首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using muscle bath techniques, we examined the inhibitory activities of several E- and F-ring isoprostanes in canine and porcine airway smooth muscle. 8-Isoprostaglandin E1 and 8-isoprostaglandin E2 (8-iso PGE2) reversed cholinergic tone in a concentration-dependent manner, whereas the F-ring isoprostanes were ineffective. Desensitization with 8-iso-PGE2 and PGE2 implicated isoprostane activity at the PGE2 receptor (EP). We found that the inhibitory E-ring isoprostane responses were significantly augmented by rolipram (a type IV phosphodiesterase inhibitor), while 1H-[1,2,4]-oxadiazolo[4,3-a]quinoxalin-1-one (a guanylate cyclase inhibitor) had no effect, suggesting a role for cAMP in isoprostane-mediated relaxations. 8-Iso-PGE2 did not reverse KCl tone, suggesting that voltage-dependent Ca2+ influx and myosin light chain kinase are not suppressed by isoprostanes. Patch-clamp studies showed marked suppression of K+ currents by 8-iso-PGE2. We conclude that E-ring isoprostanes exert PGE2 receptor-directed, cAMP-dependent relaxations in canine and porcine airway smooth muscle. This activity is not dependent on K+ channel activation or the direct inhibition of voltage-operated Ca2+ influx or myosin light chain kinase.  相似文献   

2.
Short-circuit current (I(sc)) and transepithelial conductance (Gt) were measured in guinea pig distal colonic mucosa isolated from submucosa and underlying muscle layers. Indomethacin (2 microM) and NS-398 (2 microM) were added to suppress endogenous production of prostanoids. Serosal addition of PGE2 (10 nM) stimulated negative I(sc) consistent with K secretion, and concentrations >30 nM stimulated positive I(sc) consistent with Cl secretion. PGE2 also stimulated Gt at low and high concentrations. Dose responses to prostanoids specific for EP prostanoid receptors were consistent with stimulating K secretion through EP2 receptors, based on a rank order potency (from EC50 values) of PGE2 (1.9 nM) > 11-deoxy-PGE1 (8.3 nM) > 19(R)-hydroxy-PGE2 (13.9 nM) > butaprost (67 nM) > 17-phenyl-trinor-PGE2 (307 nM) > sulprostone (>10 microM). An isoprostane, 8-iso-PGE2, stimulated K secretion with an EC50 of 33 nM. Cl secretory response was stimulated by PGD2 and BW-245C, a DP prostanoid receptor-specific agonist: BW-245C (15 nM) > PGD2 (30 nM) > PGE2 (203 nM). Agonists specific for FP, IP, and TP prostanoid receptors were ineffective in stimulating I(sc) and Gt at concentrations <1 microM. These results indicate that PGE2 stimulated electrogenic K secretion through activation of EP2 receptors and electrogenic KCl secretion through activation of DP receptors. Thus stimulation of Cl secretion in vivo would occur either via physiological concentrations of PGD2 (<100 nM) or pathophysiological concentrations of PGE2 (>100 nM) that could occur during inflammatory conditions.  相似文献   

3.
Ryanodine receptors in muscarinic receptor-mediated bronchoconstriction   总被引:3,自引:0,他引:3  
Ryanodine receptors (RyRs), intracellular calcium release channels essential for skeletal and cardiac muscle contraction, are also expressed in various types of smooth muscle cells. In particular, recent studies have suggested that in airway smooth muscle cells (ASMCs) provoked by spasmogens, stored calcium release by the cardiac isoform of RyR (RyR2) contributes to the calcium response that leads to airway constriction (bronchoconstriction). Here we report that mouse ASMCs also express the skeletal muscle and brain isoforms of RyRs (RyR1 and RyR3, respectively). In these cells, RyR1 is localized to the periphery near the cell membrane, whereas RyR3 is more centrally localized. Moreover, RyR1 and/or RyR3 in mouse airway smooth muscle also appear to mediate bronchoconstriction caused by the muscarinic receptor agonist carbachol. Inhibiting all RyR isoforms with > or = 200 microM ryanodine attenuated the graded carbachol-induced contractile responses of mouse bronchial rings and calcium responses of ASMCs throughout the range of carbachol used (50 nM to > or = 3 microM). In contrast, inhibiting only RyR1 and RyR3 with 25 microM dantrolene attenuated these responses caused by high (>500 nM) but not by low concentrations of carbachol. These data suggest that, as the stimulation of muscarinic receptor in the airway smooth muscle increases, RyR1 and/or RyR3 also mediate the calcium response and thus bronchoconstriction. Our findings provide new insights into the complex calcium signaling in ASMCs and suggest that RyRs are potential therapeutic targets in bronchospastic disorders such as asthma.  相似文献   

