首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Many proteins that are synthesized in the cytoplasm of cells are ultimately found in non-cytoplasmic locations. The correct targeting and transport of proteins must occur across bacterial cell membranes, the endoplasmic reticulum membrane, and those of mitochondria and chloroplasts. One unifying feature among transported proteins in these systems is the requirement for an amino-terminal targeting signal. Although the primary sequence of targeting signals varies substantially, many patterns involving overall properties are shared. A recent surge in the identification of components of the transport apparatus from many different systems has revealed that these are also closely related. In this review we describe some of the key components of different transport systems and highlight these common features.  相似文献   

2.
In a bioinformatics based screen for chloroplast-localized protein kinases we noticed that available protein targeting predictors falsely predicted chloroplast localization. This seems to be due to interference with N-terminal protein acylation, which is of particular importance for protein kinases. Their N-myristoylation was found to be highly overrepresented in the proteome, whereas myristoylation motifs are almost absent in known chloroplast proteins. However, only abolishing their myristoylation was not sufficient to target those kinases to chloroplasts and resulted in nuclear accumulation instead. In contrast, inhibition of N-myristoylation of a calcium-dependent protein kinase was sufficient to alter its localization from the plasma membrane to chloroplasts and chloroplast localization of ferredoxin-NADP+ reductase and Rubisco activase could be efficiently suppressed by artificial introduction of myristoylation and palmitoylation sites.  相似文献   

3.
In both eukaryotic and prokaryotic cells, it has been recently established that mRNAs encoding secreted and membrane proteins can be localized to the surface of membranes via both translation-dependent and RNA element-mediated mechanisms. Previously, we showed that the placental alkaline phosphatase (ALPP) mRNA can be localized to the ER membrane independently of translation, and this localization is mediated by p180, an mRNA receptor present in the ER. In this article, we aimed to identify the cis-acting RNA element in ALPP. Using chimera constructs containing fragments of the ALPP mRNA, we demonstrate that the ER-localizing RNA element is present within the 3′ end of the open reading frame and codes for a transmembrane domain. In addition, we show that this region requires p180 for efficient ER anchoring. Taken together, we provide the first insight into the nature of cis-acting ER-localizing RNA elements responsible for localizing mRNAs on the ER in mammalian cells.  相似文献   

4.
5.
We have developed dissociable antibody microarray (DAMA) staining technology that provides a new approach to the global analysis of protein subcellular localization (SCL) in fixed cells. We have developed and optimized this technology for protein SCL profiling, generated ChipView, a program for management and analysis of molecular image database, and utilized the technique to identify proteins with unique SCL in breast cancer cell lines. We compared the SCL profiles of 325 proteins among nine different breast cell lines, and have identified one protein, Cyclin B1, with distinctively different SCLs between normal and cancer cell lines. With classic individual immunostaining, Cyclin B1 was confirmed to localize to the cytoplasm of seven breast cancer cell lines and in both cytoplasm and nuclei of two normal breast cell lines, and to have higher expression levels in the cancer cell lines tested.  相似文献   

6.
Recent progress in molecular phylogenetics has proven that photosynthetic eukaryotes acquired plastids via primary and secondary endosymbiosis and has given us information about the origin of each plastid. How a photosynthetic endosymbiont became a plastid in each group is, however, poorly understood, especially for the organisms with secondary plastids. Investigating how a nuclear-encoded plastid protein is targeted into a plastid in each photosynthetic group is one of the most important keys to understanding the evolutionary process of symbiogenetic plastid acquisition and its diversity. For organisms which originated through primary endosymbiosis, protein targeting into plastids has been well studied at the molecular level. For organisms which originated through secondary endosymbiosis, molecular-level studies have just started on the plastid-targeted protein-precursor sequences and the targeting pathways of the precursors. However, little information is available about how the proteins get across the inner two or three envelope membranes in organisms with secondary plastids. A good in vitro protein-import system for isolated plastids and a cell transformation system must be established for each group of photosynthetic eukaryotes in order to understand the mechanisms, the evolutionary processes and the diversity of symbiogenetic plastid acquisitions in photosynthetic eukaryotes.  相似文献   

7.
《Molecular cell》2023,83(15):2726-2738.e9
  1. Download : Download high-res image (143KB)
  2. Download : Download full-size image
  相似文献   

