首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cuticular surface lipids of the red harvester ant, Pogonomyrmex barbatus, were found to contain minor amounts of novel wax esters, in addition to the major components, hydrocarbons. The wax esters ranged in carbon number from C19 to C31 and consisted of esters of both odd- and even-numbered alcohols and acids. Each wax ester with a given carbon number eluted at several different retention times indicating possible methyl branching in either the fatty acid or alcohol moiety, or in both moieties. Each eluting peak of wax esters consisted of a mixture of wax esters of the same carbon number in which the fatty acid moiety ranged from C8 to C18, and the alcohol moiety ranged from C8 to C17. Some wax esters were largely found on the head indicating they may be of a glandular origin. The hydrocarbons consisted of: n-alkanes, C23 to C33; odd-numbered n-alkenes, C27 to C35; and the major components, methyl-branched alkanes, C26 to over C49. Notable components of the methyl-branched alkanes were 2-methyltriacontane, and the novel trimethylalkanes with a single methylene between the first and second branch points, 13,15,19-trimethylhentriacontane and 13,15,21-trimethyltritriacontane.  相似文献   

2.
The adult beetles Aphthona lacertosa and Aphthona nigriscutis, used as biocontrol agents for leafy spurge, had a complex mixture of hydrocarbons on their cuticular surface consisting of alkanes, methylalkanes, alkenes and alkadienes as determined by gas chromatography-mass spectrometry. A trace amount of wax esters were present. In both species, the hydrocarbons were the major cuticular lipid class and the gas chromatographic profiles of the total hydrocarbons were similar. However, the profiles for the saturated hydrocarbon fraction were distinct for each species. Alkanes (n-alkanes and methyl-branched alkanes), alkenes and alkadienes comprised 26, 44 and 30%, respectively, for A. lacertosa, and 48, 26 and 26%, respectively, for A. nigriscutis, of the total hydrocarbons. The major methyl-branched hydrocarbons were 2-methylalkanes: 2-methyloctacosane and 2-methyltriacontane. The major monoene was hentriacontene and the major diene was tritriacontadiene. The species were unique in that a number of di- and trimethyl-branched alkanes were present in minor quantities in which the first methyl branch was on carbon 2 or 3. Examples of structures were 2,10-, 2,12-, 2,6-, 2,4- and 3,7-dimethylalkanes. 2,10,12-Trimethylalkanes and a 2,10,12,24-tetramethylalkane with one methylene between adjacent methyl branch points also were identified. The adjacent methyl branch points of the 2,4- and 2,10,12- and 2,10,12,24-methyl-branched alkanes appeared to cause additional fragmentations in the mass spectra. Dimethylalkanes with an odd number of carbons in the backbone of the molecule were identified as 2,23-dimethylnonacosane and 2,25-dimethylhentriacontane; their mass spectra also corresponded to mass spectra expected for a 2,6 branching sequence. However, a 2,6 branching sequence is not biosynthetically feasible because such a structure has a straight-chain tail with an odd number of carbon atoms beyond the last methyl branch point. The 2,23 and 2,25 branching sequences could be synthesized starting with a primer derived from the amino acid leucine which would account for both the even number of carbons between the branch points and an even number of carbons beyond the last methyl branch point.  相似文献   

3.
Novel trimethyl-branched alkanes which eluted with the monomethylalkanes were identified in the internal lipids of Helicoverpa zea but were not present in Heliothis virescens. Their structures were unique in that the first methyl branch occurred on carbon 2 and the 2nd and 3rd methyl branch points were separated by a single methylene. Novel trimethylalkanes identified from their chemical ionization and electron impact mass spectra were 2,18,20-trimethyltetratriacontane, 2,18,20-trimethylhexatriacontane, and 2,24,26-trimethyldotetracontane. Previous reports did not find these trimethylalkanes in the cuticular surface lipids of larvae, pupae or adults of either species. The internal pupal hydrocarbons of H. virescens and H. zea amounted to 123 μg and 304 μg per pupa, respectively. They consisted of n-alkanes (8 and 4%, respectively) and methyl-branched alkanes (88 and 94%, respectively). The n-alkanes ranged in chain length from approximately 21 to 35 carbons and the methyl-branched alkanes from approximately 26 to 55 carbons vs. methyl-branched alkanes from 28 to 37 carbons previously reported for hydrocarbons from the pupal cuticular surface. The major n-alkane was heptacosane (3.3 and 1.2%, respectively, in H. virescens and H. zea). The major methyl-branched alkanes in H. virescens were methylhentriacontane (15%), methyltritriacontane (12%) and dimethyltritriacontane (10%), and in H. zea were methylnonacosane (17%), dimethylnonacosane (9%) and methylhentriacontane (20%). Except for the novel trimethylalkanes, the methylalkane branch points were predominantly on odd-numbered carbons as has been reported for these and other species.  相似文献   

