首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To elucidate the dynamical mechanisms of the sinoatrial (SA) node pacemaker activity, we investigated the roles of L-type Ca2+ (ICa,L) and delayed-rectifier K+ (IKr) currents in pacemaking by stability and bifurcation analyses of our rabbit SA node model (Kurata Y, Hisatome I, Imanishi S, and Shibamoto T. Am J Physiol Heart Circ Physiol 283: H2074-H2101, 2002). Equilibrium points (EPs), periodic orbits, stability of EPs, and Hopf bifurcation points were calculated as functions of conductance or gating time constants of the currents for constructing bifurcation diagrams. Structural stability (robustness) of the system was also evaluated by computing stability and dynamics during applications of constant bias currents (Ibias). Blocking ICa,L or IKr caused stabilization of an EP and cessation of pacemaking via a Hopf bifurcation. The unstable zero-current potential region determined with Ibias applications, where spontaneous oscillations appear, shrunk and finally disappeared as ICa,L diminished, but shrunk little when IKr was eliminated. The reduced system, including no time-dependent current except ICa,L, exhibited pacemaker activity. These results suggest that ICa,L is responsible for EP instability and pacemaker generation, whereas IKr is not necessarily required for constructing a pacemaker cell system. We further explored the effects of various K+ currents with different kinetics on stability and dynamics of the model cell. The original IKr of delayed activation and inward rectification appeared to be most favorable for generating large-amplitude oscillations with stable frequency, suggesting that IKr acts as an oscillation amplifier and frequency stabilizer. IKr may also play an important role in preventing bifurcation to quiescence of the system.  相似文献   

2.
A cardiac biological pacemaker (BP) has been created by suppression of the inward rectifier K(+) current (I(K1)) or overexpression of the hyperpolarization-activated current (I(h)). We theoretically investigated the effects of incorporating I(h), T-type Ca(2+) current (I(Ca,T)), sustained inward current (I(st)), and/or low-voltage-activated L-type Ca(2+) channel current (I(Ca,LD)) on 1) creation of BP cells, 2) robustness of BP activity to electrotonic loads of nonpacemaking (NP) cells, and 3) BP cell ability to drive NP cells. We used a single-cell model for human ventricular myocytes (HVMs) and also coupled-cell models composed of BP and NP cells. Bifurcation structures of the model cells were explored during changes in conductance of the currents and gap junction. Incorporating the pacemaker currents did not yield BP activity in HVM with normal I(K1) but increased the critical I(K1) conductance for BP activity to emerge. Expressing I(h) appeared to be most helpful in facilitating creation of BP cells via I(K1) suppression. In the coupled-cell model, I(st) significantly enlarged the gap conductance (G(C)) region where stable BP cell pacemaking and NP cell driving occur, reducing the number of BP cells required for robust pacemaking and driving. In contrast, I(h) enlarged the G(C) region of pacemaking and driving only when I(K1) of the NP cell was relatively low. I(Ca,T) or I(Ca,LD) exerted effects similar to those of I(st) but caused shrinkage or irregularity of BP oscillations. These findings suggest that expressing I(st) most effectively improves the structural stability of BPs to electrotonic loads and the BP ability to drive the ventricle.  相似文献   

