首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Pancreatic ductal adenocarcinoma (PDAC) is characterized by pronounced fibrotic reaction composed primarily of type I collagen. Although type I collagen functions as a barrier to invasion, pancreatic cancer cells have been shown to respond to type I collagen by becoming more motile and invasive. Because epithelial-mesenchymal transition is also associated with cancer invasion, we examined the extent to which collagen modulated the expression of Snail, a well known regulator of epithelial-mesenchymal transition. Relative to cells grown on tissue culture plastic, PDAC cells grown in three-dimensional collagen gels induced Snail. Inhibiting the activity or expression of the TGF-β type I receptor abrogated collagen-induced Snail. Downstream of the receptor, we showed that Smad3 and Smad4 were critical for the induction of Snail by collagen. In contrast, Smad2 or ERK1/2 was not involved in collagen-mediated Snail expression. Overexpression of Snail in PDAC cells resulted in a robust membrane type 1-matrix metalloproteinase (MT1-MMP, MMP-14)-dependent invasion through collagen-coated transwell chambers. Snail-expressing PDAC cells also demonstrated MT1-MMP-dependent scattering in three-dimensional collagen gels. Mechanistically, Snail increased the expression of MT1-MMP through activation of ERK-MAPK signaling, and inhibiting ERK signaling in Snail-expressing cells blocked two-dimensional collagen invasion and attenuated scattering in three-dimensional collagen. To provide in vivo support for our findings that Snail can regulate MT1-MMP, we examined the expression of Snail and MT1-MMP in human PDAC tumors and found a statistically significant positive correlation between MT1-MMP and Snail in these tumors. Overall, our data demonstrate that pancreatic cancer cells increase Snail on encountering collagen-rich milieu and suggest that the desmoplastic reaction actively contributes to PDAC progression.  相似文献   

2.
The influence of alphaVbeta3 integrin on MT1-MMP functionality was studied in human breast cancer cells of differing beta3 integrin status. Overexpression of beta3 integrin caused increased cell surface expression of alphaV integrin and increased cellular adhesion to extracellular matrix (ECM) substrates in BT-549, MDA-MB-231 and MCF-7 cells. beta3 integrin expression also enhanced the migration of breast cancer cells on ECM substrates and enhanced collagen gel contraction. In vivo, alphaVbeta3 cooperated with MT1-MMP to increase the growth of MCF-7 cells after orthotopic inoculation in immunocompromised mice, but had no influence on in vitro proliferation. Despite these stimulatory effects, overexpression of beta3 integrin suppressed the type I collagen (Col I) induced MMP-2 activation in all breast cancer cell lines analyzed. This was also evident in extracts from the MCF-7 tumors in vivo, where MMP-2 activation was stimulated by MT1-MMP transfection, but attenuated with beta3 integrin expression. Although our studies confirm important biological effects of alphaVbeta3 integrin on enhancing cell adhesion and migration, ECM remodeling and tumor growth, beta3 integrin caused reduced MMP-2 activation in response to Col I in vitro, which appears to be physiologically relevant, as it was also seen in tumor xenografts in vivo. The reduction of MMP-2 activation (and thus MT1-MMP activity) by alphaVbeta3 in response to Col I may be important in scenarios where cells which are activated for matrix degradation need to preserve some pericellular collagen, perhaps as a substrate for cell adhesion and migration, thus maintaining a balanced level of proteolysis required for efficient tumor growth.  相似文献   

3.
Invasion across tissue boundaries by metastatic tumor cells depends on the proteolytic degradation of the extracellular matrix, initiated by the formation of invadopodia, actin-driven membrane protrusions with matrix-degradative activity. Yet, mechanisms underlying invadopodia formation remain largely unknown. In this report, we examined the role of the histone deacetylase HDAC6 in invadopodia formation and invasion by breast cancer cells. Using small interfering RNA silencing of protein expression in highly invasive MDA-MB-231 breast adenocarcinoma cells, we show that HDAC6 is required for two-dimensional matrix proteolysis. In addition, we demonstrate that HDAC6 acts as a tubulin and cortactin deacetylase. We also report that the inhibition of HDAC6 by siRNA or treatment with HDAC inhibitor TSA results in a decreased invasion capacity of a three-dimensional type I collagen matrix by MDA-MB-231 cells. These data identify HDAC6 as a critical component of the invasive apparatus of tumor cells, in both two- and three-dimensional matrices.  相似文献   

