首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The desiccation-tolerant state in seeds is associated with high levels of certain sugars and maturation proteins. The aim of this work was to evaluate the contributions of these components to desiccation tolerance in soybean (Glycine max [L.] Merrill cv Chippewa 64). When axes of immature seeds (34 d after flowering) were excised and gradually dried (6 d), desiccation tolerance was induced. By contrast, seeds held at high relative humidity for the same period were destroyed by desiccation. Maturation proteins rapidly accumulated in the axes whether the seeds were slowly dried or maintained at high relative humidity. During slow drying, sucrose content increased to five times the level present in the axes of seeds held at high relative humidity (128 versus 25 μg/axis, respectively). Stachyose content increased dramatically from barely detectable levels upon excision to 483 μg/axis during slow drying but did not increase significantly when seeds were incubated at high relative humidity. Galactinol was the only saccharide that accumulated to higher levels in axes from seeds incubated at high relative humidity relative to axes from seeds that were slowly dried. This suggests that slow drying serves to induce the accumulation of the raffinose series sugars at a point after galactinol biosynthesis. We conclude that stachyose plays an important role in conferring desiccation tolerance.  相似文献   

2.
Using differential scanning calorimetry, we demonstrated the presence of biological glasses and measured the transition temperatures in dry encysted embryos (cysts) of the brine shrimp, Artemia franciscana. Cysts from the following three geographic locations were studied: San Francisco Bay (SFB); the Great Salt Lake, Utah (GSL); and the Mekong Delta, Vietnam (VN; these cysts were produced from previous sequential inoculations of SFB cysts into growth ponds). Values for the glass transition temperature, T(g), were highest in VN cysts. This study indicates that the composition and properties of these biological glasses can be altered by natural selection and thermal adaptation. To our knowledge, T(g) values for all three kinds of cysts were significantly higher than those for any other desiccation-tolerant animal system. To gain insight into the significance of T(g), we examined the thermal stability of these dry cysts at 80 °C. GSL cysts were the least tolerant, by far, with VN cysts being extremely tolerant and SFB cysts not far behind. Those results correlated with the thermal transition values. Also measured were alcohol-soluble carbohydrates, ~90% of which is the disaccharide trehalose, a known component of biological glasses. Amounts in the GSL cysts were significantly less than those in the other two kinds of cysts. Several stress proteins were measured in the three groups of cysts, with all of them being in lesser amounts in GSL cysts compared with the SFB and VN cysts. We interpret the data in terms of mechanisms involved with desiccation tolerance and thermal conditions at the sites of cyst collection.  相似文献   

3.
4.
Low leaf hydraulic conductance associated with drought tolerance in soybean   总被引:3,自引:0,他引:3  
Lack of water is the most serious environmental constraint on agricultural production. More efficient use of water resources is a key solution for increased plant productivity in water-deficit environments. We examined the hydraulic characteristics of a 'slow wilting' phenotype in soybean ( Glycine max Merr.), PI 416937, which has been shown to have relatively constant transpiration rates above a threshold atmospheric vapor pressure deficit (VPD). The VPD response of PI 416937 was confirmed. Three experiments are reported to examine the hypothesis that the VPD response was a result of low hydraulic conductance in leaves as compared to two other soybean genotypes. Results are reported from experiments to measure transpiration response to VPD when xylem water potential was maintained at zero, leaf rehydration response and leaf carbon assimilation response to petiole cutting. Major interspecific differences in leaf hydraulic properties were observed. The observed low leaf hydraulic conductance in PI 416937 is consistent with an increased water use efficiency, and an increased water conservation by limiting transpiration rates under high evaporative conditions but allowing normal gas exchange rates under more moderate evaporative conditions.  相似文献   

