首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Src family kinases play a relevant role in the development and differentiation of neuronal cells. They are abundant in sphingolipid-enriched membrane domains of many cell types, and these domains are hypothesized to function in bringing together molecules important to signal transduction. We studied the association of Src family tyrosine kinases and their negative regulatory kinase, Csk, with sphingolipids in sphingolipid-enriched domains of rat cerebellar granule cells differentiated in culture. We find that c-Src, Lyn and Csk are enriched in the sphingolipid-enriched fraction prepared from these cells. Coimmunoprecipitation experiments show that these and sphingolipids are part of the same domain. Cross-linking experiments with a photoactivable, radioactive GD1b derivative show that c-Src and Lyn, which are anchored to the membrane via a myristoyl chain, associate directly with GD1b. Csk, which is not inserted in the hydrophobic core of the membrane, is not photolabeled by this ganglioside. These results suggest that lipid-lipid, lipid-protein, and protein-protein interactions cooperate to maintain domain structure. We hypothesize that such interactions might play a role in the process of neuronal differentiation.  相似文献   

2.
We studied the membrane environment of cellular prion protein in primary cultured rat cerebellar neurons differentiated in vitro. In these cells, about 45% of total cellular prion protein (corresponding to a 35-fold enrichment) is associated with a low-density, sphingolipid- and cholesterol-enriched membrane fraction, that can be separated by flotation on sucrose gradient. Biotinylation experiments indicated that almost all prion protein recovered in this fraction was exposed at the cell surface. Prion protein was efficiently separated from this fraction by a monoclonal antibody immuno-separation procedure. Under conditions designed to preserve lipid-mediated membrane organization, several proteins were found in the prion protein-enriched membrane domains (i.e. the non-receptor tyrosine kinases Lyn and Fyn and the neuronal glycosylphosphatidylinositol-anchored protein Thy-1). The prion protein-rich membrane domains contained, as well, about 50% of the sphingolipids, cholesterol and phosphatidylcholine present in the sphingolipid-enriched membrane fraction. All main sphingolipids, including sphingomyelin, neutral glycosphingolipids and gangliosides, were similarly enriched in the prion protein-rich membrane domains. Thus, prion protein plasma membrane environment in differentiated neurons resulted to be a complex entity, whose integrity requires a network of lipid-mediated non-covalent interactions.  相似文献   

3.
The expression of GABAA receptors in rat cerebellar granules in culture has been studied by β2/3 subunit immunocytochemistry and fluorescence confocal microscopy. These cells show labeling all over the cell bodies' plasma membrane and dendrites. Treatment with the protein tyrosine kinase (PTK) inhibitor genistein results in a decrease of the labeling associated with the β2/3 subunit in both cell bodies and dendrites. No effect was found with an inactive genistein analogue, daidzein. A similar effect was found with a protein kinase C (PKC) activator, phorbol myristate acetate (PMA). The effects of genistein and PMA are additive.The interpretation of the results is that PTK inhibition blocks exocytotic deposit of newly synthesized GABAA receptors onto the neuronal plasma membrane. On the other hand, PKC activation speeds up endocytotic removal of GABAA receptors.  相似文献   