4.
The airway and systemic arterial smooth muscle responsiveness to cholinergic agents of two strains of rats, Rat Albino (RA) and Brown Norway (BN), was compared in vivo and in vitro. In vivo, we measured the doses of carbachol that induced a 100% increase in lung resistance (PD100 RL), a 50% decrease in dynamic lung compliance (PD50 Cdyn), and the value of systolic blood pressure at the carbachol dose of 10 micrograms (Pa 10 micrograms). In vitro airway smooth muscle and systemic arterial smooth muscle responsiveness was assessed by measuring the maximal response to acetylcholine, the slope of the linear portion of the dose-response curve, and the negative logarithm of the molar concentration of acetylcholine producing 50% of the maximal response (pD2). PD100 and PD50 were about four times greater in BN rats than in RA rats. In contrast, Pa 10 micrograms was 1.5 lower in the BN rats. These differences persisted after bivagotomy. Tracheal pD2 was 25% greater in the RA than in the BN strain. The mean dose-response curve of parenchymal strips of RA rats was situated upward and to the left of the BN curve, but the reverse was observed for aortic smooth muscle dose-response curves. Thus 1) airway smooth muscle responsiveness to cholinergic agents is greater in RA strain than in BN, but the reverse is true for systemic arterial smooth muscle responsiveness; and 2) these differences are not due to factors extrinsic to the smooth muscle, since they occurred in vitro and may depend on different densities of muscarinic receptors.  相似文献   

5.
The prostanoid receptors on human airway smooth muscle cells (HASMC) that augment the release by IL-1beta of granulocyte colony-stimulating factor (G-CSF) have been characterized and the signaling pathway elucidated. PCR of HASM cDNA identified products corresponding to EP(2), EP(3), and EP(4) receptor subtypes. These findings were corroborated at the protein level by immunocytochemistry. IL-1beta promoted the elaboration of G-CSF, which was augmented by PGE(2). Cicaprost (IP receptor agonist) was approximately equiactive with PGE(2), whereas PGD(2), PGF(2alpha), and U-46619 (TP receptor agonist) were over 10-fold less potent. Neither SQ 29,548 nor BW A868C (TP and DP(1) receptor antagonists, respectively) attenuated the enhancement of G-CSF release evoking any of the prostanoids studied. With respect to PGE(2), the EP receptor agonists 16,16-dimethyl PGE(2) (nonselective), misoprostol (EP(2)/EP(3) selective), 17-phenyl-omega-trinor PGE(2) (EP(1) selective), ONO-AE1-259, and butaprost (both EP(2) selective) were full agonists at enhancing G-CSF release. AH 6809 (10 microM) and L-161,982 (2 microM), which can be used in HASMC as selective EP(2) and EP(4) receptor antagonists, respectively, failed to displace to the right the PGE(2) concentration-response curve that described the augmented G-CSF release. In contrast, AH 6809 and L-161,982 in combination competitively antagonized PGE(2)-induced G-CSF release. Augmentation of G-CSF release by PGE(2) was mimicked by 8-BrcAMP and abolished in cells infected with an adenovirus vector encoding an inhibitor protein of cAMP-dependent protein kinase (PKA). These data demonstrate that PGE(2) facilitates G-CSF secretion from HASMC through a PKA-dependent mechanism by acting through EP(2) and EP(4) prostanoid receptors and that effective antagonism is realized only when both subtypes are blocked concurrently.  相似文献   