3.
To elucidate the roles of sarcoplasmic reticulum (SR) Ca(2+) cycling and Na(+)/Ca(2+) exchanger (NCX) in sinoatrial node (SAN) pacemaking, we have applied stability and bifurcation analyses to a coupled-clock system model developed by Maltsev and Lakatta (Am J Physiol Heart Circ Physiol 296: H594-H615, 2009). Equilibrium point (EP) at which the system is stationary (i.e., the oscillatory system fails to function), periodic orbit (limit cycle), and their stability were determined as functions of model parameters. The stability analysis to detect bifurcation points confirmed crucial importance of SR Ca(2+) pumping rate constant (P(up)), NCX density (k(NCX)), and L-type Ca(2+) channel conductance for the system function reported in previous parameter-dependent numerical simulations. We showed, however, that the model cell does not exhibit self-sustained automaticity of SR Ca(2+) release at any clamped voltage and therefore needs further tuning to reproduce oscillatory local Ca(2+) release and net membrane current reported experimentally at -10 mV. Our further extended bifurcation analyses revealed important novel features of the pacemaker system that go beyond prior numerical simulations in relation to the roles of SR Ca(2+) cycling and NCX in SAN pacemaking. Specifically, we found that 1) NCX contributes to EP instability and enhancement of robustness in the full system during normal spontaneous action potential firings, while stabilizing EPs to prevent sustained Ca(2+) oscillations under voltage clamping; 2) SR requires relatively large k(NCX) and subsarcolemmal Ca(2+) diffusion barrier (i.e., subspace) to contribute to EP destabilization and enhancement of robustness; and 3) decrementing P(up) or k(NCX) decreased the full system robustness against hyperpolarizing loads because EP stabilization and cessation of pacemaking were observed at the lower critical amplitude of hyperpolarizing bias currents, suggesting that SR Ca(2+) cycling contributes to enhancement of the full system robustness by modulating NCX currents and promoting EP destabilization.  相似文献   

4.
We developed an improved mathematical model for a single primary pacemaker cell of the rabbit sinoatrial node. Original features of our model include 1) incorporation of the sustained inward current (I(st)) recently identified in primary pacemaker cells, 2) reformulation of voltage- and Ca(2+)-dependent inactivation of the L-type Ca(2+) channel current (I(Ca,L)), 3) new expressions for activation kinetics of the rapidly activating delayed rectifier K(+) channel current (I(Kr)), and 4) incorporation of the subsarcolemmal space as a diffusion barrier for Ca(2+). We compared the simulated dynamics of our model with those of previous models, as well as with experimental data, and examined whether the models could accurately simulate the effects of modulating sarcolemmal ionic currents or intracellular Ca(2+) dynamics on pacemaker activity. Our model represents significant improvements over the previous models, because it can 1) simulate whole cell voltage-clamp data for I(Ca,L), I(Kr), and I(st); 2) reproduce the waveshapes of spontaneous action potentials and ionic currents during action potential clamp recordings; and 3) mimic the effects of channel blockers or Ca(2+) buffers on pacemaker activity more accurately than the previous models.  相似文献   

5.
Extracts of pine needles (Pinus densiflora Sieb. et Zucc.) have diverse physiological and pharmacological actions. In this study we show that pine needle extract alters pacemaker currents in interstitial cells of Cajal (ICC) by modulating ATP-sensitive K+ channels and that this effect is mediated by prostaglandins. In whole cell patches at 30 degrees , ICC generated spontaneous pacemaker potentials in the current clamp mode (I = 0), and inward currents (pacemaker currents) in the voltage clamp mode at a holding potential of -70 mV. Pine needle extract hyperpolarized the membrane potential, and in voltage clamp mode decreased both the frequency and amplitude of the pacemaker currents, and increased the resting currents in the outward direction. It also inhibited the pacemaker currents in a dose-dependent manner. Because the effects of pine needle extract on pacemaker currents were the same as those of pinacidil (an ATP-sensitive K+ channel opener) we tested the effect of glibenclamide (an ATP-sensitive K+ channels blocker) on ICC exposed to pine needle extract. The effects of pine needle extract on pacemaker currents were blocked by glibenclamide. To see whether production of prostaglandins (PGs) is involved in the inhibitory effect of pine needle extract on pacemaker currents, we tested the effects of naproxen, a non-selective cyclooxygenase (COX-1 and COX-2) inhibitor, and AH6809, a prostaglandin EP1 and EP2 receptor antagonist. Naproxen and AH6809 blocked the inhibitory effects of pine needle extract on ICC. These results indicate that pine needle extract inhibits the pacemaker currents of ICC by activating ATP-sensitive K+ channels via the production of PGs.  相似文献   