4.
To determine whether protein tyrosine kinase (PTK) modulates volume-sensitive chloride current (I(Cl.vol)) in human atrial myocytes and to identify the PTKs involved, we studied the effects of broad-spectrum and selective PTK inhibitors and the protein tyrosine phosphatase (PTP) inhibitor orthovanadate (VO(4)(-3)). I(Cl.vol) evoked by hyposmotic bath solution (0.6-times isosmotic, 0.6T) was enhanced by genistein, a broad-spectrum PTK inhibitor, in a concentration-dependent manner (EC(50) = 22.4 microM); 100 microM genistein stimulated I(Cl.vol) by 122.4 +/- 10.6%. The genistein-stimulated current was inhibited by DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, 150 microM) and tamoxifen (20 microM), blockers of I(Cl.vol). Moreover, the current augmented by genistein was volume dependent; it was abolished by hyperosmotic shrinkage in 1.4T, and genistein did not activate Cl(-) current in 1T. In contrast to the stimulatory effects of genistein, 100 microM tyrphostin A23 (AG 18) and A25 (AG 82) inhibited I(Cl.vol) by 38.2 +/- 4.9% and 40.9 +/- 3.4%, respectively. The inactive analogs, daidzein and tyrphostin A63 (AG 43), did not alter I(Cl.vol). In addition, the PTP inhibitor VO(4)(-3) (1 mM) reduced I(Cl.vol) by 53.5 +/- 4.5% (IC(50) = 249.6 microM). Pretreatment with VO(4)(-3) antagonized genistein-induced augmentation and A23- or A25-induced suppression of I(Cl.vol). Furthermore, the selective Src-family PTK inhibitor PP2 (5 microM) stimulated I(Cl.vol), mimicking genistein, whereas the selective EGFR (ErbB-1) kinase inhibitor tyrphostin B56 (AG 556, 25 microM) reduced I(Cl.vol), mimicking A23 and A25. The effects of both PP2 and B56 also were substantially antagonized by pretreatment with VO(4)(-3). The results suggest that I(Cl.vol) is regulated in part by the balance between PTK and PTP activity. Regulation is complex, however. Src and EGFR kinases, distinct soluble and receptor-mediated PTK families, have opposing effects on I(Cl.vol), and multiple target proteins are likely to be involved.  相似文献   

5.
We studied the changes occurring in the membrane environment of prion protein (PrP) during apoptosis induced by low potassium in primary rat cerebellar neurons. Ceramide levels increased during apoptosis-inducing treatment, being doubled with respect to time-matched controls after 24 h. Sphingomyelin levels were parallely decreased, while cholesterol and ganglioside contents were not affected. Changes in ceramide and sphingomyelin composition were exclusively restricted to a detergent-resistant membrane fraction. The pro-apoptotic treatment was accompanied by the down-regulation of PrP and of the non-receptor kinase Fyn. The levels of PrP and Fyn were correspondingly reduced in the detergent-resistant membrane fraction. In control cells, the membrane microenvironment separated by immunoprecipitation with anti-PrP antibody contained 80% of the detergent-resistant PrP and 35% and 38% of the sphingolipids and cholesterol respectively. Upon low potassium treatment, 20% of the PrP originally present in the detergent-resistant fraction was immunoprecipitated, together with 19% of sphingolipids and 22% of cholesterol. Thus, PrP in the immunoprecipitate from apoptotic cells was ninefold less than in control ones, while sphingolipids and cholesterol were about 50% with respect to controls cells. The molar ratio between cholesterol, sphingomyelin and ceramide was 15 : 6 : 1 in the PrP-rich environment from control neurons, and 6 : 2 : 1 in that from apoptotic cells.  相似文献   

6.
Protein kinase C (PKC), upon activation, translocates from the cytosol to the plasma membrane. Phorbol 12-myristate 13-acetate (PMA), a potent PKC activator, is known to induce irreversible translocation of PKC to the plasma membrane, in contrast to the reversible translocation resulting from physiological stimuli and subsequent rapid return to the cytosol (reverse translocation). However, we have previously shown that tyrosine phosphatase (PTPase) inhibitors induce reverse translocation of PMA-stimulated PKCbetaII in porcine polymorphonuclear leukocytes (PMNs). In the present study, we showed that pervanadate, a potent PTPase inhibitor, also induces tyrosine phosphorylation of PMA-stimulated PKCbetaII in porcine PMNs. Furthermore, PP2, a specific inhibitor of Src-family tyrosine kinases (PTKs), was found to inhibit both pervanadate-induced reverse translocation and tyrosine phosphorylation of PMA-stimulated PKCbetaII, suggesting that these two pervanadate-induced responses are mediated by Src-family PTKs. Our findings provide novel insight into the relationship between the subcellular localization and tyrosine phosphorylation of PKC.  相似文献   