6.
In vitro preparations of whole urinary bladders of neonatal rats exhibit prominent myogenic spontaneous contractions, the amplitude and frequency of which can be increased by muscarinic agonists. The muscarinic receptor subtype responsible for this facilitation was examined in the present experiments. Basal spontaneous contractions in bladders from 1- to 2-wk-old Sprague-Dawley rats were not affected by M2 or M3 receptor antagonists. However, administration of 0.5 microM physostigmine, an anticholinesterase agent that increases the levels of endogenous acetylcholine, or 50-100 nM carbachol, a cholinergic agonist at low concentrations, which did not cause tonic contractions, significantly augmented the frequency and amplitude of spontaneous contractions. Blockade of M2 receptors with 0.1 microM AF-DX 116 or 1 microM methoctramine or blockade of M3 receptors with 50 nM 4-diphenylacetoxy-N-methylpiperidine methiodide or 0.1 microM 4-diphenylacetoxy-N-(2-chloroethyl)piperidine hydrochloride (4-DAMP mustard) reversed the physostigmine and carbachol responses. M2 and M3 receptor blockade did not alter the facilitation of spontaneous contractions induced by 10 nM BAY K 8644, an L-type Ca2+ channel opener, or 0.1 microM iberiotoxin, a large-conductance Ca2+-activated K+ channel blocker. NS-1619 (30 microM), a large-conductance Ca2+-activated K+ channel opener, decreased carbachol-augmented spontaneous contractions. These results suggest that spontaneous contractions in the neonatal rat bladder are enhanced by activation of M2 and M3 receptors by endogenous acetylcholine released in the presence of an anticholinesterase agent or a cholinergic receptor agonist.  相似文献   

7.
An alteration in smooth muscle sensitivity may be one of the mechanisms of the airway hyperresponsiveness observed in asthma. Indomethacin inhibits experimentally induced airway hyperresponsiveness. We thus examined the effects of the cyclooxygenase products PGD2, PGF2 alpha and a thromboxane A2 analogue U46619 on contractile responses of rabbit airway smooth muscle to histamine, carbachol and electrical field stimulation (EFS). PGD2 did not potentiate any contractile responses. When PGF2 alpha (1 microM) was administered 30 min before cumulative concentration-response curves to histamine and carbachol, no potentiation was observed. However, PGF2 alpha (1 microM) added immediately before EFS and bolus doses of histamine potentiated the contractile responses. U46619 increased the cumulative concentration-responses to both histamine and carbachol. The fact that we could alter smooth muscle sensitivity in vitro with PGF2 alpha and a thromboxane analogue suggests that these mediators may be involved in the airway hyperresponsiveness observed in asthma.  相似文献   

8.
Exposure to ozone (O3) induces airway hyperresponsiveness mediated partly through the release of substance P (SP) from nerve terminals in the airway wall. Although substantial evidence suggests that SP is released by sensory nerves, SP is also present in neurons of airway ganglia. The purpose of this study was to investigate the role of intrinsic airway neurons in O3-enhanced airway responsiveness in ferret trachea. To remove the effects of sensory innervation, segments of ferret trachea were maintained in culture conditions for 24 h before in vitro exposure to 2 parts/million of O3 or air for 1 h. Sensory nerve depletion was confirmed by showing that capsaicin did not affect tracheal smooth muscle responsiveness to cholinergic agonist or contractility responses to electrical field stimulation (EFS). Contractions of isolated tracheal smooth muscle to EFS were significantly increased after in vitro O3 exposure, but the constrictor response to cholinergic agonist was not altered. Pretreatment with CP-99994, an antagonist of the neurokinin 1 receptor, attenuated the increased contraction to EFS after O3 exposure but had no effect in the air exposure group. The number of SP-positive neurons in longitudinal trunk ganglia, the extent of SP innervation to superficial muscular plexus nerve cell bodies, and SP nerve fiber density in tracheal smooth muscle all increased significantly after O3 exposure. The results show that release of SP from intrinsic airway neurons contributes to O3-enhanced tracheal smooth muscle responsiveness by facilitating acetylcholine release from cholinergic nerve terminals.  相似文献   