4.
Chemical constituents contained in the Dufour gland of the ectoparasitoid Habrobracon hebetor (Say) (Hymenoptera: Braconidae) were characterized. Three terpenes, beta-springene, a homo-beta-springene, and a homo-geranyllinalool constitute approximately 37% of the gland components, with the remaining 63% all being hydrocarbons. The hydrocarbons consist of a homologous series of n-alkanes (n-C21 to n-C31), a trace amount of 3-methyl C23, a homologous series of internally methyl-branched alkanes (11-methyl C23 to 13-methyl C35), one dimethylalkane (13,17-dimethyl C33), a homologous series of monoenes (C(25:1) to C(37:1)) with the double bonds located at Delta9, Delta13 and Delta15 for alkenes of carbon number 25 to 31 and at Delta13 and Delta15 for carbon numbers 33 to 37 and three homologous dienes in very low amounts with carbon numbers of 31, 32, and 33. The terpenoid and hydrocarbon composition of the Dufour gland was similar in virgin and mated females. However, in contrast to the hydrocarbons, the amount of beta-springene and homo-geranyllinalool increased significantly with time after adult emergence from the cocoon. Although many hydrocarbons in the Dufour gland are the same as those on the cuticle of this species [Howard and Baker, Arch. Insect Biochem. Physiol. 53:1-18 (2003)], substantial differences also occur. Of particular note is the chain length of alkenes and location of the double bonds: cuticular alkenes have a chain length of C23 to C29 and double bond locations at Delta5, Delta7, and Delta9, whereas the Dufour gland alkenes contains a greater range of carbon numbers and have no Delta5 or Delta7 alkenes. The Dufour gland contains only one of the long-chain dimethylalkanes found on the cuticle. Also, no terpenoids are found on the cuticle, and the Dufour gland contains none of the secondary wax esters that are major components on the cuticle. GC-MS analysis of lipids carried in the hemolymph of H. hebetor indicated that all hydrocarbons found on both the cuticle and in the Dufour gland are present, as are some of the wax esters. However, none of the terpenoids were detected in the hemolymph. This suggests that the hydrocarbons are synthesized in other tissues or cells, probably by oenocytes, and differentially partitioned between the cuticle and the Dufour gland. The terpenoids are most likely synthesized within the Dufour gland. Analysis of surface lipids from eggs laid within 18 h indicated that no diterpenoids were present. Rather, the lipids present on the eggs were n-alkanes, monomethylalkanes, alkenes, and secondary alcohol wax esters. This composition did not reflect that of the Dufour gland, hence eggs are not being coated with Dufour gland components during oviposition.  相似文献   

5.
The reaction of plants to environmental factors often varies with developmental stage. It was hypothesized, that also the cuticle, the outer surface layer of plants is modified during ontogenesis. Apple plantlets, cv. Golden Delicious, were grown under controlled conditions avoiding biotic and abiotic stress factors. The cuticular wax surface of adaxial apple leaves was analyzed for its chemical composition as well as for its micromorphology and hydrophobicity just after unfolding of leaves ending in the seventh leaf insertion. The outer surface of apple leaves was formed by a thin amorphous layer of epicuticular waxes. Epidermal cells of young leaves exhibited a distinctive curvature of the periclinal cell walls resulting in an undulated surface of the cuticle including pronounced lamellae, with the highest density at the centre of cells. As epidermal cells expanded during ontogenesis, the upper surface showed only minor surface sculpturing and a decrease in lamellae. With increasing leaf age the hydrophobicity of adaxial leaf side decreased significantly indicated by a decrease in contact angle. Extracted from plants, the amount of apolar cuticular wax per area unit ranged from only 0.9 microgcm(-2) for the oldest studied leaf to 1.5 microgcm(-2) for the youngest studied leaf. Differences in the total amount of cuticular waxes per leaf were not significant for older leaves. For young leaves, triterpenes (ursolic acid and oleanolic acid), esters and alcohols were the main wax components. During ontogenesis, the proportion of triterpenes in total mass of apolar waxes decreased from 32% (leaf 1) to 13% (leaf 7); absolute amounts decreased by more than 50%. The proportion of wax alcohols and esters, and alkanes to a lesser degree, increased with leaf age, whereas the proportion of acids decreased. The epicuticular wax layer also contained alpha-tocopherol described for the first time to be present also in the epicuticular wax. The modifications in the chemical composition of cuticular waxes are discussed in relation to the varying physical characteristics of the cuticle during ontogenesis of apple leaves.  相似文献   