7.
We studied the interactions between gangliosides and proteins at the exoplasmic surface of the sphingolipid-enriched membrane domains by ganglioside photolabeling combined with cell surface biotin labeling. After cell photolabeling with radioactive photoactivable derivatives of GM3, GM1 and GD1b gangliosides, followed by cell surface biotin labeling, sphingolipid-enriched domains were prepared and immunoprecipitated with streptavidin-coupled beads, under experimental conditions preserving the integrity of the lipid domain. About 50% of the total radioactivity linked to proteins was associated with acylated tubulin, about 10% with a 135-kDa protein present as a series of species with pI ranging from 6.5 to 8.0, about 5% with a protein of about 70 kDa and with pI near to 6.5. By immunoprecipitation with streptavidin-coupled beads under conditions disrupting the integrity of the lipid domain, the 135 kDa protein was recovered in the immunoprecipitate, that did not contain tubulin. Thus, the 135 kDa protein has an exoplasmic domain, and it was then identified as the GPI-anchored neural cell adhesion molecule TAG-1. Remarkably, TAG-1 was cross-linked in a similar extent by the photoactivated ganglioside GM3, GM1 and GD1b. The three gangliosides bear different oligosaccharide chains, suggesting that the ganglioside/TAG-1 interaction is not specifically associated with the ganglioside oligosaccharide structure.  相似文献   

8.
9.
Mouse F9 embryonal carcinoma cells have been widely used as a model for studying the mechanism of embryonic differentiation, because they are similar to the inner cell mass of early mouse embryos and can differentiate into primitive endoderm (PrE) following retinoic acid (RA) treatment. During F9 cell differentiation, the carbohydrate chains of glycoproteins and their corresponding glycosyltransferases are known to undergo rapid changes. However, there have been no corresponding reports on the expression of gangliosides. We have developed a custom cDNA array that is highly sensitive for the genes responsible for sphingolipid (SL) biosynthesis and metabolism. Using this, we found that, of the 28 selected genes, 26 exhibited increased expression during F9 differentiation into PrE. Although neutral glycosphingolipids (GSLs) were expressed at similar levels before and after differentiation, a greater than 20-fold increase in total ganglioside content was evident in PrE. Glucosylceramide synthase inhibitors (d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol [d-PDMP] and its analog) depleted gangliosides and this resulted in delayed expression of Disabled-2 (Dab-2), suggesting the involvement of gangliosides in F9 cell differentiation. Disruption of cholesterol-enriched membrane microdomains by methyl-beta-cyclodextrin (MbetaCD) also delayed differentiation. Both MbetaCD and d-PDMP blocked the accumulation of Src family kinases (SFKs) to microdomains. However, d-PDMP did not block flotillin accumulation, yet MbetaCD did. Additionally, confocal laser microscopy revealed the formation of distinct functional microdomains integrating SFKs with gangliosides and cholesterol during PrE differentiation. Thus, we demonstrate the outstanding up-regulation of ganglioside biosynthesis and its importance in the formation of distinct microdomains incorporating SFKs with gangliosides during RA-induced differentiation of F9 cells.  相似文献   

10.
克隆类风湿性关节炎(RA)滑膜细胞(FLS)中的蛋白酪氨酸激酶(PTKs),并研究它们在RA滑膜细胞异常增殖和侵软骨中的作用。根据巳知的PTKs氨基酸序列保守区设计简并引物,采用3'快速末端扩增法(3'RACE)扩增滑膜细胞中PTKs cDNAs的3'末端,将所得序列与Genebank中序列进行比较,以鉴定其是否为巳知的PTKs或与PTKs同源的新序列,然后通过RNA点杂交方法分别观察这些PTKs在RA和骨性关节炎(OA)病人滑膜细胞中的表达水平。结果表明,从RA FLS中克隆到6种巳知PTKs的cDNAs片段,分别为血小板衍生生长因子受体A(PDGFRA)、胰岛素生长因子-1受体(IGF1R)、含discoidin结构域的受体型酪氨酸激酶(DDR2)、Lyn、Janus激酶1(JAK1)和TYK2。RNA点杂交结果显示,在4个RA病人和2个OA病人的滑膜细胞中,PDGFRA、IGF-1R和DDR2在RA滑膜细胞中的表达水平高于OA滑膜细胞,其它几处激酶在两种细胞中的表达水平相同。说明RI滑膜细胞中至少表达PDGFR、IGF1R、Lyn、DDR2、JAK1和TYK2等6种PTKs,其中PDGFRA、IGF1R和DDR2可能与RA滑膜细胞的过度增殖和对软骨的侵蚀性相关。  相似文献   