8.
Though there are no separating membranes within the nucleus, different factors are often concentrated at sites where their respective function is required, a phenomenum referred to as functional organization of the nucleus. How is then this organization achieved and how are the different metabolic processes integrated in the nucleus? One emerging principle was revealed by the identification of protein domains that, though not involved in catalysis, regulate enzyme activity at a higher order level by targeting enzymes to the right place at the right time. These targeting sequences constitute an assembly code for nuclear ‘protein factories,’ which ensure the extremely high efficiency and accuracy needed in a complex and competitive environment as the living mammalian cell. J. Cell. Biochem. 70:222– 230, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
目的: 核糖体蛋白(RPs)属于多功能蛋白,能够参与调控细胞生长和响应胁迫条件。RpRPL22是一个从豆科植物刺槐中分离得到的结瘤相关基因,通过序列比对发现其与核糖体大亚基蛋白RPL22高度同源。对其如何通过调控根瘤菌侵染而在共生结瘤过程中发挥重要作用进行了较为深入的探索。方法: 利用实时荧光定量PCR技术(qRT-PCR)分析RpRPL22在接菌后不同时间及不同植物组织的表达变化。利用cDNA末端快速扩增技术(RACE)获得目的基因cDNA全长。通过GFP报告基因进行RpRPL22亚细胞定位分析。通过Gateway BP重组技术构建RNA干扰(RNAi)重组载体,借助电转化法将重组载体转至农杆菌K599,利用农杆菌介导植物根部,接菌后观察和测量植株表型。首先从宏观水平统计观察目的基因是否对结瘤过程有影响,其次从分子水平揭示目的基因在共生结瘤过程的重要功能。结果: 不同接菌时期、不同植物组织目的基因qRT-PCR相对表达量结果显示,几乎在所有取样的接菌时间,目的基因RpRPL22在接菌根中的相对表达量都低于未接菌对照根,只有接菌后第25天除外。在成熟的根瘤中,接菌后第25天该基因的表达量也最高。洋葱表皮和毛状根亚细胞定位结果均显示在椰菜花叶病毒(CaMV)的35S启动子控制下,RpRPL22融合绿色荧光蛋白GFP的荧光信号在细胞核和细胞质有明显的表达。RNAi转化植株的表型统计观察结果,比如植株鲜重、植株的有效结瘤数目较对照组均有明显的降低;同时RNAi转化植株在根瘤菌侵染过程形成的侵染线数目和根瘤原基数目较对照均显著降低。根瘤切片实验用于观察根瘤显微超微结构,结果显示RNAi植株根瘤中固氮区的受菌侵染细胞数目与对照相比明显减少。电镜观察根瘤单个受菌侵染细胞中类菌体形态显示,RNAi根瘤中类菌体侵染细胞胞体多呈不规则形状,皱缩变形严重,环类菌体周间隙空间增大,多共生体融合,表现出细胞凋亡的迹象。对照根瘤中的受菌侵染细胞胞体多呈圆形椭圆形,胞质饱满丰富且分布均匀,细胞发育正常,表明RNAi植株根瘤发育过程明显受阻。结论: 核糖体蛋白(RP)能够参与调控豆科植物共生结瘤过程,相关同源基因RpRPL22可能在起始根瘤菌侵染植物和阻止类菌体降解过程中起重要作用。  相似文献   

10.
The changes from normal cells to cancer cells are primarily regulated by genome instability, which foster hallmark functions of cancer through multiple mechanisms including protein mislocalization. Mislocalization of these proteins, including oncoproteins, tumor suppressors, and other cancer-related proteins, can interfere with normal cellular function and cooperatively drive tumor development and metastasis. This review describes the cancer-related effects of protein subcellular mislocalization, the related mislocalization mechanisms, and the potential application of this knowledge to cancer diagnosis, prognosis, and therapy.  相似文献   