6.
Experiments were conducted to determine the effects of whitefly parasitoids on the cuticular lipid composition of the silverleaf whitefly, Bemisia argentifolii Bellows and Perring [=sweetpotato whitefly, Bemisia tabaci (Gennadius), Biotype B] nymphs. The cuticular lipids of B. argentifolii nymphs that had been attacked by parasitic wasps, either Eretmocerus mundus Mercet or Encarsia pergandiella Howard, were characterized by capillary gas chromatography and CGC-mass spectrometry and the results compared with the cuticular lipids of unparasitized nymphs. Previous studies with B. argentifolii nymphs had shown that wax esters were the major components of the cuticular lipids with lesser amounts of hydrocarbons, long-chain aldehydes, and long-chain alcohols. No appreciable changes in lipid composition were observed for the cuticular lipids of E. pergandiella-parasitized nymphs as compared to unparasitized controls. However, the cuticular lipids from nymphs parasitized by E. mundus contained measurable quantities of two additional components in their hydrocarbon fraction. Analyses and comparisons with an authentic standard indicated that the two hydrocarbons were the even-numbered chain length methyl-branched alkanes, 2-methyltriacontane and 2-methyldotriacontane. The occurrences and possible functions of 2-methylalkanes as cuticular lipid components of insects are discussed and specifically, in regard to host recognition, acceptance, and discrimination by parasitoids. Published 2000 Wiley-Liss, Inc.  相似文献   

7.
Lin L  Fang W  Liao X  Wang F  Wei D  St Leger RJ 《PloS one》2011,6(12):e28984
Fungal pathogens of plants and insects infect their hosts by direct penetration of the cuticle. Plant and insect cuticles are covered by a hydrocarbon-rich waxy outer layer that represents the first barrier against infection. However, the fungal genes that underlie insect waxy layer degradation have received little attention. Here we characterize the single cytochrome P450 monoxygenase family 52 (MrCYP52) gene of the insect pathogen Metarhizium robertsii, and demonstrate that it encodes an enzyme required for efficient utilization of host hydrocarbons. Expressing a green florescent protein gene under control of the MrCYP52 promoter confirmed that MrCYP52 is up regulated on insect cuticle as well as by artificial media containing decane (C10), extracted cuticle hydrocarbons, and to a lesser extent long chain alkanes. Disrupting MrCYP52 resulted in reduced growth on epicuticular hydrocarbons and delayed developmental processes on insect cuticle, including germination and production of appressoria (infection structures). Extraction of alkanes from cuticle prevented induction of MrCYP52 and reduced growth. Insect bioassays against caterpillars (Galleria mellonella) confirmed that disruption of MrCYP52 significantly reduces virulence. However, MrCYP52 was dispensable for normal germination and appressorial formation in vitro when the fungus was supplied with nitrogenous nutrients. We conclude therefore that MrCYP52 mediates degradation of epicuticular hydrocarbons and these are an important nutrient source, but not a source of chemical signals that trigger infection processes.  相似文献   

8.
Floral volatiles, which are small and generally water-insoluble, must move from their intracellular sites of synthesis through the outermost cuticle membrane before release from the flower surface. To determine whether petal cuticle might influence volatile emissions, we performed the first analysis of petal cuticle development and its association with the emission of flower volatiles using Antirrhinum majus L. (snapdragon) as a model system. Petal cuticular wax amount and composition, cuticle thickness and ultrastructure, and the amounts of internal and emitted methylbenzoate (the major snapdragon floral scent compound) were examined during 12 days, from flower opening to senescence. Normal ( n -) alkanes were found to be the major wax class of snapdragon petals (29.0% to 34.3%) throughout the 12 days examined. Besides n -alkanes, snapdragon petals possessed significant amounts of methyl branched alkanes (23.6–27.8%) and hydroxy esters (12.0–14.0%). Hydroxy esters have not been previously reported in plants. Changes in amount of methylbenzoate inside the petals followed closely with levels of methylbenzoate emission, suggesting that snapdragon petal cuticle may provide little diffusive resistance to volatile emissions. Moreover, clear associations did not exist between methylbenzoate emission and the cuticle properties examined during development. Nevertheless, the unique wax composition of snapdragon petal cuticles shows similarities with those of other highly permeable cuticles, suggesting an adaptation that could permit rapid volatile emission by scented flowers.  相似文献   