9.
Lee HK  Lim MY  Bok SM  Cho ES  Lee EM  Kim SW  Kim YH  Kim HW 《Life sciences》2007,81(3):204-209
Children seem more susceptible to increased airway reactivity than adults. Such an age-dependent discrepancy in airway reactivity may involve different airway smooth muscle functions. Therefore, we compared the in vivo and in vitro responsiveness of airway smooth muscles between two age groups of animals. Rats of 6 and 21 weeks old were challenged in vivo with acetylcholine (ACh) infused intravenously and airway resistance (R(aw)) was measured. Tracheal muscle was also isolated and the isometric force developed to ACh or KCl was measured. Furthermore, the level of genes encoding muscarinic receptor subtypes (M(1-3)) and acetylcholinesterase (AChE) expressed in the tracheal muscle was determined by RT-PCR. In results, the basal R(aw) was similar in the two age groups. The R(aw) at each ACh dose was significantly greater in young rats than older rats (p<0.05, n=22-27). Tracheal muscles from young rats were more sensitive to ACh than older rats (p<0.05, n=20-21), while receptor-independent muscle contraction to KCl was greater in older rats (p<0.05, n=10-19). Genes encoding AChE, M(2) and M(3) muscarinic receptors were more highly expressed in the tracheal muscles from young than older rats (p<0.05, n=4-6). In conclusion, airway smooth muscle in young rat is more sensitive to cholinergic stimulation in vivo and in vitro compared to older rats, which may be due to a higher expression of M(2) and M(3) muscarinic receptors in airway smooth muscle.  相似文献   

10.
We investigated the effects of ozone exposure (3.0 ppm, 2 h) on the responsiveness of guinea pig airway muscle in vitro from animals developing bronchial hyperreactivity. Muscarinic reactivity in vivo was determined by measuring specific airway resistance (sRaw) in response to increasing concentrations of aerosolized acetylcholine (ACh) administered before and 30 min after exposure. Immediately after reactivity testing, multiple tracheal rings from ozone- and air-exposed animals were prepared and the contractile responses to increasing concentrations of substance P, ACh, or KCl were assessed in the presence of 10 microM indomethacin with or without 1 microM phosphoramidon, an inhibitor of neutral endopeptidase. Isometric force generation in vitro was measured on stimulation by cumulative concentrations of the agonists, and force generation (in g/cm2) was calculated after determination of muscle cross-sectional area. The smooth muscle of mucosa-intact airways from guinea pigs with ozone-induced bronchial hyper-reactivity proved to be hyperresponsive in vitro to substance P and ACh but not to KCl. Pretreatment with phosphoramidon abolished the increase in substance P responsiveness but had no effect on muscarinic hyperresponsiveness after ozone exposure. Furthermore, substance P responsiveness was not augmented in ozone-exposed airways in which the mucosa had been removed before testing in vitro. Likewise, muscarinic hyperresponsiveness was not present in ozone-exposed airways without mucosa. Our data indicate that airway smooth muscle responsiveness is increased in guinea pigs with ozone-induced bronchial hyperreactivity and suggest that this hyperresponsiveness may be linked to non-cyclooxygenase mucosa-derived factors.  相似文献   

11.
An alteration in the handling of Ca2+ has been proposed as the pathogenic mechanism underlying the airway smooth muscle hyperresponsiveness of asthma. The present study tested the hypothesis that the altered responsiveness of receptor operated contraction to carbachol in allergic asthma results from a change in the phasic or tonic components. Using a kinetic approach, the phasic and tonic responses to 10 microM carbachol were quantitated in isolated epithelium-free trachea 21 days after guinea-pigs were sensitized with ovalbumin and aluminum hydroxide (as adjuvant) to generate preferentially IgE-like antibodies. Sensitization was confirmed by challenge of the isolated trachea with ovalbumin. The steady-state and kinetic characteristics of the phasic and tonic responses were the same from sensitized animals and animals treated with saline and aluminum hydroxide (control) and before and after challenge of the trachea from both groups of animals. The present results demonstrate that immunologic sensitization and challenge do not appear to elicit a defect in the phasic or tonic responses of receptor mediated contractions in airway smooth muscle and suggest there is no alteration in the handling of Ca2+ in smooth muscle from sensitized and challenged guinea-pig trachea.  相似文献   