6.
Short-term stimulation of beta-receptors is known to affect cardiac ion channels; however, the impact of longer-term stimulation on intrinsic channel function is poorly understood. To evaluate this, cultured guinea pig ventricular myocytes were exposed to isoproterenol (10 nM), vehicle, or isoproterenol plus propranolol (1 microM) for 48 h. Sustained exposure to isoproterenol decreased the density of the inward rectifier (I(K1)), slow delayed rectifier (I(Ks)), and L-type Ca2+ (I(Ca L)) currents, effects that were fully prevented by propranolol. Changes in K+ currents were prevented by the beta1-selective antagonist CGP-20712A, unaffected by the beta2-antagonist ICI-118,551, and mimicked by the membrane-permeable cAMP analog 8-bromo-cAMP. Isoproterenol did not alter the current-voltage relationship of the K+ currents but increased the density of T-type Ca2+ current (I(Ca T)) and thereby increased the proportion of the total Ca2+ current at more negative potentials. We conclude that sustained exposure to isoproterenol reduces I(K1), I(Ks), and I(Ca L) density and increases the density of I(Ca T). The direct ionic current remodeling effects of sustained beta-adrenoceptor stimulation resemble changes reported with heart failure and may be important in arrhythmogenic ionic remodeling.  相似文献   

7.
The cardiac Na+-Ca2+ exchanger participates in Ca homeostasis, and Na+-Ca2+ exchanger-mediated ionic current (I(NaCa)) also contributes to the regulation of cardiac action potential duration. Moreover, I(NaCa) can contribute to arrhythmogenesis under conditions of cellular Ca overload. Although it has been shown that the peptide hormone endothelin-1 (ET-1) can phosphorylate the cardiac Na+-Ca2+ exchanger via protein kinase C (PKC), little is known about the effect of ET-1 on I(NaCa). In order to examine the effects of ET-1 on I(NaCa), whole-cell patch clamp measurements were made at 378C from guinea-pig isolated ventricular myocytes. With major interfering currents inhibited, I(NaCa) was measured as the current sensitive to nickel (Ni; 10mM) during a descending voltage ramp. ET-1 (10 nM) significantly increased I(NaCa) ( approximately 2-fold at -100 mV). Application of a PKC activator (PMA; 1mM: phorbol 12-myristate 13-acetate), mimicked the effect of ET-1. In contrast, the PKC inhibitor chelerythrine (CLT, 1mM) abolished the stimulatory effect of ET-1. An inactive phorbol ester, 4-alpha-phorbol-12,13-didecanoate (4a-PDD, 1mM) had no effect on I(NaCa). Collectively, these data indicate that ET-1 activated I(NaCa) through a PKC-dependent pathway. In additional experiments, isoprenaline (ISO; which has also been reported to activate I(NaCa) ) was applied. The increase in I(NaCa) density with ISO (1mM) was similar to that induced by ET-1 (10nM). When I(NaCa) was pre-stimulated by ET-1, application of ISO elicited no further increase in current and vice versa. ISO also had no additional effect on I(NaCa) when the cells were pretreated with PMA. Application of CLT did not alter the response of I(NaCa) to ISO. We conclude that ET-1 stimulated ventricular I(NaCa) via a PKC-dependent mechanism under our recording conditions. Concentrations of ET-1 and ISO that stimulated I(NaCa) to similar extents when applied separately were not additive when co-applied. The lack of synergy between the stimulatory effects of ET-1 and ISO may be important in protecting the heart from the potentially deleterious consequences of excessive stimulation of I(NaCa).  相似文献   

8.
Abe H  Oka Y 《Zoological science》2002,19(1):111-128
According to our working hypothesis, the terminal nerve (TN)-gonadotropin releasing hormone (GnRH) system functions as a neuromodulatory system that regulates many long-lasting changes in animal behaviors. We have already shown by using in vitro whole brain preparations of a small fish (dwarf gourami) that the pacemaker activities of TN-GnRH neurons are modulated biphasically by salmon GnRH, which is the same molecular species of GnRH produced by TN-GnRH neurons themselves; the modulation consists of initial transient decrease and late increase of firing frequency. In the present study, we investigated the possible involvement of Ca2+ release from intracellular store and voltage dependent Ca2+ currents in the modulation of pacemaker activities. Pharmacological blockade of Ca2+ release from intracellular stores or apamin-sensitive Ca(2+)-activated K+ current inhibited the initial transient decrease of firing frequency by sGnRH. On the other hand, bath application of Ca2+ channel blockers Ni2+ or La3+ slowed down the pacemaker frequency and attenuated the rate of the late increase of pacemaker frequency by GnRH. Furthermore, voltage-clamp experiments suggested that low-voltage-activated (LVA) Ca2+ current and hihg-voltage-activated (HVA) Ca2+ current were present in the TN-GnRH neurons, and bath application of GnRH shifted the activation threshold of HVA Ca2+ current to more negative potentials. These results suggest that (1) sGnRH induces Ca2+ release from intracellular stores and activates apaminsensitive Ca(2+)-activated K+ current so that it decreases the frequency of pacemaker activity in the initial phase, (2) some kinds of Ca2+ currents contribute to the generation and modulation of pacemaker activities, and (3) HVA Ca2+ current is facilitated by sGnRH so that it increases the frequency of pacemaker activity in the late phase.  相似文献   

