首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The nature of synaptic transmission at functionally distinct synapses in intestinal reflex pathways has not been fully identified. In this study, we investigated whether transmission between interneurons in the descending inhibitory pathway is mediated by a purine acting at P2Y receptors to produce slow excitatory synaptic potentials (EPSPs).

Methodology/Principal findings

Myenteric neurons from guinea-pig ileum in vitro were impaled with intracellular microelectrodes. Responses to distension 15 mm oral to the recording site, in a separately perfused stimulation chamber and to electrical stimulation of local nerve trunks were recorded. A subset of neurons, previously identified as nitric oxide synthase immunoreactive descending interneurons, responded to both stimuli with slow EPSPs that were reversibly abolished by a high concentration of PPADS (30 μM, P2 receptor antagonist). When added to the central chamber of a three chambered organ bath, PPADS concentration-dependently depressed transmission through that chamber of descending inhibitory reflexes, measured as inhibitory junction potentials in the circular muscle of the anal chamber. Reflexes evoked by distension in the central chamber were unaffected. A similar depression of transmission was seen when the specific P2Y1 receptor antagonist MRS 2179 (10 μM) was in the central chamber. Blocking either nicotinic receptors (hexamethonium 200 μM) or 5-HT3 receptors (granisetron 1 μM) together with P2 receptors had no greater effect than blocking P2 receptors alone.

Conclusions/Significance

Slow EPSPs mediated by P2Y1 receptors, play a primary role in transmission between descending interneurons of the inhibitory reflexes in the guinea-pig ileum. This is the first demonstration for a primary role of excitatory metabotropic receptors in physiological transmission at a functionally identified synapse.  相似文献   

2.
The role of the longitudinal muscle (LM) layer during the peristaltic reflex in the small and large intestine is unclear. In this study, we have made double and quadruple simultaneous intracellular recordings from LM and circular muscle (CM) cells of guinea pig distal colon to correlate the electrical activities in the two different muscle layers during circumferential stretch. Simultaneous recordings from LM and CM cells (<200 microm apart) at the oral region of the colon showed that excitatory junction potentials (EJPs) discharged synchronously in both muscle layers for periods of up to 6 h. Similarly, at the anal region of the colon, inhibitory junction potentials (IJPs) discharged synchronously in the two muscle layers. Quadruple recordings from LM and CM orally at the same time as from the LM and CM anally revealed that IJPs occurred synchronously in the LM and CM anally at the same time as EJPs in LM and CM located 20 mm orally. Oral EJPs and anal IJPs were linearly related in amplitude between the two muscle layers. Spatiotemporal maps generated from simultaneous video imaging of the movements of the colon, combined with intracellular recordings, revealed that some LM contractions orally could be correlated in time with IJPs in CM cells anally. N(omega)-nitro-L-arginine (L-NA; 100 microM) abolished the IJP in LM, whereas a prominent L-NA-resistant "fast" IJP was always observed in CM. In summary, in stretched preparations, synchronized EJPs in both LM and CM orally are generated by synchronized firing of many ascending interneurons, which simultaneously activate excitatory motor neurons to both muscle layers. Similarly, synchronized IJPs in both LM and CM anally are generated by synchronized firing of many descending interneurons, which simultaneously activate inhibitory motor neurons to both muscle layers. This synchronized motor activity ensures that both muscles around the entire circumference are excited orally at the same time as inhibited anally, thus producing net aboral propulsion.  相似文献   

3.
The electrical properties and neuromuscular transmission of white and red fibers of pectoral fin muscles of the goldfish Carassius auratus were studied using an intracellular recording technique. The pectoral fin muscles consist mainly of white and red fibers. Almost all of white fibers elicited action potentials with overshoot by direct stimulation, but graded responses appeared in the red fibers. However, overshooting action potentials were often recorded from the red fibers in saline containing 20 microM tetraethylammonium (TEA) chloride. In response to single nerve stimulations, excitatory (EJPs) and inhibitory junction potentials (IJPs) were obtained from both white and red fibers in common. Both EJPs and IJPs were blocked completely or partially by d-tubocurarine, a nicotinic acetylcholine (ACh) receptor antagonist. Nicotine, a nicotinic ACh receptor agonist, and oxotremorine, a muscarinic ACh receptor agonist, depolarized both fiber types. The results suggest that white and red fibers receive double innervation from excitatory and inhibitory nerves, and have nicotinic and muscarinic ACh receptors. In the resting muscle, miniature excitatory junction potentials were generated spontaneously in both white and red fibers. Occasionally, miniature inhibitory junction potentials were recorded from the red fibers. The results indicate that the release of both excitatory and inhibitory transmitters is quantal in nature.  相似文献   