11.
The expression of GABA(A) receptors in rat cerebellar granules in culture has been studied by beta(2/3) subunit immunocytochemistry and fluorescence confocal microscopy. These cells show labeling all over the cell bodies' plasma membrane and dendrites. Treatment with the protein tyrosine kinase (PTK) inhibitor genistein results in a decrease of the labeling associated with the beta(2/3) subunit in both cell bodies and dendrites. No effect was found with an inactive genistein analogue, daidzein. A similar effect was found with a protein kinase C (PKC) activator, phorbol myristate acetate (PMA). The effects of genistein and PMA are additive.The interpretation of the results is that PTK inhibition blocks exocytotic deposit of newly synthesized GABA(A) receptors onto the neuronal plasma membrane. On the other hand, PKC activation speeds up endocytotic removal of GABA(A) receptors.  相似文献   

12.
Dopamine secreted by hypothalamic neurons is crucial in regulating prolactin secretion from the pituitary. We have examined the ability of angiotensin II (AngII) to regulate the activity of these dopaminergic neurons and thus act as a potential physiological regulator of prolactin secretion. Using a hypothalamic cell culture preparation we determined the effect of AngII on tyrosine hydroxylase activity and expression (TOH). This is important because TOH is the rate-limiting enzyme in dopamine biosynthesis. AngII stimulated a time- and concentration-dependent increase in TOH activity which was suppressed by inhibitors able to act on protein kinase A (PKA), protein kinase C (PKC) and Ca(2+)/calmodulin-dependent protein kinase II (CaMPKII). An inhibitor of the mitogen-activated protein kinase (MAPK) pathway, PD 98059, reduced basal TOH activity but the AngII response was still detectable. AngII stimulation enhanced the phosphorylation of TOH at Ser19, Ser31 and Ser40. AngII also induced a time-dependent increase in TOH mRNA expression which was unaffected by inhibitors able to act on PKA and CaMPKII, but was abolished by inhibitors able to act on ERK and PKC. AngII responses were very much larger in cultures prepared from female when compared to male rat pups. Data from adult hypothalamic slices confirmed this sexual dimorphism and supported the role of the protein kinases noted above. Therefore AngII can regulate both the activity and expression of TOH in hypothalamic neurons employing multiple, but only partially overlapping, signaling pathways.  相似文献   

13.
In the heart, L-type voltage dependent calcium channels (L-VDCC) provide Ca2+ for the activation of contractile apparatus. The best described pathway for L-type Ca2+ current (ICa,L) modulation is the phosphorylation of calcium channels by cAMP-dependent protein kinase A (PKA), the activity of which is predominantly regulated in opposite manner by β-adrenergic (β-ARs) and muscarinic receptors. The role of other kinases is controversial and often depends on tissues and species used in the studies. In different studies the inhibitors of tyrosine kinases have been shown either to stimulate or inhibit, or even have a biphasic effect on ICa,L. Moreover, there is no clear picture about the route of activation and the site of action of cardiac Src family nonreceptor tyrosine kinases (Src-nPTKs). In the present study we used PP1, a selective inhibitor of Src-nPTKs, alone and together with different activators of ICa,L, and demonstrated that in human atrial myocytes (HAMs): (i) Src-nPTKs are activated concomitantly with activation of cAMP-signaling cascade; (ii) Src-nPTKs attenuate PKA-dependent stimulation of ICa,L by inhibiting PKA activity; (iii) Gαs are not involved in the direct activation of Src-nPTKs. In this way, Src-nPTKs may provide a protecting mechanism against myocardial overload under conditions of increased sympathetic activity.  相似文献   