9.
Cellular electrophysiology experiments, important for understanding cardiac arrhythmia mechanisms, are usually performed with channels expressed in non myocytes, or with non-human myocytes. Differences between cell types and species affect results. Thus, an accurate model for the undiseased human ventricular action potential (AP) which reproduces a broad range of physiological behaviors is needed. Such a model requires extensive experimental data, but essential elements have been unavailable. Here, we develop a human ventricular AP model using new undiseased human ventricular data: Ca(2+) versus voltage dependent inactivation of L-type Ca(2+) current (I(CaL)); kinetics for the transient outward, rapid delayed rectifier (I(Kr)), Na(+)/Ca(2+) exchange (I(NaCa)), and inward rectifier currents; AP recordings at all physiological cycle lengths; and rate dependence and restitution of AP duration (APD) with and without a variety of specific channel blockers. Simulated APs reproduced the experimental AP morphology, APD rate dependence, and restitution. Using undiseased human mRNA and protein data, models for different transmural cell types were developed. Experiments for rate dependence of Ca(2+) (including peak and decay) and intracellular sodium ([Na(+)](i)) in undiseased human myocytes were quantitatively reproduced by the model. Early afterdepolarizations were induced by I(Kr) block during slow pacing, and AP and Ca(2+) alternans appeared at rates >200 bpm, as observed in the nonfailing human ventricle. Ca(2+)/calmodulin-dependent protein kinase II (CaMK) modulated rate dependence of Ca(2+) cycling. I(NaCa) linked Ca(2+) alternation to AP alternans. CaMK suppression or SERCA upregulation eliminated alternans. Steady state APD rate dependence was caused primarily by changes in [Na(+)](i), via its modulation of the electrogenic Na(+)/K(+) ATPase current. At fast pacing rates, late Na(+) current and I(CaL) were also contributors. APD shortening during restitution was primarily dependent on reduced late Na(+) and I(CaL) currents due to inactivation at short diastolic intervals, with additional contribution from elevated I(Kr) due to incomplete deactivation.  相似文献   

10.
The inotropic effects of ACh and adenosine on ferret ventricular cells were investigated with the action potential-clamp technique. Under current clamp, both agonists resulted in action potential shortening and a decrease in contraction. Under action potential clamp, both agonists failed to decrease contraction substantially. In the absence of agonist, application of the short action potential waveform (recorded previously in the presence of agonist) also resulted in a decrease in contraction. Under action potential clamp, application of ACh resulted in a Ba(2+)-sensitive outward current with the characteristics of muscarinic K+ current (I(K,ACh)); the presence of the muscarinic K+ channel was confirmed by PCR and immunocytochemistry. In the absence of agonist, on application of the short ACh action potential waveform, the decrease in contraction was accompanied by loss of the inward Na(+)/Ca(2+) exchange current (I(NaCa)). ACh also inhibited the background inward K+ current (I(K,1)). It is concluded that ACh activates I(K,ACh), inhibits I(K,1), and indirectly inhibits I(NaCa); this results in action potential shortening, decrease in contraction, and, as a result of the inhibition of I(K,1), minimum decrease in excitability.  相似文献   