12.
This study investigated the effects and selectivity of ONO-AE-248, ONO-DI-004, ONO-8711 and ONO-8713 on EP1 and EP3 receptors in human pulmonary vessels. The prostanoid receptors involved in the vasoconstriction of human pulmonary arteries (HPA) are TP and EP3 whereas in pulmonary veins (HPV), this response is associated with TP and EP1. The experiments were performed in presence of BAY u3405 (TP antagonist). ONO-DI-004 (EP1 agonist) and ONO-AE-248 (EP3 agonist), exhibited little or no activity in HPV whereas contractions were induced in HPA with ONO-AE-248. In HPV, the contractions produced with sulprostone (EP1,3 agonist) were blocked in a non competitive manner by both EP1 antagonists (ONO-8711, 30 microM; ONO-8713, 10 microM). The involvement of EP1 mediated contraction in HPV was also observed during the vasorelaxations induced with PGE1 and 5-cis-carba-PGI2. In pre-contracted HPV treated with AH6809 (30 microM; EP1 antagonist) the PGE1 vasorelaxations were potentiated, while unchanged in HPA. These results demonstrate the selectivity of ONO-AE-248 for the EP3 receptor in HPA, ONO-DI-004 was ineffective on the EP1 receptor present in HPV while ONO-8713 was the more potent EP1 antagonist used in this tissue.  相似文献   

13.
G protein-coupled receptors (GPCRs) transduce extracellular signals into intracellular events. The waning responsiveness of GPCRs in the face of persistent agonist stimulation, or desensitization, is a necessary event that ensures physiological homeostasis. GPCR kinases (GRKs) are important regulators of GPCR desensitization. GRK5, one member of the GRK family, desensitizes central M(2) muscarinic receptors in mice. We questioned whether GRK5 might also be an important regulator of peripheral muscarinic receptor responsiveness in the cardiopulmonary system. Specifically, we wanted to determine the role of GRK5 in regulating muscarinic receptor-mediated control of airway smooth muscle tone or regulation of cholinergic-induced bradycardia. Tracheal pressure, heart rate, and tracheal smooth muscle tension were measured in mice having a targeted deletion of the GRK5 gene (GRK5(-/-)) and littermate wild-type (WT) control mice. Both in vivo and in vitro results showed that the airway contractile response to a muscarinic receptor agonist was not different between GRK5(-/-) and WT mice. However, the relaxation component of bilateral vagal stimulation and the airway smooth muscle relaxation resulting from beta(2)-adrenergic receptor activation were diminished in GRK5(-/-) mice. These data suggest that M(2) muscarinic receptor-mediated opposition of airway smooth muscle relaxation is regulated by GRK5 and is, therefore, excessive in GRK5(-/-) mice. In addition, this study shows that GRK5 regulates pulmonary responses in a tissue- and receptor-specific manner but does not regulate peripheral cardiac muscarinic receptors. GRK5 regulation of airway responses may have implications in obstructive airway diseases such as asthma or chronic obstructive pulmonary disease.  相似文献   

14.
The calcium channel blockers (CCB) have been clinically effective in exercise-induced asthma. The completeness of protection with the CCB might be related specifically to inhibition of Ca2+ influx or release. To examine this hypothesis, the rank order of potency of inhibition of the CCB, nicardipine, diltiazem and verapamil on the steady-state and kinetic parameters of the phasic and tonic responses to the muscarinic receptor agonist carbachol (10 microM) and KCl (40 mM) in the intact isolated guinea-pig trachea was determined. The Ca2+ channel agonist Bay K 8644 was also examined for its effects on intracellular Ca2+. Nicardipine abolished the KCl response at both 0.1 microM and 1 microM concentrations. The amplitude of the KCl response was inhibited equally by 1 microM diltiazem (61% inhibition) and 1 microM verapamil (68% inhibition). The rate constant of onset of the KCl response was similarly inhibited 60% by diltiazem and 66% by verapamil. Nicardipine abolished the carbachol phasic response at the 1 microM concentration. The amplitude of the phasic response was inhibited equally by 0.1 microM nicardipine (61.3% inhibition), 1 microM diltiazem (64.5% inhibition) and 1 microM verapamil (71% inhibition). The rate constant of decay of the phasic response was inhibited equally by 0.1 microM nicardipine (43% inhibition) and 1 microM diltiazem (29% inhibition). The rate constant of onset of the phasic response was unaffected by nicardipine, diltiazem and verapamil. Only 1 microM nicardipine inhibited the amplitude and rate constant of onset of the tonic response. The only effect of Bay K 8644 (1 microM) was to increase the phasic response amplitude. The CCB demonstrate a similar order of potency for inhibition of the phasic responses and clinical efficacy of the CCB in exercise-induced asthma (nicardipine > verapamil > diltiazem).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
This study investigated the interaction between exposure to air pollutants and chronic hypoxia (CH). We used a hypobaric chamber (14 days at barometric pressure 380 mmHg) to produce CH in rats. Exposure to various doses of acrolein or ozone did not modify the mechanical response to cholinergic agonists. Exposure to 3 microM/min acrolein did not alter epithelium-free trachea responsiveness. In contrast, direct exposure of freshly isolated myocytes to 2 and 3 microM/min acrolein enhanced the amplitude of the first intracellular [Ca(2+)] rise in response to 0.1 microM ACh and the calcium oscillation frequency in response to 10 microM ACh. CH alone did not alter smooth muscle cross-sectional area (SMA) or epithelium-plus-submucosa thickness. CH decreased maximal contractile response (maximal force normalized to SMA) but increased sensitivity (pEC(50)) to cholinergic agonists. We conclude that unlike in normoxic rats, exposure to air pollutants does not induce airway hyperresponsiveness in CH rats, although it increased calcium signaling. These results cannot be explained by change in smooth muscle accessibility, but may be linked to the effect of CH on calcium-contraction coupling.  相似文献   