4.
Movement through the extracellular matrix (ECM) requires cells to degrade ECM components, primarily through the action of matrix metalloproteinases (MMPs). Membrane type 1–matrix metalloproteinase (MT1-MMP) has an essential role in matrix degradation and cell invasion and localizes to subcellular degradative structures termed invadopodia. Trafficking of MT1-MMP to invadopodia is required for the function of these structures, and here we examine the role of N-ethylmaleimide–sensitive factor–activating protein receptor (SNARE)–mediated membrane traffic in the transport of MT1-MMP to invadopodia. During invadopodium formation in MDA-MB-231 human breast cancer cells, increased association of SNAP23, Syntaxin4, and vesicle-associated membrane protein 7 (VAMP7) is detected by coimmunoprecipitation. Blocking the function of these SNAREs perturbs invadopodium-based ECM degradation and cell invasion. Increased level of SNAP23-Syntaxin4-VAMP7 interaction correlates with decreased Syntaxin4 phosphorylation. These results reveal an important role for SNARE-regulated trafficking of MT1-MMP to invadopodia during cellular invasion of ECM.  相似文献   

5.
The molecular mechanisms of ovarian cancer cell invasion under hypoxia remain unclear. Here we employed a 3D collagen model and chick chorioallantoic membrane (CAM) invasion assay to explore the influence of hypoxia on ovarian cancer cell invasion. Hypoxia (both 1% O2 and CoCl2 150 and 250 µM) induced HO-8910PM ovarian cancer cell invasion in 3D collagen and collagenolysis determined by hydroxyproline. Pretreatment with a hypoxia inducible factor-1α inhibitor, YC-1, or MMP inhibitor, GM6001, significantly inhibited 3D collagen invasion and degradation and cell proliferation. Hypoxia stimulated both mRNA and protein expressions of membrane-type 1 matrix metalloproteinase (MT1-MMP) and promoted MT1-MMP translocation to the cell surface in an YC-1 sensitive manner. MT1-siRNA transfection inhibited hypoxia-induced invasion, proliferation, and collagen degradation of cells in 3D collagen. Hypoxia stimulated Snail mRNA and protein expression as well as translocation to nucleus in an YC-1 sensitive manner. Overexpression of Snail with a recombinant plasmid in HO-8910PM cells resulted in an enhanced invasion in 3D collagen. Transfection with Snail-specific siRNA significantly decreased MT1-MMP expression and 3D collagen invasion. Hypoxia-treated cells significantly broke the upper CAM surface of 11-day-old chick embryos and infiltrated interstitial tissue, completely blocked in the presence of YC-1 or GM6001, or after MT1-MMP siRNA or Snail siRNA transfection. Together, these data suggest that hypoxia promotes HO-8910PM ovarian cancer cell traffic through 3D matrix via Snail-mediated MT1-MMP upregulation, a possible molecular mechanism of ovarian cancer cell invasion under hypoxia.  相似文献   

6.
Pancreatic cancer is associated with a pronounced fibrotic reaction that was recently shown to limit delivery of chemotherapy. To identify potential therapeutic targets to overcome this fibrosis, we examined the interplay between fibrosis and the key proteinase membrane type 1-matrix metalloproteinase (MT1-MMP, MMP-14), which is required for growth and invasion in the collagen-rich microenvironment. In this article, we show that compared with control mice (Kras(+)/MT1-MMP(-)) that express an activating Kras(G12D) mutation necessary for pancreatic cancer development, littermate mice that express both MT1-MMP and Kras(G12D) (Kras(+)/MT1-MMP(+)) developed a greater number of large, dysplastic mucin-containing papillary lesions. These lesions were associated with a significant amount of surrounding fibrosis, increased α-smooth muscle actin (+) cells in the stroma, indicative of activated myofibroblasts, and increased Smad2 phosphorylation. To further understand how MT1-MMP promotes fibrosis, we established an in vitro model to examine the effect of expressing MT1-MMP in pancreatic ductal adenocarcinoma (PDAC) cells on stellate cell collagen deposition. Conditioned media from MT1-MMP-expressing PDAC cells grown in three-dimensional collagen enhanced Smad2 nuclear translocation, promoted Smad2 phosphorylation, and increased collagen production by stellate cells. Inhibiting the activity or expression of the TGF-β type I receptor in stellate cells attenuated MT1-MMP conditioned medium-induced collagen expression by stellate cells. In addition, a function-blocking anti-TGF-β antibody also inhibited MT1-MMP conditioned medium-induced collagen expression in stellate cells. Overall, we show that the bona fide collagenase MT1-MMP paradoxically contributes to fibrosis by increasing TGF-β signaling and that targeting MT1-MMP may thus help to mitigate fibrosis.  相似文献   