4.
The localisation of NK3 tachykinin receptors in guinea-pig ileum was studied using the fluorescently labelled agonists, Cy3.5-neurokinin A and Cy3.5-kassinin. Binding to nerve cell bodies in the myenteric and submucosal plexuses was visualised using confocal microscopy. Binding to NK1 receptors was blocked by the NK1 receptor antagonist, CP-99994. NK3 receptors, demonstrated by binding in the presence of CP-99994, occurred in 72% of myenteric and 38% of submucosal neurons. Colocalisation with other markers was examined to deduce the classes of neurons with NK3 receptors. In myenteric ganglia, NK3 receptors were present on the following: 73% of calbindin-immunoreactive (IR) intrinsic primary afferent neurons, 63% of calretinin-IR excitatory motor neurons and ascending interneurons, 63% of nitric oxide synthase-IR inhibitory motor neurons and descending interneurons, 79% of strongly neuropeptide Y (NPY)-IR secretomotor neurons, 67% of weakly NPY-IR descending interneurons and motor neurons, and 46% of NK1 receptor-IR neurons. In submucosal ganglia, NK3 receptors were on 65% of calretinin-IR secretomotor/vasodilator neurons, 81% of NPY-IR cholinergic secretomotor neurons, 2% of vasoactive intestinal peptide-IR non-cholinergic secretomotor neurons and were completely absent from substance P-IR intrinsic primary afferent neurons. The results support physiological studies suggesting that NK3 receptors mediate tachykinin transmission between myenteric sensory neurons and to interneurons and/or motor neurons in descending inhibitory and ascending excitatory pathways. Accepted: 22 June 1999  相似文献   

5.
Light- and electron-microscopic studies were used to investigate connections between specific subgroups of neurons in the myenteric plexus of the guineapig small intestine. Inputs to two classes of calretinin-immunoreactive (IR) nerve cells, longitudinal muscle motor neurons and ascending interneurons, were examined. Inputs from calbindin-IR primary sensory neurons and from three classes of descending interneurons were studied. Electron-microscopic analysis showed that calbindin-IR axons formed two types of inputs, synapses and close contacts, on calretinin-IR neurons. About 40% of inputs to the longitudinal muscle motor neurons and 70% to ascending interneurons were calbindin-IR. Approximately 50% of longitudinal muscle motor neurons were surrounded by bombesin-IR dense pericellular baskets and 40% by closely apposed varicosities. At the electron-microscope level, the bombesin-IR varicosities were found to form synapses and close contacts with the motor neurons. Dense pericellular baskets with bombesin-IR surrounded 36% of all ascending interneurons, and a further 17% had closely apposed varicosities. Somatostatin-and 5-HT-IR descending interneurons provided no dense pericellular baskets to calretinin-IR nerve cells. Thus, calretinin-IR, longitudinal muscle motor neurons and ascending interneurons receive direct synaptic inputs from intrinsic primary sensory neurons and from non-cholinergic, bombesin-IR, descending interneurons.  相似文献   

6.
Crickets respond to air currents with quick avoidance behavior. The terminal abdominal ganglion (TAG) has a neuronal circuit for a wind-detection system to elicit this behavior. We investigated neuronal transmission from cercal sensory afferent neurons to ascending giant interneurons (GIs). Pharmacological treatment with 500 muM acetylcholine (ACh) increased neuronal activities of ascending interneurons with cell bodies located in the TAG. The effects of ACh antagonists on the activities of identified GIs were examined. The muscarinic ACh antagonist atropine at 3-mM concentration had no obvious effect on the activities of GIs 10-3, 10-2, or 9-3. On the other hand, a 3-mM concentration of the nicotinic ACh antagonist mecamylamine decreased spike firing of these interneurons. Immunohistochemistry using a polyclonal anti-conjugated acetylcholine antibody revealed the distribution of cholinergic neurons in the TAG. The cercal sensory afferent neurons running through the cercal nerve root showed cholinergic immunoreactivity, and the cholinergic immunoreactive region in the neuropil overlapped with the terminal arborizations of the cercal sensory afferent neurons. Cell bodies in the median region of the TAG also showed cholinergic immunoreactivity. This indicates that not only sensory afferent neurons but also other neurons that have cell bodies in the TAG could use ACh as a neurotransmitter.  相似文献   