11.
To elucidate the regional differences in sinoatrial node pacemaking mechanisms, we investigated 1), bifurcation structures during current blocks or hyperpolarization of the central and peripheral cells, 2), ionic bases of regional differences in bifurcation structures, and 3), the role of Na+ channel current (INa) in peripheral cell pacemaking. Bifurcation analyses were performed for mathematical models of the rabbit sinoatrial node central and peripheral cells; equilibrium points, periodic orbits, and their stability were determined as functions of parameters. Structural stability against applications of acetylcholine or electrotonic modulations of the atrium was also evaluated. Blocking L-type Ca2+ channel current (ICa,L) stabilized equilibrium points and abolished pacemaking in both the center and periphery. Critical acetylcholine concentration and gap junction conductance for pacemaker cessation were higher in the periphery than in the center, being dramatically reduced by blocking INa. Under hyperpolarized conditions, blocking INa, but not eliminating ICa,L, abolished peripheral cell pacemaking. These results suggest that 1), ICa,L is responsible for basal pacemaking in both the central and peripheral cells, 2), the peripheral cell is more robust in withstanding hyperpolarizing loads than the central cell, 3), INa improves the structural stability to hyperpolarizing loads, and 4), INa-dependent pacemaking is possible in hyperpolarized peripheral cells.  相似文献   

12.
The Na(+)/Ca(2+) exchanger protein is present in the cell membrane of many tissue types and plays key roles in Ca(2+) homeostasis, excitation-contraction coupling, and generation of electrical activity in the heart. The use of adult ventricular myocyte cell culture is important to molecular biological approaches to study the roles and modulation of the cardiac Na(+)/Ca(2+) exchanger. Therefore, we characterised the functional expression of the exchanger in adult guinea-pig ventricular myocytes maintained in short-term culture (for 4 days) and compared the response of ionic current (I(NaCa)) carried by the exchanger from acutely isolated and Day 4 cells to beta-adrenoceptor activation with isoproterenol (ISO). Functional activity of the exchanger was assessed by measuring I(NaCa) using whole cell patch clamp, under selective recording conditions. I(NaCa) amplitude measured at both +60 and -100mV declined significantly by Day 1 of cell culture, showing a further small decline by Day 4. However, cell surface area (assessed by measuring membrane capacitance) also declined over this time-frame. I(NaCa) normalised to membrane capacitance (I(NaCa) density) did not differ significantly between acutely isolated and cells cultured for 4 days. However, although ISO (1 microM) increased I(NaCa) in acutely isolated myocytes, it exerted no significant effect on I(NaCa) from Day 4 cells. This was not due to an inherent inability of these cells to respond to ISO, as L-type calcium current amplitude from Day 4 cells was increased by ISO to a similar extent as that from acutely isolated cells. Our data suggest that the functional expression of the Na/Ca exchanger is well maintained during short-term culture of adult ventricular myocytes. The lack of response to ISO of I(NaCa) from Day 4 cells suggests: (a) that, despite a well-maintained I(NaCa) density, cultured adult myocytes may not necessarily be suitable for studies of exchanger modulation by some agonists and (b) that there may exist subtle differences between beta-adrenergic regulation of the exchanger protein and of L-type Ca channels.  相似文献   

13.
Three types of high-threshold K+ currents were recorded in isolated neurons of the snail Helix pomatia using a two-microelectrode voltage clamp technique: transient K+ current (I(A)), delayed rectifier (I(KD)) and Ca2+-dependent K+ current (I(K(Ca))). Vinpocetine (1-100 microM) applied to the bath affected different types of K+ current in different ways: I(A) was increased (35+/-14%), I(KD) was moderately inhibited (20+/-9%) and I(K(Ca)) was strongly suppressed (45+/-15%). When I(A) and I(K(Ca)) were present in the same cell, vinpocetine exerted a dual effect on the total K+ current, depending on the amplitude of the test stimulus. In the presence of vinpocetine, the I-V curve crossed the control I-V curve. The inhibition of I(K(Ca)) by vinpocetine between 1 and 100 microM is unlikely to be a result of Ca2+ current (I(Ca)) suppression, as the latter was inhibited only at vinpocetine concentrations exceeding 300 microM. Dibutyryl cyclic GMP (dbcGMP) (but not dbcAMP) mimicked the effects of vinpocetine in the majority of cells tested (coefficient of correlation r=0.60, P<0.05, n=22). The data suggest that modulation of different types of K+ current in neuronal membrane can contribute, at least partially, to the nootropic effect of vinpocetine through the regulation of intracellular Ca2+ concentration.  相似文献   