11.
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems, especially type II (Cas9) systems, have been widely used in gene/genome targeting. Modifications of Cas9 enable these systems to become platforms for precise DNA manipulations. However, the utilization of CRISPR-Cas systems in RNA targeting remains preliminary. The discovery of type VI CRISPR-Cas systems (Cas13) shed light on RNA-guided RNA targeting. Cas13d, the smallest Cas13 protein, with a length of only ~930 amino acids, is a promising platform for RNA targeting compatible with viral delivery systems. Much effort has also been made to develop Cas9, Cas13a and Cas13b applications for RNA-guided RNA targeting. The discovery of new RNA-targeting CRISPR-Cas systems as well as the development of RNA-targeting platforms with Cas9 and Cas13 will promote RNA-targeting technology substantially. Here, we review new advances in RNA-targeting CRISPR-Cas systems as well as advances in applications of these systems in RNA targeting, tracking and editing. We also compare these Cas protein-based technologies with traditional technologies for RNA targeting, tracking and editing. Finally, we discuss remaining questions and prospects for the future.  相似文献   

12.
Malaria is caused by obligate intracellular parasites, which live in host erythrocytes and remodel these cells to provide optimally for their own needs. Plasmodium falciparum, responsible for malaria in humans, transports many proteins into erythrocytes which help the parasite survive in the host. The recent discovery of a host cell-targeting sequence present in both soluble and transmembrane P. falciparum proteins provoked a discussion on the potential mechanisms of parasite protein entry into infected erythrocytes which is summarized here.  相似文献   

13.
Protein phosphorylation on tyrosine has been demonstrated to occur in a wide array of bacterial species and appears to be ubiquitous among prokaryotes. This covalent modification is catalyzed by autophosphorylating ATP-dependent protein-tyrosine kinases that exhibit structural and functional features similar, but not identical, to those of their eukaryotic counterparts. The reversibility of the reaction is effected by two main classes of protein-tyrosine phosphatases: one includes conventional eukaryotic-like phosphatases and dual-specific phosphatases, and the other comprises acidic phosphatases of low molecular weight. Less frequently, a third class concerns enzymes of the polymerase-histidinol phosphatase type. In terms of genomic organization, the genes encoding a protein-tyrosine phosphatase and a protein-tyrosine kinase in a bacterial species are most often located next to each other on the chromosome. In addition, these genes are generally part of large operons that direct the coordinate synthesis of proteins involved in the production or regulation of exopolysaccharides and capsular polysaccharides. Recent data provide evidence that there exists a direct relationship between the reversible phosphorylation of proteins on tyrosine and the production of these polysaccharidic polymers, which are also known to be important virulence factors. Therefore, a new concept has emerged suggesting the existence of a biological link between protein-tyrosine phosphorylation and bacterial pathogenicity.  相似文献   

14.
15.
肌动蛋白结合蛋白是指能与肌动蛋白的单体、多聚体等结合的蛋白,肌动蛋白结合蛋白2(Transgelin-2)作为一种重要的肌动蛋白结合蛋白,可广泛分布在平滑肌细胞及非平滑肌细胞。Transgelin-2基因可广泛表达在全身各组织器官,其在亚细胞层面上有多种定位,且在不同病理生理状态下可能存在定位转移。Transgelin-2蛋白被认为参与了多种恶性肿瘤疾病,可能是特异性肿瘤标志物。本文对Transgelin-2蛋白的特性、亚细胞定位和相应生物学功能进行了综述,以期为相关机制研究提供可能的判断依据。  相似文献   

16.
According to the scanning model, 40S ribosomal subunits initiate translation at the first (5 proximal) AUG codon they encounter. However, if the first AUG is in a suboptimal context, it may not be recognized, and translation can then initiate at downstream AUG(s). In this way, a single RNA can produce several variant products. Earlier experiments suggested that some of these additional protein variants might be functionally important. We have analysed human mRNAs that have AUG triplets in 5 untranslated regions and mRNAs in which the annotated translational start codon is located in a suboptimal context. It was found that 3% of human mRNAs have the potential to encode N-terminally extended variants of the annotated proteins and 12% could code for N-truncated variants. The predicted subcellular localizations of these protein variants were compared: 31% of the N-extended proteins and 30% of the N-truncated proteins were predicted to localize to subcellular compartments that differed from those targeted by the annotated protein forms. These results suggest that additional AUGs may frequently be exploited for the synthesis of proteins that possess novel functional properties.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