7.
In locusts the auditory receptors of the tympanal organs and many of the vibratory receptors of all 6 legs converge at the level of the thoracic ventral nerve cord, forming a combined auditory-vibratory sensory system; it is represented by the VS-, S-, and V-neurons ascending to the supraesophageal ganglion. The connections between vibratory receptors of the different legs and the dendritic inputs of the bimodal ascending neurons are investigated in this report. As an example, the dendritic branches of the G- and V3-neurons for auditory and vibratory input could be localized by simultaneous recording at 2 different positions of the axon. The vibratory input from the receptors of the different legs was determined. Segmental and/or intersegmental thoracic interneurons are intercalated between the receptors and the ascending auditory-vibratory neurons (G- and V3-neurons). The morphology and function of 2 intersegmental vibratory interneurons (VI1- and VI2-neurons) are described. They probably connect the vibratory receptors of 1 (or 2) leg(s) of 1 thoracic segment with the different bimodal auditory-vibratory neurons. The importance of the anterior Ring Tract for synaptic connection between receptor cells, first order interneurons, and bimodal auditory-vibratory neurons is discussed on the basis of morphological and physiological data.  相似文献   

8.
The motility of the gut depends on the chemicals contained in the lumen, but the stimuli that modify motility and their relationship to enteric neural pathways are unclear. This study examined local inhibitory reflexes activated by various chemical stimulants applied to the mucosa to characterize effective physiological stimuli and the pathways they excite. Segments of the jejunum were dissected to allow access to the circular muscle on one-half of the preparation while leaving the mucosa intact on the circumferentially adjacent half. Chemicals were transiently applied to the mucosa, and responses were recorded intracellularly in nearby circular muscle cells. The amino acids l-phenylalanine, l-alanine, or l-tryptophan (all 1 mM) evoked inhibitory junction potentials (IJPs; latency 150-300 ms, amplitude 3-8 mV, each n > 6) that were blocked by TTX and partially blocked by antagonists of P2X receptors and/or a combination of antagonists at 5-HT(3) and 5-HT(4) receptors. The putative mediators 5-HT (10 microM), ATP (1 mM), and CCK-8 (1-10 microM) elicited IJPs mediated via 5-HT(3), P2X, and CCK-B receptors, respectively. Responses were only partially reduced by the effective antagonists. IJPs evoked by electrically stimulating the mucosa were unaffected by antagonists that reduced chemically evoked responses. Both chemically and electrically evoked IJPs were resistant to nicotinic, NK(1), NK(3), alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, N-methyl-d-aspartate, or CGRP receptor blockade. We conclude that mucosal stimulation by amino acids activates local neural pathways whose pharmacology depends on the nature of the stimulus. Transmitters involved at some synapses in these pathways remain to be identified.  相似文献   

9.
Expression and function of two nicotinic subunits in insect neurons   总被引:5,自引:0,他引:5  
Nicotinic acetylcholine receptors (nAChRs) in insects are neuron-specific oligomeric proteins essential for the central transmission of sensory information. Little is known about their subunit composition because it is difficult to express functional insect nAChRs in heterologous systems. As an alternative approach we have examined the native expression of two subunits in neurons of the nicotinic-resistant, tobacco-feeding insect Manduca sexta. Both the alpha-subunit MARA1 and the beta-subunit MARB can be detected by in situ hybridization in the majority of cultured neurons with an overlapping, but not identical, distribution. Changes in intracellular Ca(2+) evoked by nicotinic stimulation are more strongly correlated to the expression of MARA1 than MARB and are independent of cell size. Unlike the previously reported critical role of MARA1 in mediating nicotinic Ca(2+) responses, down-regulation of MARB by RNA interference (RNAi) did not reduce the number of responding neurons or the size of evoked responses, suggesting that additional subunits remain to be identified in Manduca.  相似文献   