16.
Matthiesen S  Bahulayan A  Holz O  Racké K 《Life sciences》2007,80(24-25):2259-2262
Airway remodelling is a pathological feature of chronic inflammatory and obstructive airway diseases like asthma and COPD wherein fibroblasts contribute to structural alteration processes. We recently reported expression of multiple muscarinic receptors in human lung fibroblasts and demonstrated muscarinic receptor-induced, G(i)-mediated proliferation in these cells. We now explore the underlying intracellular signalling pathways. As a measure of cell proliferation ((3)H)-thymidine incorporation in primary human lung fibroblasts and MRC-5 fibroblasts was increased by about 2 fold in presence of the muscarinic receptor agonist carbachol (10 microM) and this effect could be prevented by the MEK inhibitor PD 98059 (30 microM). Western blot analysis revealed a rapid (within 2 min) activation of p42/44 MAPK (ERK1, ERK2) following exposure to 10 microM carbachol or oxotremorine, effects blocked by tiotropium as well as atropine. In conclusion, the proliferative response of lung fibroblasts to muscarine receptor stimulation is mediated via activation of the classical MEK-ERK MAPK cascade. It is suggested that prevention of cholinergic driven fibroblast proliferation by prolonged blockade of airway muscarinic receptors may contribute to the reported long term beneficial effects of anticholinergics.  相似文献   

17.
The aim of this study was to delineate the mode of action of 20-hydroxy-eicosatetraenoic acid (20-HETE) in airway smooth muscle (ASM) cells. ASM metabolizes arachidonic acid by various enzymatic pathways, including the cytochrome P-450 (CYP-450) omega-hydroxylase, which leads to the production of 20-HETE, a bronchoconstrictive eicosanoid. The present study demonstrated that 20-HETE induced concentration-dependent tonic responses in ASM, whereas transient responses were recorded in Ca2+-free solution, suggesting an intracellular Ca2+ release process. 20-HETE inotropic responses were abolished by 36 microM 2-aminoethoxydiphenyl borate or 1 microM thapsigargin but were insensitive to 10 microM ryanodine, indicating that inositol triphosphate receptors likely control the release of intracellular Ca2+. Sustained tension, which required Ca2+ entry, was partially blocked by 1 microM nifedipine (an L-type) and 100 microM Gd3+ (a nonselective cationic channel blocker). Moreover, in the absence of selective 20-HETE receptor antagonists, 20-HETE tonic responses were inhibited in a concentration-dependent manner (0.1-10 microM) by capsazepine, a well-characterized vanilloid receptor antagonist. Capsazepine was also observed to reverse cumulative responses to 20-HETE and capsaicin, a TRPV1 agonist. In addition, capsazepine pretreatment largely modified the sustained inotropic responses to 20-HETE, suggesting that 20-HETE cross-reacted with TRPV1 receptors with a low affinity (microM) or that its specific receptor was inhibited by the vanilloid antagonist. Data obtained using RHC-80267, ONO-RS-082, and eicosatetraynoic acid, respective inhibitors of diacylglycerol-lipase, phospholipase A2, and CYP-450 omega-hydroxylase, reveal that intracellular arachidonic acid production and its 20-HETE metabolite may be responsible for the activation of nonselective cationic channels and tonic responses.  相似文献   