7.
MT1-matrix metalloproteinase (MT1-MMP) is one of the most critical factors in the invasion machinery of tumor cells. Subcellular localization to invasive structures is key for MT1-MMP proinvasive activity. However, the mechanism driving this polarized distribution remains obscure. We now report that polarized exocytosis of MT1-MMP occurs during MDA-MB-231 adenocarcinoma cell migration into collagen type I three-dimensional matrices. Polarized trafficking of MT1-MMP is triggered by beta1 integrin-mediated adhesion to collagen, and is required for protease localization at invasive structures. Localization of MT1-MMP within VSV-G/Rab8-positive vesicles, but not in Rab11/Tf/TfRc-positive compartment in invasive cells, suggests the involvement of the exocytic traffic pathway. Furthermore, constitutively active Rab8 mutants induce MT1-MMP exocytic traffic, collagen degradation and invasion, whereas Rab8- but not Rab11-knockdown inhibited these processes. Altogether, these data reveal a novel pathway of MT1-MMP redistribution to invasive structures, exocytic vesicle trafficking, which is crucial for its role in tumor cell invasiveness. Mechanistically, MT1-MMP delivery to invasive structures, and therefore its proinvasive activity, is regulated by Rab8 GTPase.  相似文献   

8.
9.
Up-regulation of the collagenolytic membrane type-1 matrix metalloproteinase (MT1-MMP) leads to increased MMP2 (gelatinase A) activation and MT1-MMP autolysis. The autocatalytic degradation product is a cell surface 44-kDa fragment of MT1-MMP (Gly(285)-Val(582)) in which the ectodomain consists of only the linker, hemopexin C domain and the stalk segment found before the transmembrane sequence. In the collagenases, hemopexin C domain exosites bind native collagen, which is required for triple helicase activity during collagen cleavage. Here we investigated the collagen binding properties and the role of the hemopexin C domain of MT1-MMP and of the 44-kDa MT1-MMP ectodomain in collagenolysis. Recombinant proteins, MT1-LCD (Gly(285)-Cys(508)), consisting of the linker and the hemopexin C domain, and MT1-CD (Gly(315)-Cys(508)), which consists of the hemopexin C domain only, were found to bind native type I collagen but not gelatin. Functionally, MT1-LCD inhibited collagen-induced MMP2 activation in fibroblasts, suggesting that interactions between collagen and endogenous MT1-MMP directly stimulate the cellular activation of pro-MMP2. MT1-LCD, but not MT1-CD, also blocked the cleavage of native type I collagen by MT1-MMP in vitro, indicating an important role for the MT1-MMP linker region in triple helicase activity. Similarly, soluble MT1-LCD, but not MT1-CD or peptide analogs of the MT1-MMP linker, reduced the invasion of type I collagen matrices by MDA-MB-231 cells as did the expression of recombinant 44-kDa MT1-MMP on the cell surface. Together, these studies demonstrate that generation of the 44-kDa MT1-MMP autolysis product regulates collagenolytic activity and subsequent invasive potential, suggesting a novel feedback mechanism for the control of pericellular proteolysis.  相似文献   

10.
Hotary KB  Allen ED  Brooks PC  Datta NS  Long MW  Weiss SJ 《Cell》2003,114(1):33-45
Cancer cells are able to proliferate at accelerated rates within the confines of a three-dimensional (3D) extracellular matrix (ECM) that is rich in type I collagen. The mechanisms used by tumor cells to circumvent endogenous antigrowth signals have yet to be clearly defined. We find that the matrix metalloproteinase, MT1-MMP, confers tumor cells with a distinct 3D growth advantage in vitro and in vivo. The replicative advantage conferred by MT1-MMP requires pericellular proteolysis of the ECM, as proliferation is fully suppressed when tumor cells are suspended in 3D gels of protease-resistant collagen. In the absence of proteolysis, tumor cells embedded in physiologically relevant ECM matrices are trapped in a compact, spherical configuration and unable to undergo changes in cell shape or cytoskeletal reorganization required for 3D growth. These observations identify MT1-MMP as a tumor-derived growth factor that regulates proliferation by controlling cell geometry within the confines of the 3D ECM.  相似文献   