9.
The outer surface morphology and the ultrastructure of grape berries during growth were examined by electron microscopy. The cuticle began to form before anthesis as highly organized and tightly appressed cuticular ridges. During the period of rapid expansion, the cuticular material spread out over the grape berry. At the same time, an outer wax layer of about 0.5 μm was indentified. As growth proceeded, the cuticular material flattened out and eventually disappeared. At the final stage of growth, the berry had a smooth, continuous and homogeneous cuticle with a thickness of 3 μm.  相似文献   

10.
Ants held in the laboratory and field ants of the species Pogonomyrmex barbatus have quantitative differences in their cuticular hydrocarbons and a qualitative difference in their methyl-branched hydrocarbons. Laboratory-held workers showed twice the hydrocarbon content as field ants. This difference was mainly due to higher amounts of straight-chain alkanes and methyl-branched alkanes in laboratory ants, whereas the proportion of the alkenes remained the same for both groups. In addition to the absence of some hydrocarbons in the field colonies, one of the methyl-branched hydrocarbons differed in amount and branching pattern between the two groups of ants. Whereas, notable peaks of 2-methylalkanes were identified in ants kept in the laboratory, these compounds could not be identified in ants living in their natural habitat. However, a trace amount of 4-methyltriacontane was found in lieu of the 2-methyltriacontane counterpart in field ants. Possible explanations for both qualitative and quantitative differences are discussed.  相似文献   

11.
Triatomine insects (Hemiptera) are the vectors of Chagas disease. Their cuticular surface is covered by a thin layer of lipids, mainly hydrocarbons, wax esters, fatty alcohols, and free or esterified fatty acids. These lipids play a major role in preventing a lethal desiccation, altering the absorption of chemicals and microorganism penetration, they also participate in chemical communication events. Lipid components are biosynthetically related, the synthesis of long chain and very long chain fatty acids was first shown in the integument of Triatoma infestans through the concerted action of fatty acid synthases (FAS's) and fatty acyl-CoA elongases. A final decarboxylation step produces the corresponding hydrocarbon. Capillary gas chromatography coupled to mass spectrometry analyses showed that cuticular hydrocarbons of Triatominae comprise saturated straight and methyl-branched chains, from 18 to more than 43 carbon atoms. Odd-chain hydrocarbons, mostly from 27 to 33 carbons, are the major straight chains. Different isomers of mono, di, tri, and tetramethylcomponents, mostly from 29 to 39 atoms in the carbon skeleton, account for the major methyl-branched hydrocarbons. The presence, absence, and relative quantities of these hydrocarbons represent characters for their chemical phenotype, and are useful for differentiating genera, species and populations. In this review, we will discuss the metabolic pathways involved in hydrocarbon formation, and their structure, together with their role in insect survival. We will also review the utility of cuticular hydrocarbon fingerprints in chemotaxonomy.  相似文献   

12.
The enantiomers of 3-methylpentacosane, 3-methylheptacosane, 3-methylnonacosane, 13-methylheptacosane, and 5-methylheptacosane were synthesized by starting from the enantiomers of 2-methylbutyl bromide or citronellol. These methyl-branched alkanes are the characteristic components of the cuticular hydrocarbons of queen of the ant, Diacamma sp..  相似文献   