10.
The balloon distension (BD)-induced descending peristaltic reflex in the opossum smooth muscle esophagus is abolished in vitro when a Ca(2+)-free Krebs solution is placed at the site of distension, suggesting that either synaptic transmission occurs at the origin of the reflex or initiation of the reflex requires the development of muscle tension in response to BD. To test the latter possibility, an 8- to 10-cm length of smooth muscle esophagus was placed in a dual-chamber organ bath, isolating the stimulating (orad) from the recording site (aborad). Nifedipine addition to the orad chamber (i.e., site of distension) inhibited the BD-induced "off" contractions in both chambers in a concentration-dependent manner. However, the aborad response to electrical field stimulation (EFS) was unaffected. Atropine addition to the orad chamber had no effect on BD or EFS responses in either chamber. To examine the effects of these agents on tonic contractility, an isobaric barostat was employed. Pressure-volume curves were not altered by Ca(2+)-free Krebs solution, nifedipine, or TTX, suggesting that resting esophageal tone is not dependent on neural factors or muscle contractility. However, both Ca(2+)-free Krebs solution and nifedipine markedly decreased phasic contractions over the top of the distending bag. These observations suggest that local, stretch-induced phasic muscle contraction is required for initiation of the BD-induced descending peristaltic reflex.  相似文献   

11.
The background activity of the guinea pig caudal mesenteric ganglion (CMG) neurons and their reflex reactions to colonic distension were studied on isolated combined preparations including the CMG and a colon segment connected with the lumbar colonic nerves. In the control, 62% of the neurons under study generated background activity, which consisted of irregular or regular “fast” excitatory postsynaptic potentials (fEPSP) and action potentials (AP). In 27% of the CMG neurons called “pacemaker-like neurons” (PLN), the background activity was represented by highly regular AP never observed in the CMG completely isolated from the distal colon. Reflex responses evoked by colonic distension were recorded from 76% of the units studied. The distension evoked fEPSP and AP in “silent” neurons and increased the background activity. Both the background activity and reflex responses were shown to be due to nicotinic cholinergic transmission. In some neurons, reflex responses (regular AP) were generated as superimposed on a slow depolarization; the latter was insensitive to nicotinic antagonists and either sensitive or insensitive to muscarinic antagonists. It has been concluded that CMG neurons receive nicotinic, muscarinic, and, probably, peptidergic afferent inputs from the distal colon. Although there are no true pacemaker neurons in CMG, some neurons generate pacemaker-like activity of a synaptic origin.  相似文献   

12.
Striatal dopamine plays key roles in our normal and pathological goal-directed actions. To understand dopamine function, much attention has focused on how midbrain dopamine neurons modulate their firing patterns. However, we identify a presynaptic mechanism that triggers dopamine release directly, bypassing activity in dopamine neurons. We paired electrophysiological recordings of striatal channelrhodopsin2-expressing cholinergic interneurons with simultaneous detection of dopamine release at carbon-fiber microelectrodes in striatal slices. We reveal that activation of cholinergic interneurons by light flashes that cause only single action potentials in neurons from a small population triggers dopamine release via activation of nicotinic receptors on dopamine axons. This event overrides ascending activity from dopamine neurons and, furthermore, is reproduced by activating ChR2-expressing thalamostriatal inputs, which synchronize cholinergic interneurons in vivo. These findings indicate that synchronized activity in cholinergic interneurons directly generates striatal dopamine signals whose functions will extend beyond those encoded by dopamine neuron activity.  相似文献   

13.
The hatchling frog tadpole provides a simple preparation where the fundamental roles for inhibition in the central nervous networks controlling behaviour can be examined. Antibody staining reveals the distribution of at least ten different populations of glycinergic and GABAergic neurons in the CNS. Single neuron recording and marker injections have been used to study the roles and anatomy of three types of inhibitory neuron in the swimming behaviour of the tadpole. Spinal commissural interneurons control alternation of the two sides by producing glycinergic reciprocal inhibition. By interacting with the special membrane properties of excitatory interneurons they also contribute to rhythm generation through post-inhibitory rebound. Spinal ascending interneurons produce recurrent glycinergic inhibition of sensory pathways that gates reflex responses during swimming. In addition their inhibition also limits firing in CPG neurons during swimming. Midhindbrain reticulospinal neurons are excited by pressure to the head and produce powerful GABAergic inhibition that stops swimming when the tadpole swims into solid objects. They may also produce tonic inhibition while the tadpole is at rest that reduces spontaneous swimming and responsiveness of the tadpole, keeping it still so it is not noticed by predators.  相似文献   