14.
We have demonstrated previously that phospholemman (PLM), a 15-kDa integral sarcolemmal phosphoprotein, inhibits the cardiac Na+/Ca2+ exchanger (NCX1). In addition, protein kinase A phosphorylates serine 68, whereas protein kinase C phosphorylates both serine 63 and serine 68 of PLM. Using human embryonic kidney 293 cells that are devoid of both endogenous PLM and NCX1, we first demonstrated that the exogenous NCX1 current (I(NaCa)) was increased by phorbol 12-myristate 13-acetate (PMA) but not by forskolin. When co-expressed with NCX1, PLM resulted in: (i) decreases in I(NaCa), (ii) attenuation of the increase in I(NaCa) by PMA, and (iii) additional reduction in I(NaCa) in cells treated with forskolin. Mutating serine 63 to alanine (S63A) preserved the sensitivity of PLM to forskolin in terms of suppression of I(NaCa), whereas mutating serine 68 to alanine (S68A) abolished the inhibitory effect of PLM on I(NaCa). Mutating serine 68 to glutamic acid (phosphomimetic) resulted in additional suppression of I(NaCa) as compared with wild-type PLM. These results suggest that PLM phosphorylated at serine 68 inhibited I(NaCa). The physiological significance of inhibition of NCX1 by phosphorylated PLM was evaluated in PLM-knock-out (KO) mice. When compared with wild-type myocytes, I(NaCa) was significant larger in PLM-KO myocytes. In addition, the PMA-induced increase in I(NaCa) was significantly higher in PLM-KO myocytes. By contrast, forskolin had no effect on I(NaCa) in wild-type myocytes. We conclude that PLM, when phosphorylated at serine 68, inhibits Na+/Ca2+ exchange in the heart.  相似文献   

15.
Faber GM  Rudy Y 《Biophysical journal》2000,78(5):2392-2404
Sodium overload of cardiac cells can accompany various pathologies and induce fatal cardiac arrhythmias. We investigate effects of elevated intracellular sodium on the cardiac action potential (AP) and on intracellular calcium using the Luo-Rudy model of a mammalian ventricular myocyte. The results are: 1) During rapid pacing, AP duration (APD) shortens in two phases, a rapid phase without Na(+) accumulation and a slower phase that depends on [Na(+)](i). 2) The rapid APD shortening is due to incomplete deactivation (accumulation) of I(Ks). 3) The slow phase is due to increased repolarizing currents I(NaK) and reverse-mode I(NaCa), secondary to elevated [Na(+)](i). 4) Na(+)-overload slows the rate of AP depolarization, allowing time for greater I(Ca(L)) activation; it also enhances reverse-mode I(NaCa). The resulting increased Ca(2+) influx triggers a greater [Ca(2+)](i) transient. 5) Reverse-mode I(NaCa) alone can trigger Ca(2+) release in a voltage and [Na(+)](i)-dependent manner. 6) During I(NaK) block, Na(+) and Ca(2+) accumulate and APD shortens due to enhanced reverse-mode I(NaCa); contribution of I(K(Na)) to APD shortening is negligible. By slowing AP depolarization (hence velocity) and shortening APD, Na(+)-overload acts to enhance inducibility of reentrant arrhythmias. Shortened APD with elevated [Ca(2+)](i) (secondary to Na(+)-overload) also predisposes the myocardium to arrhythmogenic delayed afterdepolarizations.  相似文献   