14.
Nonreceptor protein tyrosine kinases of the Src family have been shown to play an important role in signal transduction as well as in regulation of microtubule protein interactions. Here we show that gamma-tubulin (gamma-Tb) in P19 embryonal carcinoma cells undergoing neuronal differentiation is phosphorylated and forms complexes with protein tyrosine kinases of the Src family, Src and Fyn. Elevated expression of both kinases during differentiation corresponded with increased level of proteins phosphorylated on tyrosine. Immunoprecipitation experiments with antibodies against Src, Fyn, gamma-tubulin, and with anti-phosphotyrosine antibody revealed that gamma-tubulin appeared in complexes with these kinases. In vitro kinase assays showed tyrosine phosphorylation of proteins in gamma-tubulin complexes isolated from differentiated cells. Pretreatment of cells with Src family selective tyrosine kinase inhibitor PP2 reduced the amount of phosphorylated gamma-tubulin in the complexes. Binding experiments with recombinant SH2 and SH3 domains of Src and Fyn kinases revealed that protein complexes containing gamma-tubulin bound to SH2 domains and that these interactions were of SH2-phosphotyrosine type. The combined data suggest that Src family kinases might have an important role in the regulation of gamma-tubulin interaction with tubulin dimers or other proteins during neurogenesis.  相似文献   

15.
Previously, we have reported that apoptosis of cerebellar granular neurons induced by incubation in 5 mm K(+) and serum-free medium (LK-S) was associated with an increase in the delayed rectifier K(+) current (I(K)). Here, we show that I(K) associated with apoptotic neurons is mainly encoded by a Kv2.1 subunit. Silencing Kv2.1 expression by small interfering RNA reduces I(K) and increases neuron viability. Forskolin is able to decrease the I(K) amplitude recording from neurons of both the LK-S and control group, and prevents apoptosis of granule cells that are induced by LK-S. Dibutyryl cAMP mimicks the effect of forskolin on the modulation of I(K) and, accordingly, the inhibitor of protein kinase A, H-89, aborts the neuron-protective effect induced by forskolin. Whereas the expression of Kv2.1 was silenced by Kv2.1 small interfering RNA, the inhibition of forskolin on the current amplitude was significantly reduced. Quantitative RT-PCR and whole-cell recording revealed that the expression of Kv2.1 was elevated in the apoptotic neurons, and forskolin significantly depressed the expression of Kv2.1. We conclude that the protection against apoptosis via the protein kinase A pathway is associated with a double modulation on I(K) channel properties and its expression of alpha-subunit that is mainly encoded by the Kv2.1 gene.  相似文献   

16.
Abstract: The cerebellar levels of Protein I, a synapse-specific neuronal phosphoprotein, have been investigated in the cerebellar mouse mutants staggerer ( sg ), weaver ( wv ), nervous ( nr ), and Purkinje cell degeneration ( pcd ). The Protein I concentration was reduced by about 66% in sg and wv mutants, representing a 90% loss of Protein I per cerebellum. A heterozygote effect was observed in the wv mutant. These results indicate that a great majority of Protein I in the normal cerebellum may be present in the granule cells. in nr mutants the cerebellar Protein I concentration was reduced by only 12% in 62-day-old mice, suggesting that Purkinje cells contribute little to cerebellar Protein I. However, a greater reduction was observed in pcd mutants, which may reflect on the nature of the pcd mutation.  相似文献   