5.
Morphological and physicochemical measurements of chromatin condensation were made on germinating maize (Zea mays L.) radicles to determine whether the loss of genetic activities that occurs during the loss of desiccation tolerance is linked to irreversible changes in chromatin condensation. Chromatin samples were compared at different stages of germination (0, 24 and 72 h after imbibition), before (control) and after 24 h of desiccation. Morphological changes in chromatin structure and condensation were characterized by a qualitative and quantitative electron microscope study of chromatin which was allowed to spread in 0.2 mol m?3 EDTA and then laid on coated microscope grids. The experiments showed similar levels of chromatin condensation in quiescent embryos and 24-h-old radicles (desiccation-tolerant material). After 72 h of imbibition, when radicle emergence and desiccation intolerance had ceased, the chromatin underwent a major decondensation towards various lower order folded structures. Regardless of the desiccation tolerance stage, an in vivo drying treatment of 24- and 72-h-old radicles before chromatin extraction did not induce significant changes in the extent of condensation compared to their respective controls. Similar conclusions were drawn from measurements of several spectroscopy properties (absorbance ratios: A260/A240, A260/A400; thermal denaturation, and linear electric dichroism) of chromatin fragments that were obtained after nuclease digestion and then dissolved in 0-2 mol m?3 EDTA. In quiescent and 24-h-old material, chromatin fragments were poorly soluble but highly stable during thermal denaturation. Chromatin fragments were 3-5-fold more soluble and less thermally stable in 72-h-old material than in 24-h-old material. In vivo desiccation had no significant effects on these properties compared to the respective controls. Collectively these data suggest that desiccation did not induce irreversible changes in the condensation properties of chromatin. The likelihood that the decondensation process occurring during germination is linked to the loss of desiccation tolerance is discussed.  相似文献   

6.
7.
Recombinant sucrose-6-phosphate synthase (SpsA) was synthesized in Escherichia coli BL21DE3 by using the spsA gene of the cyanobacterium Synechocystis sp. strain PCC 6803. Transformants exhibited a 10,000-fold increase in survival compared to wild-type cells following either freeze-drying, air drying, or desiccation over phosphorus pentoxide. The phase transition temperatures and vibration frequencies (P==O stretch) in phospholipids suggested that sucrose maintained membrane fluidity during cell dehydration.  相似文献   

8.
Sugars and desiccation tolerance in seeds   总被引:28,自引:9,他引:28       下载免费PDF全文
Soluble sugars have been shown to protect liposomes and lobster microsomes from desiccation damage, and a protective role has been proposed for them in several anhydrous systems. We have studied the relationship between soluble sugar content and the loss of desiccation tolerance in the axes of germinating soybean (Glycine max L. Merr. cv Williams), pea (Pisum sativum L. cv Alaska), and corn (Zea mays L. cv Merit) axes. The loss of desiccation tolerance during imbibition was monitored by following the ability of seeds to germinate after desiccation following various periods of preimbibition and by following the rates of electrolyte leakage from dried, then rehydrated axes. Finally, we analyzed the soluble sugar contents of the axes throughout the transition from desiccation tolerance to intolerance. These analyses show that sucrose and larger oligosaccharides were consistently present during the tolerant stage, and that desiccation tolerance disappeared as the oligosaccharides were lost. The results support the idea that sucrose may serve as the principal agent of desiccation tolerance in these seeds, with the larger oligosaccharides serving to keep the sucrose from crystallizing.  相似文献   

9.
Acquisition of desiccation tolerance in soybeans   总被引:10,自引:0,他引:10  
The entry into a desiccation-tolerant state is a major developmental component of seed maturation. Development of desiccation tolerance of embryonic axes of soybean [Glycine max (L.) Merrill cv. Chippewa 64] was studied by measuring changes in electrolyte leakage. germination and relative growth rate after axes were rapidly air-dried to various water contents. Axes acquired the full capacity for germination at 34 days after flowering (DAF). and reached physiological maturity (maximum dry weight) at 48 DAF. When dried to water content h = 0. 08 (g water g−1 dry weight). few axes germinated before 42 DAF. but more than 90% germinated after 48 DAF. However, electrolyte leakage of rehydrated axes showed a linear decline from 30 to 55 DAF. For developing axes there was a critical water content or desiccation threshold. which could be estimated by using the electrolyte leakage method. The threshold of desiccation tolerance decreased gradually from h = 1. 10 to 0. 18 as axes matured from 28 to 55 DAF. The development of desiccation tolerance continued after physiological maturity at 48 DAF. We conclude that the acquisition of desiccation tolerance of soybean axes is a gradual event, rather than an abrupt transition.  相似文献   

10.
This study establishes a relationship between desiccation tolerance and the transfer of amphiphilic molecules from the cytoplasm into lipids during drying, using electron paramagnetic resonance spectroscopy of amphiphilic spin probes introduced into imbibed radicles of pea (Pisum sativum) and cucumber (Cucumis sativa) seeds. Survival following drying and a membrane integrity assay indicated that desiccation tolerance was present during early imbibition and lost in germinated radicles. In germinated cucumber radicles, desiccation tolerance could be re-induced by an incubation in polyethylene glycol (PEG) before drying. In desiccation-intolerant radicles, partitioning of spin probes into lipids during dehydration occurred at higher water contents compared with tolerant and PEG-induced tolerant radicles. The difference in partitioning behavior between desiccation-tolerant and -intolerant tissues could not be explained by the loss of water. Consequently, using a two-phase model system composed of sunflower or cucumber oil and water, physical properties of the aqueous solvent that may affect the partitioning of amphiphilic spin probes were investigated. A significant relationship was found between the partitioning of spin probes and the viscosity of the aqueous solvent. Moreover, in desiccation-sensitive radicles, the rise in cellular microviscosity during drying commenced at higher water contents compared with tolerant or PEG-induced tolerant radicles, suggesting that the microviscosity of the cytoplasm may control the partitioning behavior in dehydrating seeds.  相似文献   