16.
The interstitial cells of Cajal (ICC) are pacemaker cells in gastrointestinal tract and generate an electrical rhythm in gastrointestinal muscles. We investigated the possibility that PGE(2) might affect the electrical properties of cultured ICC by activating ATP-dependent K(+) channels and, the EP receptor subtypes and the subunits of ATP-dependent K(+) channels involved in these activities were identified. In addition, the regulation of intracellular Ca(2+) ([Ca(2+)](i)) mobilization may be involved the action of PGE(2) on ICC. Treatments of ICC with PGE(2) inhibited electrical pacemaker activities in the same manner as pinacidil, an ATP-dependent K(+) channel opener and PGE(2) had only a dose-dependent effect. Using RT-PCR technique, we found that ATP-dependent K(+) channels exist in ICC and that these are composed of K(ir) 6.2 and SUR 2B subunits. To characterize the specific membrane EP receptor subtypes in ICC, EP receptor agonists and RT-PCR were used: Butaprost (an EP(2) receptor agonist) showed the actions on pacemaker currents in the same manner as PGE(2). However sulprostone (a mixed EP(1) and EP(3) agonist) had no effects. In addition, RT-PCR results indicated the presence of the EP(2) receptor in ICC. To investigate cAMP involvement in the effects of PGE(2) on ICCs, SQ-22536 (an inhibitor of adenylate cyclase) and cAMP assays were used. SQ-22536 did not affect the effect of PGE(2) on pacemaker currents, and PGE(2) did not stimulate cAMP production. Also, we found PGE(2) inhibited the spontaneous [Ca(2+)](i) oscillations in cultured ICC. These observations indicate that PGE(2) alters pacemaker currents by activating the ATP-dependent K(+) channels comprised of K(ir) 6.2-SUR 2B in ICC and this action of PGE(2) are through EP(2) receptor subtype and also the activation of ATP-dependent K(+) channels involves intracellular Ca(2+) mobilization.  相似文献   

17.
Signal transduction pathways of mitogenic plant lectin, concanavalin A (Con A)- and ionomycin (INM)-induced (Ca2+-dependent K+ currents (I(Con A) and I(INM)) have been compared in young and aged T-cell clones by using the nystatin perforated patch-clamp whole-cell recording technique. In young T-cell clones, Con A evoked a long-lasting outward current which is mediated by the activation of the Ca2+-dependent K+ channels. The Ca2+ ionophore, INM, evoked a short-lasting Ca2+-dependent outward K+ current (I(INM)). The protein tyrosine kinase (PTK) inhibitor, herbimycin A (3 x 10(-6) M), but not the G protein blocker, pertussis toxin (PTX, 500 ng ml(-1)), completely prevented the I(Con A), but did not affect the I(INM). In aged T-cell clones, Con A fails to evoke any current response, while INM evokes an outward current which is comparable to that in a young T-cell clone. It is concluded that PTK, but not PTX-sensitive G proteins, plays a critical role in mediation of the signal transduction from Con A stimulation to activation of the Ca2+-dependent K+ channels, and that an impairment of the early signal pathway, perhaps the PTK, might be involved in the mechanism of the age-related decline of the proliferative response of T-lymphocytes to mitogenic stimulation.  相似文献   

18.
Pacemaking dysfunction (PD) may result in heart rhythm disorders, syncope or even death. Current treatment of PD using implanted electronic pacemakers has some limitations, such as finite battery life and the risk of repeated surgery. As such, the biological pacemaker has been proposed as a potential alternative to the electronic pacemaker for PD treatment. Experimentally and computationally, it has been shown that bio-engineered pacemaker cells can be generated from non-rhythmic ventricular myocytes (VMs) by knocking out genes related to the inward rectifier potassium channel current (IK1) or by overexpressing hyperpolarization-activated cyclic nucleotide gated channel genes responsible for the “funny” current (If). However, it is unclear if a bio-engineered pacemaker based on the modification of IK1- and If-related channels simultaneously would enhance the ability and stability of bio-engineered pacemaking action potentials. In this study, the possible mechanism(s) responsible for VMs to generate spontaneous pacemaking activity by regulating IK1 and If density were investigated by a computational approach. Our results showed that there was a reciprocal interaction between IK1 and If in ventricular pacemaker model. The effect of IK1 depression on generating ventricular pacemaker was mono-phasic while that of If augmentation was bi-phasic. A moderate increase of If promoted pacemaking activity but excessive increase of If resulted in a slowdown in the pacemaking rate and even an unstable pacemaking state. The dedicated interplay between IK1 and If in generating stable pacemaking and dysrhythmias was evaluated. Finally, a theoretical analysis in the IK1/If parameter space for generating pacemaking action potentials in different states was provided. In conclusion, to the best of our knowledge, this study provides a wide theoretical insight into understandings for generating stable and robust pacemaker cells from non-pacemaking VMs by the interplay of IK1 and If, which may be helpful in designing engineered biological pacemakers for application purposes.  相似文献   