14.
Kerchner GA  Li P  Zhuo M 《IUBMB life》1999,48(3):251-256
Severe tissue or nerve injury can result in a chronic and inappropriate sensation of pain, mediated in part by the sensitization of spinal dorsal horn neurons to input from primary afferent fibers. Synaptic transmission at primary afferent synapses is mainly glutamatergic. Although a functioning excitatory synapse contains both alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the postsynaptic membrane, recent evidence suggests that dorsal horn neurons contain some "silent" synapses, which exhibit purely NMDA receptor-mediated evoked postsynaptic currents and do not conduct signals at resting membrane potential. Serotonin, which is released onto dorsal horn neurons by descending fibers from the rostroventral medulla, potentiates sensory transmission by activating silent synapses on those neurons, i.e., by recruiting functional AMPA receptors to the postsynaptic membrane. This phenomenon may contribute to the hyperexcitability of dorsal horn neurons seen in chronic pain conditions.  相似文献   

15.
In most animals locomotion can be started and stopped by specific sensory cues. We are using a simple vertebrate, the hatchling Xenopus tadpole, to study a neuronal pathway that turns off locomotion. In the tadpole, swimming stops when the head contacts solid objects or the water's surface meniscus. The primary sensory neurons are in the trigeminal ganglion and directly excite inhibitory reticulospinal neurons in the hindbrain. These project axons into the spinal cord and release GABA to inhibit spinal neurons and stop swimming. We ask whether there is specificity in the types of spinal neuron inhibited. We used single-neuron recording to determine which classes of spinal neurons receive inhibition when the head skin is pressed. Ventral motoneurons and premotor interneurons involved in generating the swimming rhythm receive reliable GABAergic inhibition. More dorsal inhibitory premotor interneurons are inhibited less reliably and some are excited. Dorsal sensory pathway interneurons that start swimming following a touch to the trunk skin do not appear to receive such inhibition. There is therefore specificity in the formation of descending inhibitory connections so that more ventral neurons producing swimming are most strongly inhibited.  相似文献   

16.
Calcium-permeable AMPA receptors (CP-AMPARs) play an important role in synaptic transmission and plasticity, but they also can induce neuronal death under certain pathological conditions. The involvement of CP-AMPARs in the pathogenesis of many diseases of the central nervous system makes them an attractive target for selective pharmacological blockade, to prevent and relieve pathological processes. However, the practical application of selective CP-AMPAR channel blockers requires a thorough study of their effects on the functioning of neural networks under the normal conditions. The goal of this study was to clarify the role of CP-AMPARs in the regulation of firing thresholds in different types of cortical neurons, as well as their involvement in maintaining the excitation/inhibition balance in the cortex. To do this, we have investigated the effects of CP-AMPARs blockade on the amplitude of excitatory postsynaptic potentials (EPSPs) and the threshold of action potentials evoked by extracellular stimulation. Whole-cell current-clamp recordings were carried out from pyramidal cells and fast-spiking interneurons in the slices of rat medial prefrontal cortex. CP-AMPARs were blocked with a selective channel blocker IEM-1460 (100 μM), the dicationic derivative of adamantane. It was found that the blockade of CP-AMPARs reduced the amplitude EPSPs in interneurons but not in pyramidal cells. In addition, it reduced the firing threshold in pyramidal cells via partial suppression of feedforward inhibition. Thus, the blockade of CP-AMPA receptors shifts the balance between cortical excitation and inhibition toward excitation.  相似文献   

17.
This paper investigates the proposal that the frequency of the swimming central pattern generator in young Xenopus tadpoles is partly determined by the population of glutamatergic premotor interneurons active on each cycle. During fictive swimming spinal neurons also receive cholinergic and electrotonic excitation from motoneurons. As frequency changes during swimming we make two predictions: first, since most motoneurons fire very reliably at all frequencies, the electrotonic and nicotinic drive from motoneurons should remain constant, and second, when swimming frequency decreases, the glutamatergic drive should decrease as the number of active premotor excitatory interneurons decreases. We have tested these predictions by measuring the excitatory synaptic drive to motoneurons as frequency changes during fictive swimming. The components of synaptic drive were revealed by the local microperfusion of strychnine together with different excitatory antagonists. After blocking the nicotinic acetylcholine receptor, the mainly glutmatergic excitatory synaptic drive still changed with frequency. However, when glutamate receptors or all chemical transmission was blocked, excitation did not change with frequency. Our predictions are confirmed, suggesting that premotor excitatory interneurons are a major factor in frequency control in the tadpole central pattern generator and that motoneurons provide a stable background excitation. Accepted: 14 August 1998  相似文献   