17.
目的:构建针对RPAP3 TPR区域的慢病毒载体,观察过表达对细胞周期的影响。方法:通过生物信息学软件比较RPAP3结构域组成,推测功能;分析RPAP3核定位信号,构建瞬时表达质粒pEGFP-N2-RPAP3,激光共聚焦显微镜观察RPAP3蛋白的亚细胞定位;通过酵母双杂交和GST-Pulldown实验研究RPAP3与HSP70的相互作用及作用靶点;构建慢病毒载体pLJM.1-RPAP3,转染293T细胞,收病毒感染MCF7细胞,嘌呤霉素筛选获得稳定转染细胞系,流式细胞分析对细胞周期的影响。结果:RPAP3在多物种广泛存在,有高度保守性;蛋白存在典型核定位信号,激光共聚焦显微镜下,GFP标记的RPAP3蛋白主要分布在细胞核;酵母双杂交和GST-Pulldown实验证实RPAP3与HSP70间存在相互作用,且作用发生在RPAP3的三联TPR结构域和HSP70的GPTIEEVD末端之间;流式细胞显示RPAP3 TPR区域的高表达阻滞细胞周期且凋亡增加。结论:RPAP3与HSP70间的相互作用发生在RPAP3的三联TPR结构域和热休克蛋白70的GPTIEEVD末端之间;构建高表达细胞株发现其对细胞周期及凋亡有影响。  相似文献   

18.
Cytochrome c oxidase (COX) complex is an integral part of the electron transport chain. Three subunits of this complex (COX I, COX II and COX III) are encoded by mitochondrial (mit-) DNA. High-resolution immunogold electron microscopy has been used to study the subcellular localization of COX I and COX II in rat tissue sections, embedded in LR Gold resin, using monoclonal antibodies for these proteins. Immunofluorescence labeling of BS-C-1 monkey kidney cells with these antibodies showed characteristic mitochondrial labeling. In immunogold labeling studies, the COX I and COX II antibodies showed strong and specific mitochondrial labeling in the liver, kidney, heart and pancreas. However, in rat pancreatic acinar tissue, in addition to mitochondrial labeling, strong and specific labeling was also observed in the zymogen granules (ZGs). In the anterior pituitary, strong labeling with these antibodies was seen in the growth hormone secretory granules. In contrast to these compartments, the COX I or COX II antibodies showed only minimal labeling (five- to tenfold lower) of the cytoplasm, endoplasmic reticulum and the nucleus. Strong labeling with the COX I or COX II antibodies was also observed in highly purified ZGs from bovine pancreas. The observed labeling, in all cases, was completely abolished upon omission of the primary antibodies. These results provide evidence that, similar to a number of other recently studied mit-proteins, COX I and COX II are also present outside the mitochondria. The presence of mit-DNA encoded COX I and COX II in extramitochondrial compartments, provides strong evidence that proteins can exit, or are exported, from the mitochondria. Although the mechanisms responsible for protein exit/export remain to be elucidated, these results raise fundamental questions concerning the roles of mitochondria and mitochondrial proteins in diverse cellular processes in different compartments.  相似文献   

19.
mRNA的出核转运是真核生物基因表达的重要步骤之一,它与pre-mRNA的各个加工过程都存在密切的偶联。这种偶联对于基因表达的高效准确完成至关重要。本文介绍了mRNA出核转运与pre-mRNA加工及质量监控之间的关联,并总结了近年来关于mRNA出核转运的研究进展。  相似文献   

20.
Fe/S clusters are part of the active site of many enzymes and are essential for cell viability. In eukaryotes the cysteine desulfurase Nfs (IscS) donates the sulfur during Fe/S cluster assembly and was thought sufficient for this reaction. Moreover, Nfs is indispensable for tRNA thiolation, a modification generally required for tRNA function and protein synthesis. Recently, Isd11 was discovered as an integral part of the Nfs activity at an early step of Fe/S cluster assembly. Here we show, using a combination of genetic, molecular, and biochemical approaches, that Isd11, in line with its strong association with Nfs, is localized in the mitochondrion of T. brucei. In addition to its involvement in Fe/S assembly, Isd11 also partakes in both cytoplasmic and mitochondrial tRNA thiolation, whereas Mtu1, another protein proposed to collaborate with Nfs in tRNA thiolation, is required for this process solely within the mitochondrion. Taken together these data place Isd11 at the center of these sulfur transactions and raises the possibility of a connection between Fe/S metabolism and protein synthesis, helping integrate two seemingly unrelated pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号