11.
Breast cancer is one of the most frequent and aggressive primary tumors among women of all races. Matrix metalloproteinase (MMPs), a family of zinc- and calcium-dependent secreted or membrane anchored endopeptidases, is overexpressed in varieties of diseases including breast cancer. Therefore, noninvasive visualization and quantification of MMP in vivo are of great interest in basic research and clinical application for breast cancer early diagnosis. Herein, we developed a 99mTc labeled membrane type I matrix metalloproteinase (MT1-MMP) specific binding peptide, [99mTc]-(HYNIC-AF7p)(tricine)(TPPTS), for in vivo detection of MDA-MB-231 breast tumor by single photon emission computed tomography (SPECT). [99mTc]-(HYNIC-AF7p)(tricine)(TPPTS) demonstrated nice biostability and high MT1-MMP binding affinity in vitro and in vivo. Tumor-to-muscle ratio was found to reach to the highest (4.17±0.49) at 2 hour after intravenously administration of [99mTc]-(HYNIC-AF7P)(tricine)(TPPTS) into MDA-MB-231 tumor bearing mice. Overall, [99mTc]-(HYNIC-AF7P)(tricine)(TPPTS) demonstrated great potential for MT1-MMP targeted detection in vivo and it would be a promising molecular imaging probe that are probably beneficial to breast cancer early diagnoses.  相似文献   

12.
Lin Y  Chang G  Wang J  Jin W  Wang L  Li H  Ma L  Li Q  Pang T 《Experimental cell research》2011,(14):2031-2040
Na+/H+ exchanger 1 (NHE1), an important regulator of intracellular pH (pHi) and extracellular pH (pHe), has been shown to play a key role in breast cancer metastasis. However, the exact mechanism by which NHE1 mediates breast cancer metastasis is not yet well known. We showed here that inhibition of NHE1 activity, with specific inhibitor Cariporide, could suppress MDA-MB-231 cells invasion as well as the activity and expression of MT1-MMP. Overexpression of MT1-MMP resulted in a distinguished increase in MDA-MB-231 cells invasiveness, but treatment with Cariporide reversed the MT1-MMP-mediated enhanced invasiveness. To explore the role of MAPK signaling pathways in NHE1-mediated breast cancer metastasis, we compared the difference of constitutively phosphorylated ERK1/2, p38 MAPK and JNK in non-invasive MCF-7 cells and invasive MDA-MB-231cells. Interestingly, we found that the phosphorylation levels of ERK1/2 and p38 MAPK in MDA-MB-231 cells were higher than in MCF-7 cells, but both MCF-7 cells and MDA-MB-231 cells expressed similar constitutively phosphorylated JNK. Treating MDA-MB-231 cells with Cariporide led to decreased phosphorylation level of both p38 MAPK and ERK1/2 in a time-dependent manner, but JNK activity was not influenced. Supplementation with MAPK inhibitor (MEK inhibitor PD98059, p38 MAPK inhibitor SB203580 and JNK inhibitor SP600125) or Cariporide all exhibited significant depression of MDA-MB-231 cells invasion and MT1-MMP expression. Furthermore, we co-treated MDA-MB-231 cells with MAPK inhibitor and Cariporide. The result showed that Cariporide synergistically suppressed invasion and MT1-MMP expression with MEK inhibitor and p38 MAPK inhibitor, but not be synergistic with the JNK inhibitor. These findings suggest that NHE1 mediates MDA-MB-231 cells invasion partly through regulating MT1-MMP in ERK1/2 and p38 MAPK signaling pathways dependent manner.  相似文献   

13.
In this study, we identified differential expression of immunoreactive matrix metalloproteinase 2 (MMP2)/gelatinase A, membrane-anchored MT1-MMP/MMP14, and human relaxin-2 (RLN2) in human benign and malignant thyroid tissues. MMP2 and MT1-MMP were detected in the majority of thyroid cancer tissues and colocalized with RLN2-positive cells. MMP2 was mostly absent in goiter tissues and, similar to RLN2, may serve as a marker for thyroid cancer. MMP2 and MT1-MMP were identified as novel RLN2 targets. RLN2 caused a significant downregulation of tissue inhibitor of MMP (TIMP) 3 protein levels but did not change the expression levels of MMP13, and TIMP1, TIMP2, and TIMP4 in human thyroid carcinoma cells. RLN2 failed to affect the expression of MMP1, 3, 8, and 9 in the thyroid carcinoma cells investigated. Stable RLN2 transfectants secreted enhanced levels of bioactive MMP2 which contributed to the increased collagenolytic activity and in vitro invasiveness into collagen matrix by human thyroid cancer cells. Three-dimensional reconstitution of confocal fluorescent microscopy images revealed larger-sized invadopodia, with intense MT1-MMP accumulation at the leading migrating edge in RLN2 transfectants when compared with enhanced green fluorescent protein clones. In RLN2 transfectants actin stress fibers contributed to pseudopodia formation. In conclusion, enhanced tumor cell invasion by RLN2 involves the formation of MT1-MMP-enriched invadopodia that lead to increased collagenolytic cell invasion by human thyroid cancer cells.  相似文献   