17.
The cell surface molecule CD2 has a signaling role in the activation of T lymphocytes and natural killer cells. Because perturbation of CD2 leads to the appearance of tyrosine-phosphorylated proteins, we investigated the possibility that CD2 associates with cytoplasmic protein tyrosine kinases. As determined by in vitro kinase assays and phosphoamino acid analysis, protein tyrosine kinase activity coprecipitated with CD2 from rat T lymphocytes, T lymphoblasts, thymocytes, interleukin-2-activated natural killer cells, and RNK-16 cells (a rat natural killer cell line). In each case, both p56lck and p59fyn were identified in the CD2 immunoprecipitate. In the thymus, the association between CD2 and these kinases occurred predominately in a small subset of thymocytes that had the cell surface phenotype of mature T cells, indicating that the association is a regulated event and occurs late in T-cell ontogeny. The finding that CD2 is associated with p56lck and p59fyn in detergent lysates suggests that interactions with these Src-like protein kinases play a critical role in CD2-mediated signal transduction.  相似文献   

18.
CCN2 consists of 4 distinct modules that are conserved among various CCN family protein members. From the N-terminus, insulin-like growth factor binding protein (IGFBP), von Willebrand factor type C repeat (VWC), thrombospondin type 1 repeat (TSP1) and C-terminal cysteine-knot (CT) modules are all aligned tandem therein. The multiple functionality of CCN2 is thought to be enabled by the differential use of these modules when interacting with other molecules. In this study, we independently prepared all 4 purified module proteins of human CCN2, utilizing a secretory production system with Brevibacillus choshinensis and thus evaluated the cell biological effects of such single modules. In human umbilical vascular endothelial cells (HUVECs), VWC, TSP and CT modules, as well as a full-length CCN2, were capable of efficiently activating the ERK signal transduction cascade, whereas IGFBP was not. In contrast, the IGFBP module was found to prominently activate JNK in human chondrocytic HCS-2/8 cells, while the others showed similar effects at lower levels. In addition, ERK1/2 was modestly, but significantly activated by IGFBP and VWC in those cells. No single module, but a mixture of the 4 modules provoked a significant activation of p38 MAPK in HCS-2/8 cells, which was activated by the full-length CCN2. Therefore, the signals emitted by CCN2 can be highly differential, depending upon the cell types, which are thus enabled by the tetramodular structure. Furthermore, the cell biological effects of each module on these cells were also evaluated to clarify the relationship among the modules, the signaling pathways and biological outcomes. Our present results not only demonstrate that single CCN2 modules were potent activators of the intracellular signaling cascade to yield a biological response per se, while also providing new insight into the module-wise structural and functional relationship of a prototypic CCN family member, CCN2.  相似文献   

19.
In this paper we describe the cloning of rat olfactory bulb tubulin tyrosine ligase (TTL) cDNA, and investigate the physiological role of TTL in cultured CHO-K1 cells. Comparison of the deduced amino acid sequence of rat TTL cDNA with those of bovine and pig showed approximately 90% of identity. Transient transfection of CHO-K1 cells with a dominant negative mutant of TTL that contains the binding site to the substrate (tubulin) but not the catalytic domain, significantly decreased the endogenous TTL activity as determined in vitro. Similar results were obtained using a construction encoding for the antisense sequence of TTL. The reduction in TTL activity is not accompanied by a decrease in the tyrosination levels of microtubules, as judged by immunofluorescence analysis. Strikingly, the number of cells in the plates transfected with the mutant TTL or the antisense TTL cDNA was, after 72 h of culture, two and three times higher, respectively, than the number of cells in the control plates. These results support the hypothesis that TTL may play a role in the regulation of the cell cycle in living cells.  相似文献   

20.
Summary. Excitatory amino acids which promote the survival of cerebellar granule cells in culture, also promote the expression of the survival of motor neuron (SMN) protein. Immunolocalization studies using SMN monoclonal antibody showed that SMN is decreased in cultures grown in low K+ or chemically defined medium with respect to cultures grown in high K+ medium and that an increase of SMN can be induced by treatment of low K+ cultures with glutamate or N-methyl-D-aspartate. Received March 31, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号