13.
The nymphs and pupae of the giant whitefly, Aleurodicus dugesii, produce large quantities of external lipids, both as waxy particles and as waxy filaments. The nymphs and pupae extrude filaments from two dorsal rows of five pores each. Filaments can attain lengths of 5-8 cm. The external lipids of nymphs and pupae consist largely of long-chain aldehydes, alcohols, acetate esters and wax esters. Hydrocarbons are minor components. Soon after hatching, the nymph produced an unidentified waxy fringe extruded laterally from its margin. After molting to the second instar, long, hollow, waxy filaments were produced by the immature stages. The major lipid class associated with the filaments was saturated wax esters (89%), mainly C44, C46 and C60. Associated with formation of the filaments were waxy particles in the shape of curls, which peeled off of the extruding filaments. Similar but more tubular-shaped curls were also produced by numerous lateral pores so that, eventually, the curls completely camouflaged the nymph. The major lipid class of the curls was wax esters (50%), mainly C44 and C46. The cuticular surface lipids of the nymphs were mainly long-chain aldehydes (43%) and wax esters (27%). Unsaturated fatty acid moieties constituted 2 and 19% of the wax esters of curls and nymph cuticular surface lipids, respectively. The major lipid classes of pupae and of their palisade were long-chain aldehydes and alcohols. No unsaturated wax esters were detected in the filaments, but 30% of pupal and 21% of palisade surface wax esters were unsaturated in their fatty acid moieties, 16:1, 18:1 and 20:1.  相似文献   

14.
We examined the biophysical properties of cuticular lipids isolated from the housefly, Musca domestica. Melting temperatures (Tm) of surface lipids isolated from female houseflies decreased from 39.3 °C to 35.3 °C as the females attained sexual maturity and produced sex pheromone, whereas those prepared from males did not change with age. Lipids melted over a 10–25 °C temperature range, and their physical properties were a complex function of the properties of the component lipids. The Tm of total cuticular lipids was slightly below that of cuticular hydrocarbons (HC), the predominant lipid fraction. Hydrocarbons were further fractionated into saturated, unsaturated, and methyl-branched components. The order of decreasing Tm was total alkanes > total HCs > methyl-branched alkanes > alkenes. For 1-day-old flies, measured Tms of hydrocarbons were 1.3–5.5 °C lower than Tms calculated from a weighted average of Tms for saturated and unsaturated components. For 4-day-old flies, calculated Tms underestimated Tm by 11–14 °C. © 1995 Wiley-Liss, Inc.  相似文献   

15.
The waxy cuticle plays a very important role in plant resistance to various biotic and abiotic stresses and is an important characteristic of Welsh onions. Two different types of biangan Welsh onions (BG) were selected for this study: BG, a wild-type covered by wax, which forms a continuous lipid membrane on its epidermal cells, and GLBG, a glossy mutant of BG whose epidermal cells are not covered by wax. To elucidate the waxy cuticle-related gene expression changes, we used RNA-Seq to compare these two Welsh onion varieties with distinct differences in cuticular wax. The de novo assembly yielded 42,881 putative unigenes, 25.41% of which are longer than 1,000 bp. Among the high-quality unique sequences, 22,289 (52.0%) had at least one significant match to an existing gene model. A total of 798 genes, representing 1.86% of the total putative unigenes, were differentially expressed between these two Welsh onion varieties. The expression patterns of four important unigenes that are related to waxy cuticle biosynthesis were confirmed by RT-qPCR and COG class annotation, which demonstrated that these genes play an important role in defense mechanisms and lipid transport and metabolism. To our knowledge, this study is the first exploration of the Welsh onion waxy cuticle. These results may help to reveal the molecular mechanisms underlying the waxy cuticle and will be useful for waxy gene cloning, genetics and breeding as well as phylogenetic and evolutionary studies of the Welsh onion.  相似文献   

16.
The outer epidermal wall of Agave americana leaves was examinedin order to gain more information about the location and chemicalconstitution of the structural components. In middle aged leavesthe wall comprised six layers which were designated epicuticularwax, cuticle proper, exterior and interior cuticular layer,exterior and interior cellin wall. A lamellated structure, consistingof a series of electron translucent lamellae of uniform thicknessalternating with opaque ones of variable thickness, was observedin the thin cuticle proper on the outside of the cuticular membrane,even without heavy metal treatment. The cuticular layers underneathformed the bulk of the cuticular membrane and they also hadtwo components, an amorphous matrix permeated by a reticulumof fibrillae. Cutin, detected with osmium and with iodine/iodine-sulphuricacid–silver proteinate, was a major component of the opaquelamellae of the cuticle proper and the matrix of the cuticularlayer. Carbohydrates were absent from the cuticle proper butwere detected specifically in the fibrillae of the cuticularlayer and in the cellin wall. Pectic material seemed to be presenton both sides of the junction between cuticular membrane andcellin wall, but no discrete zone corresponding to light microscopicalobservations was detected in the electron microscope. Althoughthe lucent lamellae of the cuticle proper were tentatively ascribedto wax there was no structural or ultrahistochemical evidencefor the wax component of the cuticular layer. The various ultrahistochemicalreactions are discussed in relation to the known chemical compositionof the membrane. Agave americana L., epidermis wall, cuticular membrane, cuticle proper, cuticular layer, ultrahistochemistry, wax  相似文献   