11.
Low temperatures in summer bring about drastic reduction in seed yield of soybean [Glycine max (L.) Merr.]. To identify quantitative trait loci (QTL) associated with chilling tolerance during the reproductive growth in soybean, a recombinant inbred line (RIL) population consisting of 104 F6-derived lines was created from a cross between two cultivars, chilling-tolerant Hayahikari and chilling-sensitive Toyomusume. The RIL were genotyped with 181 molecular and phenotypic markers and were scored with regard to chilling tolerance, which was evaluated by comparison of seed-yielding abilities in two artificial climatic environments at chilling and usual temperatures. Three QTL were detected for chilling tolerance in seed-yielding ability. Two of them, qCTTSW1 and qCTTSW2, were mapped near QTL for flowering time, and the latter had an epistatic interaction with a marker locus located near another QTL for flowering time, where no significant QTL for chilling tolerance was detected. The analysis of an F2 population derived from the cross between Hayahikari and an RIL of the Hayahikari genotype at all QTL for flowering time confirmed the effect of the third QTL, qCTTSW3, on chilling tolerance and suggested that qCTTSW1 was basically independent of the QTL for flowering time. The findings and QTL found in this study may provide useful information for marker-assisted selection (MAS) and further genetic studies on soybean chilling tolerance.  相似文献   

12.
Using differential scanning calorimetry we demonstrated the presence of biological glasses and measured the glass transition temperatures (Tg) in dry encysted gastrula embryos (cysts) of the brine shrimp, Artemia, from eleven different locations, two of which provided cysts from parthenogenetic animals. Values for Tg were highest, by far, in Artemia franciscana cysts from the Mekong Delta, Vietnam (VN), these cysts having been produced from previous sequential inoculations into growth ponds of cysts from the San Francisco Bay, California, USA. Tg values for three groups of A. franciscana cysts were significantly higher than those of other cysts (except those of Artemia persimilis) studied here, as well as all other desiccation-tolerant animal systems studied to date. We also measured three stress proteins (hsc70, artemin and p26) in all these cysts as well as the total alcohol soluble carbohydrates (ASC), about 90% of which is the disaccharide trehalose, a known component of biological glasses. We interpret the results in terms of mechanisms involved with desiccation tolerance and, to some extent, with thermal conditions at the sites of cyst collection.  相似文献   

13.
Desiccation tolerance is the capacity to survive complete drying. It is an ancient trait that can be found in prokaryotes, fungi, primitive animals (often at the larval stages), whole plants, pollens and seeds. In the dry state, metabolism is suspended and the duration that anhydrobiotes can survive ranges from years to centuries. Whereas genes induced by drought stress have been successfully enumerated in tissues that are sensitive to cellular desiccation, we have little knowledge as to the adaptive role of these genes in establishing desiccation tolerance at the cellular level. This paper reviews postgenomic approaches in a variety of desiccation tolerant organisms in which the genetic responses have been investigated when they acquire the capacity of tolerating extremes of dehydration or when they are dry. Accumulation of non-reducing sugars, LEA proteins and a coordinated repression of metabolism appear to be the essential and universal attributes that can confer desiccation tolerance. The protective mechanisms of these attributes are described. Furthermore, it is most likely that other mechanisms have evolved since the function of about 30% of the genes involved in desiccation tolerance remains to be elucidated. The question of the overlap between desiccation tolerance and drought tolerance is briefly addressed.  相似文献   

14.
15.
Glass formation and desiccation tolerance in seeds   总被引:24,自引:3,他引:24       下载免费PDF全文
Koster KL 《Plant physiology》1991,96(1):302-304
The formation of intracellular glass may help protect embryos from damage due to desiccation. Soluble sugars similar to those found in desiccation tolerant embryos were studied with differential scanning calorimetry. Those sugars from desiccation tolerant embryos can form glasses at ambient temperatures, whereas those from embryos that do not tolerate desiccation only form glasses at subzero temperatures. It is concluded that tolerant embryo cells probably contain sugar glasses at storage temperatures and water contents, but intolerant embryo cells probably do not.  相似文献   