19.
In most macrovascular endothelial cell (EC) preparations, resting membrane potential is determined by the inwardly rectifying K+ current (I(K1)), whereas in microvascular EC the presence of I(K1) varies markedly. Cultured microvascular EC from small vessels of human omentum were examined by means of the voltage-clamp technique to elucidate the putative role of I(K1) in maintaining resting membrane potential. Macrovascular EC from human iliac artery and bovine aorta served as reference. Human omentum EC showed an outwardly rectifying current-voltage relation. Inward current was hardly sensitive to variations of extracellular [K+] and Ba2+ block suggesting lack of I(K1). However, substitution of extracellular [Na+] and/or [Cl-] affected the current-voltage relation indicating that Na+ and Cl- contribute to basal current. Furthermore, outward current was reduced by tetraethylammonium (10 mM), and cell-attached recordings suggested the presence of a Ca2+-activated K+ current. In contrast to human omentum EC, EC from human iliac artery and bovine aorta possessed inwardly rectifying currents which were sensitive to variations of extracellular [K+] and blocked by Ba2+. Thus, the lack of I(K1) in human omentum EC suggests that resting membrane potential is determined by Na+ and Cl- currents in addition to K+ outward currents.  相似文献   

20.
Zhang YH  Hinde AK  Hancox JC 《Cell calcium》2001,29(5):347-358
The Na(+)-Ca(2+) exchanger is a protein present in the cell membrane of many cell types. In heart it plays important roles in Ca homeostasis and ionic current generation. Recently, it has been reported that the beta-adrenergic agonist isoprenaline (ISO) can increase directly Na(+)-Ca(2+) exchanger activity in guinea-pig ventricular myocytes. Adenosine (ADO) exerts anti-adrenergic properties that make it effective against some arrhythmias and the aim of the present study was to determine whether or not ADO can antagonize the direct modulatory effect of ISO on the exchanger.Whole-cell patch clamp measurements of Na(+)-Ca(2+) exchanger current (I(NaCa)) were made from guinea-pig ventricular myocytes, with major interfering currents inhibited. I(NaCa) was measured at 378 degrees C as current sensitive to external nickel (Ni(2+), 10 mM) during an applied descending voltage ramp. ISO (1 microM) significantly increased both inward and outward I(NaCa). This effect was abolished in the presence of ADO (200 microM). ADO alone did not significantly alter the amplitude of I(NaCa). The effect of ADO on the response of I(NaCa) to ISO was mimicked by the A(1)ADO receptor agonist N(6)-cyclopentyladenosine (CPA, 10 microM), whereas the effect of ADO on the response of I(NaCa) to ISO was inhibited by the A(1)ADO receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 2 microM). These data suggest that the A(1)ADO receptor mediated the response. The anti-adrenergic effects on I(NaCa) of ADO were not affected by the protein kinase C (PKC) inhibitor, chelerythrine (CLT, 1 microM), nor by the nitric oxide (NO) synthase inhibitor, N (G)-nitro-L-arginine methyl ester((L)-NAME, 0.5 mM). Moreover, in the presence of PKC activator phorbol 12-myristate 13-acetate (PMA, 1 microM) or exogenous NO donor sodium nitroprusside (SNP, 100 microM), ISO preserved its stimulatory effect on I(NaCa). However, prior incubation of myocytes with pertussis toxin (PTX, 5 microg ml(-1) did prevent the effect of ADO. The anti-adrenergic effect of ADO on I(NaCa) was mimicked by externally applied carbachol (CCh, 10 microM), a muscarinic receptor agonist. We conclude that ADO antagonized the effect of beta-adrenergic stimulation of I(NaCa) by directly activating inhibitory G-protein (G(i))-linked A(1) receptors in guinea-pig ventricular myocytes. These findings may suggest a novel mechanism by which adenosine exerts some of its antiarrhythmic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号