into adipocytes via an increase in the predifferentiation levels of PPARγ2, the adipose-selective isoform of PPARγ. Conversely, loss of Evi1 in preadipocytes blocks the induction of PPARγ2 and suppresses adipocyte differentiation. Evi1 binds with C/EBPβ to regulatory sites in the Pparγ locus at early stages of adipocyte differentiation, coincident with the induction of Pparγ2 expression. These results indicate that Evi1 is a key regulator of adipogenic competency.  相似文献   

14.
15.
We investigated the role of the major isoforms of CCAAT enhancer binding protein β (C/EBPβ), C/EBPβ-LAP and C/EBPβ-LIP, in adipogenesis of human white adipose-derived stromal/progenitor cells (ASC). C/EBPβ gene expression was transiently induced early in adipogenesis. At later stages, in immature adipocytes, the C/EBPβ mRNA and protein levels declined. The C/EBPβ-LIP protein steady-state level decreased considerably stronger than the C/EBPβ-LAP level and the C/EBPβ-LIP half-life was significantly shorter than the C/EBPβ-LAP half-life. The turn-over of both C/EBPβ-isoforms was regulated by ubiquitin/proteasome-dependent degradation. These data suggest that the protein stability of the C/EBPβ-isoforms is differentially regulated in the course of adipogenesis and in immature adipocytes. Constitutive overexpression of C/EBPβ-LIP had antiadipogenic activity in human ASC. C/EBPβ-LAP, which promotes adipogenesis in mouse 3T3-L1 preadipocytes by directly activating expression of the adipogenic keyregulator PPARγ2, induced the expression of PPARγ2 and of the adipocyte differentiation gene product FABP4 in confluent ASC in the absence of adipogenic hormones. At later stages after hormone cocktail-induced adipogenesis, in immature adipocytes, constitutive overexpression of C/EBPβ-LAP led to reduced expression of PPARγ2 and FABP4, C/EBPα expression was downregulated and the expression of the adipocyte differentiation gene products adiponectin and leptin was impaired. These findings suggest that constitutive overexpression of C/EBPβ-LAP induces adipogenesis in human ASC and negatively regulates the expression of adipogenic regulators and certain adipocyte differentiation gene products in immature adipocytes. We conclude the regulation of both C/EBPβ gene expression and C/EBPβ-LIP and C/EBPβ-LAP protein turn-over plays an important role for the expression of adipogenic regulators and/or adipocyte differentiation genes in early adipogenic differentiation of human ASC and at later stages in human immature adipocytes.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号