14.
Syndecans function as co-receptors for integrins on different matrixes. Recently, syndecan-1 has been shown to be important for α2β1 integrin-mediated adhesion to collagen in tumor cells by regulating cell adhesion and migration on two-dimensional collagen. However, the function of syndecans in supporting α2β1 integrin interactions with three-dimensional (3D) collagen is less well studied. Using loss-of-function and overexpression experiments we show that in 3D collagen syndecan-4 supports α2β1-mediated collagen matrix contraction. Cell invasion through type I collagen containing 3D extracellular matrix (ECM) is driven by α2β1 integrin and membrane type-1 matrix metalloproteinase (MT1-MMP). Here we show that mutational activation of K-ras correlates with increased expression of α2β1 integrin, MT1-MMP, syndecan-1, and syndecan-4. While K-ras-induced α2β1 integrin and MT1-MMP are positive regulators of invasion, silencing and overexpression of syndecans demonstrate that these proteins inhibit cell invasion into collagen. Taken together, these data demonstrate the existence of a complex interplay between integrin α2β1, MT1-MMP, and syndecans in the invasion of K-ras mutant cells in 3D collagen that may represent a mechanism by which tumor cells become more invasive and metastatic.  相似文献   

15.
16.
17.
Invadopodia are membrane protrusions dynamically assembled by invasive cancer cells in contact with the extracellular matrix (ECM). Invadopodia are enriched by the structural proteins actin and cortactin as well as metalloproteases such as MT1-MMP, whose function is to degrade the surrounding ECM. During metastasis, invadopodia are necessary for cancer cell intravasation and extravasation. Although signaling pathways involved in the assembly and function of invadopodia are well studied, few studies address invadopodia dynamics and how the cell-ECM interactions contribute to cell invasion. Using iterative analysis based on time-lapse microscopy and mathematical modeling of invasive cancer cells, we found that cells oscillate between invadopodia presence and cell stasis—termed the “invadopodia state”—and invadopodia absence during cell translocation—termed the “migration state.” Our data suggest that β1-integrin-ECM binding and ECM cross-linking control the duration of each of the two states. By changing the concentration of cross-linkers in two-dimensional and three-dimensional cultures, we generate an ECM in which 0–0.92 of total lysine residues are cross-linked. Using an ECM with a range of cross-linking degrees, we demonstrate that the dynamics of invadopodia-related functions have a biphasic relationship to ECM cross-linking. At intermediate levels of ECM cross-linking (0.39), cells exhibit rapid invadopodia protrusion-retraction cycles and rapid calcium spikes, which lead to more frequent MT1-MMP delivery, causing maximal invadopodia-mediated ECM degradation. In contrast, both extremely high or low levels of cross-linking lead to slower invadopodia-related dynamics and lower ECM degradation. Additionally, β1-integrin inhibition modifies the dynamics of invadopodia-related functions as well as the length of time cells spend in either of the states. Collectively, these data suggest that β1-integrin-ECM binding nonlinearly translates small physical differences in the extracellular environment to differences in the dynamics of cancer cell behaviors. Understanding the conditions under which invadopodia can be reduced by subtle environment-targeting treatments may lead to combination therapies for preventing metastatic spread.  相似文献   

18.
19.
20.
Membrane-type-1 Matrix Metalloproteinase (MT1-MMP) is a multifunctional protease that regulates ECM degradation, proMMP-2 activation, and varied cellular processes including migration and viability. MT1-MMP is believed to be a central mediator of tumourigenesis whose role is dictated by its functionally distinct protein domains. Both the localization and signal transduction capabilities of MT1-MMP are dependent on its cytoplasmic domain, exemplifying diverse regulatory functions. To further our understanding of the multifunctional contributions of MT1-MMP to cellular processes, we overexpressed cytoplasmic domain altered constructs in MCF-7 breast cancer cells and analyzed migration and viability in 2D culture conditions, morphology in 3D Matrigel culture, and tumorigenic ability in vivo. We found that the cytoplasmic domain was not needed for MT1-MMP mediated migration promotion, but was necessary to maintain viability during serum depravation in 2D culture. Similarly, during 3D Matrigel culture the cytoplasmic domain of MT1-MMP was not needed to initiate a protrusive phenotype, but was necessary to prevent colony blebbing when cells were serum deprived. We also tested in vivo tumorigenic potential to show that cells expressing cytoplasmic domain altered constructs demonstrated a reduced ability to vascularize tumours. These results suggest that the cytoplasmic domain regulates MT1-MMP function in a manner required for cell survival, but is dispensable for cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号