18.
Cells growing in culture with previously described properties of rat uterine smooth muscle accumulated 45Ca2+ from the medium. Ca2+ uptake by these cells was stimulated by the addition to the medium of 8-bromo-cGMP but not by 8-bromo-cAMP. Ca2+ uptake was also stimulated by carbachol and by the nitro-vasodilator nitroprusside. Although cholinergic agonists have been shown previously to stimulate contraction but not cGMP synthesis in the rat myometrium, both carbachol and nitroprusside stimulated cGMP production by the cultured cells. These results suggested the cells had cholinergic receptor-mediated functions that reflected some neurotransmitter-sensitive properties of uterine smooth muscle in situ. When determined by a specific radioligand binding assay, subcellular fractions of the cultured cells bound muscarinic cholinergic agonists and antagonists with affinities expected of the muscarinic receptor. The cells were also sensitive to the beta-adrenergic catecholamine agonist isoproterenol, which stimulated cAMP production but not Ca2+ uptake. Carbachol failed to inhibit isoproterenol-dependent cAMP production, which is an important property of the cholinergic receptor in uterine smooth muscle in situ. These results suggest some but not all acetylcholine-sensitive properties of uterine smooth muscle may be retained in cell culture.  相似文献   

19.
Cholinergic dopamine release from the in vitro rabbit carotid body.   总被引:1,自引:0,他引:1  
The aim of this study was to test whether cholinergic mechanisms regulate dopamine (DA) release from the carotid body (CB) and interact with DA D(2) autoreceptors. One hundred forty-two CBs from adult rabbits were infused in vitro in a surviving medium bubbled with O(2) (Bairam A, Marchal F, Cottet-Emard JM, Basson H, Pequignot JM, Hascoet JM, and Lahiri S. J Appl Physiol 80: 20-24, 1996). CB DA content and release were measured after 1 h of exposure to various treatments: control, cholinergic agonist (0.1-50 microM carbachol), full muscarinic antagonist (1 and 10 microM atropine), antagonists of M(1) and M(2) muscarinic receptors (1 and 10 microM pirenzepine and 10 microM AFDX-116, respectively), and the DA D(2) receptor antagonist domperidone (1 microM), alone and with carbachol (1 microM). Compared with control, the release of DA was significantly increased by carbachol (1-50 microM), AFDX-116, and domperidone and decreased by atropine (10 microM) and pirenzepine (10 microM). The effects of domperidone and carbachol were not significantly different but were clearly additive. It is concluded that, in the rabbit CB, M(1) and M(2) muscarinic receptor subtypes may be involved in the control of DA release, in addition to the DA D(2) autoreceptors.  相似文献   

20.
The responsiveness of smooth muscle from rings of aortic tissue of cold-acclimated (CA, 6 degrees C, 5-15 wk) rats to both alpha- and beta-adrenergic agonists and KCl was tested and compared with that of warm-adapted (25 degrees C) controls. alpha-Adrenergic stimulation, induced by low doses (10(-8)-10(-7) M) of phenylephrine and norepinephrine in the presence and absence of the beta-adrenergic antagonist, propranolol, resulted in the development of less active tension by aortic smooth muscle from CA rats than from controls. Similar results were observed with the weakly alpha 1-adrenergic agonistic activities of tyramine, clonidine, and high concentrations of isoproterenol (10(-6)-10(-4) M). There was also a significant reduction in the tension developed by smooth muscles of the aortas from CA rats when depolarized with KCl in concentrations ranging from 8 to 20 mM. In contrast, aortic smooth muscle, contracted to 75% of maximum with KCl, showed an enhanced relaxation to the beta-adrenergic agonist, isoproterenol, in CA rats. These studies suggest that acclimation of rats to cold results in both a decrease in alpha-adrenergic responsiveness and an increase in beta-adrenergic responsiveness in vascular smooth muscle as well as a change in the biochemical events that couple activation of adrenergic receptors to changes in vasomotor tone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号