17.
18.
为明确小麦不同器官表皮蜡质晶体结构和蜡质组分的差异,该研究以小麦品系CP98(11)为材料,在小麦扬花期分别取小麦的旗叶、叶鞘、穗下茎、花药和颖壳,利用气相色谱技术对各器官表皮蜡质组分进行鉴定,并通过扫描电镜观察其蜡质晶体结构。结果表明:(1)小麦不同器官的蜡质成分共鉴定出30种,主要为初级醇、二酮、烷烃、脂肪醛、脂肪酸、酯。(2)叶鞘、穗下茎、颖壳的蜡质中二酮含量最高,分别占蜡质总量的78.96%、67.03%和68.6%;花药的蜡质中烷烃含量最高(75.82%);旗叶的蜡质中初级醇含量最高(45.91%),其次为烷烃33.19%。(3)扫描电镜观察显示,旗叶正面的蜡质晶体呈片状结构,旗叶反面和颖壳的蜡质晶体结构呈片状与柱状混合的结构,花药的蜡质呈明显的波浪状结构,穗下茎和叶鞘的蜡质晶体呈柱状结构。  相似文献   

19.
The cuticular hydrocarbons of the Triatoma sordida subcomplex (Hemiptera: Reduviidae: Triatominae) were ana-lysed by gas chromatography and their structures identified by mass spectrometry. They comprised mostly n-alkanes and methyl-branched alkanes with one-four methyl substitutions. n-alkanes consisted of a homologous series from C21-C33 and represented 33-45% of the hydrocarbon fraction; n-C29 was the major component. Methyl-branched alkanes showed alkyl chains from C24-C43. High molecular weight dimethyl and trimethylalkanes (from C35-C39) represented most of the methyl-branched fraction. A few tetramethylalkanes were also detected, comprising mostly even-numbered chains. Several components such as odd-numbered 3-methylalkanes, dimethylalkanes and trimethylalkanes of C37 and C39 showed patterns of variation that allowed the differentiation of the species and populations studied. Triatoma guasayana and Triatoma patagonica showed the most distinct hydrocarbon patterns within the subcomplex. The T. sordida populations from Brazil and Argentina showed significantly different hydrocarbon profiles that posed concerns regarding the homogeneity of the species. Triatoma garciabesi had a more complex hydrocarbon pattern, but it shared some similarity with T. sordida. The quantitative and qualitative variations in the cuticular hydrocarbons may help to elucidate the relationships between species and populations of this insect group.  相似文献   

20.
Buschhaus C  Herz H  Jetter R 《Annals of botany》2007,100(7):1557-1564
BACKGROUND AND AIMS: The waxy cuticle is the first point of contact for many herbivorous and pathogenic organisms on rose plants. Previous studies have reported the average composition of the combined wax extract from both sides of rose leaves. Recently, the compositions of the waxes on the adaxial and abaxial surfaces of Rosa canina leaves were determined separately. In this paper, a first report is made on the compositions of the epicuticular and intracuticular wax layers of Rosa canina leaves. The methods described enable the determination of which compounds are truly available at the surface for plant-organism interactions. METHODS: An adhesive was used to mechanically strip the epicuticular wax from the adaxial leaf surface and the removal was visually confirmed using scanning electron microscopy. After the epicuticular wax had been removed, the intracuticular wax was then isolated using standard chemical extraction. Gas chromatography, flame ionization detection and mass spectrometry were used to identify and quantify compounds in the separated wax mixtures. KEY RESULTS: The epicuticular wax contained higher concentrations of alkanes and alkyl esters but lower concentrations of primary alcohols and alkenols when compared to the intracuticular wax. In addition, the average chain lengths of these compound classes were higher in the epicuticular wax. Secondary alcohols were found only in the epicuticular layer while triterpenoids were restricted mainly to the intracuticular wax. CONCLUSIONS: A gradient exists between the composition of the epi- and intracuticular wax layers of Rosa canina leaves. This gradient may result from polarity differences, in part caused by differences in chain lengths. The outer wax layer accessible to the phyllosphere showed a unique composition of wax compounds. The ecological consequences from such a gradient may now be probed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号