16.
A proteomic analysis was performed on the heat stable protein fraction of imbibed radicles of Medicago truncatula seeds to investigate whether proteins can be identified that are specifically linked to desiccation tolerance (DT). Radicles were compared before and after emergence (2.8 mm long) in association with the loss of DT, and after reinduction of DT by an osmotic treatment. To separate proteins induced by the osmotic treatment from those linked with DT, the comparison was extended to 5 mm long emerged radicles for which DT could no longer be reinduced, albeit that drought tolerance was increased. The abundance of 15 polypeptides was linked with DT, out of which 11 were identified as late embryogenesis abundant proteins from different groups: MtEm6 (group 1), one isoform of DHN3 (dehydrins), MtPM25 (group 5), and three members of group 3 (MP2, an isoform of PM18, and all the isoforms of SBP65). In silico analysis revealed that their expression is likely seed specific, except for DHN3. Other isoforms of DNH3 and PM18 as well as three isoforms of the dehydrin Budcar5 were associated with drought tolerance. Changes in the abundance of MtEm6 and MtPM25 in imbibed cotyledons during the loss of DT and in developing embryos during the acquisition of DT confirmed the link of these two proteins with DT. Fourier transform infrared spectroscopy revealed that the recombinant MtPM25 and MtEm6 exhibited a certain degree of order in the hydrated state, but that they became more structured by adopting alpha helices and beta sheets during drying. A model is presented in which DT-linked late embryogenesis abundant proteins might exert different protective functions at high and low hydration levels.  相似文献   

17.
Lin  T; Yen  W; Chien  C 《Journal of experimental botany》1998,49(324):1203-1212
The relationship between sugar content and loss of desiccation tolerance of hydrated crop seeds (tomato, okra, snow pea, mung bean, and cucumber) was evaluated by imbibing seeds with or without ABA, followed by dehydration and germination. During the process of hydration, but before the seeds lost desiccation tolerance, monosaccharide content increased only slightly, sucrose increased in snow peas, mung bean and cucumber, but maintained its original level in other species and the oligosaccharides declined dramatically. At the time of losing desiccation tolerance, the sucrose content of imbibed seeds was 2-3 times higher than the original level in most species. Positive significant correlation coefficients (r) were found in many, but not all crop seeds between desiccation tolerance and the oligosaccharide mass, or oligo/sucrose ratio. The ratio of oligo/sucrose in intact seeds at the time of losing desiccation tolerance, however, was not a fixed value and varied among species. Oligosaccharides declined significantly in different seed parts of imbibed cucumber seeds while sucrose increased to a higher level in the radicle than in the hypocotyl. Radicles were far more sensitive to desiccation than hypocotyls. The same observation was found for cucumber seeds imbibed in 100 M ABA, yet desiccation tolerance was largely maintained in hypocotyls and cotyledons. It is concluded that sucrose and oligosaccharides are not the determinants of the loss of desiccation tolerance in hydrated seeds.Imbibed seeds did not show any differences between seed parts in their ability to resynthesize sugars during the process of slow dehydration. Differences in sensitivity to desiccation among seed parts were not due to differences in the initial water content or to the rate of water content increase among seed parts. Physiological regulation of the loss of desiccation tolerance in crop seeds during hydration is discussed.  相似文献   

18.
Mechanisms of plant desiccation tolerance.   总被引:16,自引:0,他引:16  
Anhydrobiosis ("life without water") is the remarkable ability of certain organisms to survive almost total dehydration. It requires a coordinated series of events during dehydration that are associated with preventing oxidative damage and maintaining the native structure of macromolecules and membranes. The preferential hydration of macromolecules is essential when there is still bulk water present, but replacement by sugars becomes important upon further drying. Recent advances in our understanding of the mechanism of anhydrobiosis include the downregulation of metabolism, dehydration-induced partitioning of amphiphilic compounds into membranes and immobilization of the cytoplasm in a stable multicomponent glassy matrix.  相似文献   

19.
《Cell host & microbe》2022,30(7):975-987.e7
  1. Download : Download high-res image (116KB)
  2. Download : Download full-size image
  相似文献   

20.
Mutational inactivation of the genes designated DR1172 and DRB0118 in Deinococcus radiodurans R1 greatly sensitizes this species to desiccation, but not to ionizing radiation. These genes encode proteins that share features with the desiccation-induced LEA76 proteins of many plants and the PCC13-62 protein of Craterostigma plantagineum, suggesting that D. radiodurans may serve as a useful model for the study of desiccation tolerance in higher organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号