18.
The new antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), which blocks responses to kainate and quisqualate, has been used in conjunction with D-2-amino-5-phosphonovalerate (APV), which blocks selectively responses to N-methyl-D-aspartate (NMDA), to determine the role of excitatory amino acid receptors in synaptic transmission. An excitatory postsynaptic potential (EPSP)-inhibitory postsynaptic potential (IPSP) sequence was evoked in CA1 neurons by stimulation of the Schaffer collateral-commissural pathway in rat hippocampal slices. CNQX (10 microM) substantially reduced the EPSP without having any effect on input resistance or membrane potential. The IPSP was also reduced provided that the stimulating electrode was place approximately 1 mm from the recording electrode. The EPSP that remained in the presence of CNQX had characteristics of an NMDA receptor-mediated potential; it had a slow timecourse, summated at high frequencies, was blocked reversibly by APV, increased greatly in size in Mg2+-free medium, and showed an anomalous voltage dependence in Mg2+-containing medium. In the presence of CNQX, an APV-sensitive polysynaptic GABAergic IPSP could be evoked, indicating that NMDA receptors can mediate suprathreshold EPSPS in inhibitory interneurons. It is suggested that either NMDA or non-NMDA receptors can, under different circumstances, mediate the synaptic excitation of pyramidal neurons and inhibitory interneurons in area CA1 of the hippocampus.  相似文献   

19.
Summary 1. The effects of heavy metals (Pb2+, Hg2+, and Zn2+) on synaptic transmission in the identified neural network ofHelix pomatia L. andLymnaea stagnalis L. (Gastropoda, Mollusca) were studied, with investigation of effects on inputs and outputs as wells as on interneuronal connections.2. The sensory input running from the cardiorenal system to the central nervous system and the synaptic connections between central neurons were affected by heavy metals.3. Lead and mercury (10–5–10–3 M) eliminated first the inhibitory, then the excitatory inputs running from the heart to central neurons. At the onset of action lead increased the amplitude of the excitatory postsynaptic potentials, but blockade of sensory information transfer occurred after 10–20 min of treatment.4. The monosynaptic connections between identified interneurons were inhibited by lead and mercury but not by zinc. Motoneurons were found to be less sensitive to heavy metal treatment than interneurons or sensory pathways.5. The treatment with Pb2+ and Hg2+ often elicited pacemaker and bursting-type firing in central neurons, accompanied by disconnection of synaptic pathways, manifested by insensitivity to sensory synaptic influences.6. Zn2+ treatment also sometimes induced pacemaker activity and burst firing but did not cause disconnection of the synaptic transmission between interneurons.7. A network analysis of heavy metal effects can be a useful tool in understanding the connection between their cellular and their behavioral modulatory influences.  相似文献   

20.
1. Using extracellular electrodes placed on the serosa, we recorded the modifications of the electrical activity of the colonic muslce fibers caused by the stimulation of vagal and splanchnic nerve fibers. 2. Vagal stimulation produces two types of junction potentials: excitatory junction potentials (EJPs) and inhibitory junction potentials (IJPs). The IJPs are elicited by stimulation of vagal fibers which innervate intramural non-adrenergic inhibitory neurons. 3. The conduction velocity of the nerve impulse along the vagal pre-ganglionic fibers is 1.01 m/sec for excitatory fibers and 0.5. m/sec for inhibitory fibers. 4. Splanchnic fiber stimulation causes EJP disappearance, blocking transmission between preganglionic fibers and intramural excitatory neurons, and a decrease in IJP amplitude that most likely indicates a previous hyperpolarization of the smooth muscle. 5. IJP persistence during splanchnic stimulation proves that sympathetic inhibition does not modify the transmission of the vagal influx onto the non-adrenergic inhibitory neurons of the intramural plexuses. 6. Through a comparative study of proximal and distal colonic innervation, we are able to show that there is a similar organization of both regions, that is a double inhibitory innervation: an adrenergic one of a sympathetic origin, and a non adrenergic one of a parasympathetic origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号