首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Costly resistance mechanisms have been cited as an explanation for the widespread occurrence of parasitic infections, yet few studies have examined these costs in detail. A malaria-mosquito model has been used to test this concept by making a comparison of the fitness of highly susceptible lines of mosquitoes with lines that are resistant to infection. Malaria infection is known to cause a decrease in fecundity and fertility of mosquitoes; resistant mosquitoes were thus predicted to be fitter than susceptible ones. Anopheles gambiae were selected for refractoriness/resistance or for increased susceptibility to infection by Plasmodium yoelii nigeriensis. Additional lines that acted as controls for inbreeding depression were raised in parallel but not exposed to selection pressure. Selections were made in triplicate so that founder effects could be detected. Resistance mechanisms that were selected included melanotic encapsulation of parasites within 24 h postinfection and the complete disappearance of parasites from the gut. Costs of immune surveillance were assessed after an uninfected feed, and costs of immune deployment were assessed after exposure to infection and to infection and additional stresses. Mosquito survivorship was unaffected by either resistance to infection or by an increased burden of infection when compared with low levels of infection. In most cases reproductive fitness was equally affected by refractoriness or by infection. Resistant mosquitoes did not gain a fitness advantage by eliminating the parasites. Costs were consistently associated with larval production and egg hatch rate but rarely attributed to changes in blood feeding and never to changes in mosquito size. No advantages appeared to be gained by the offspring of resistant mosquitoes. Furthermore, we were unable to select for refractoriness in groups of mosquitoes in which 100% or 50% of the population were exposed to infection every generation for 22 generations. Under these selection pressures, no population had become completely refractory and only one became more resistant. Variations in fitness relative to control lines in different groups were attributed to founder effects. Our conclusion from these findings is that refractoriness to malaria is as costly as tolerance of infection.  相似文献   

2.
As the relationship between a given life‐history trait and fitness is not necessarily the same for the two sexes, an ‘intersexual ontogenetic conflict’ may arise. We analysed the phenotypic reaction to intraspecific larval competition of the mosquito, Aedes aegypti, asking: (i) Do both sexes pay the cost of competition with the same life‐history traits and are they equal competitors? (ii) Is there a specific cost of competition beyond sharing food resources? We found that competition incurs a specific cost that was expressed differently by the two sexes. Indeed, each sex maintained the more important life‐history trait(s) for their fitness (developmental time for males and body weight and size for females) at the expense of other traits, thus minimizing the effects of competition on their fitness. The competition exerted by females was estimated as being more intense, probably linked with the greater importance of body size for their fitness.  相似文献   

3.
Parasites have the potential to decrease reproductive output of hosts by competing for nutrients or forcing hosts to invest in immune function. Conversely, reproductive output may affect parasite loads if hosts allocate resources to reproduction such that allocation to immune function is compromised. Both hypotheses implicitly have a temporal component, so we sampled parasites both before and after egg laying to examine the relationship between reproductive output (indexed using a combined measure of clutch size, egg volume, and initiation date) and blood parasite loads of American kestrels (Falco sparverius). Parasite loads measured prior to egg laying had no adverse effects on subsequent reproductive output. Females that previously had large reproductive outputs subsequently had lower parasite intensities than those whose outputs were smaller, suggesting that females were capable of allocating energy to both forming clutches and reducing parasite loads. Because male kestrels provide most of their mate's energetic needs before, during, and after egg laying, mate choice by females may have consequences for their parasite loads. Females choosing high-quality mates may not only have increased reproductive output, but may also obtain sufficient resources from their mates to enable them to reduce their parasite burdens. Males whose mates had large reproductive outputs were more likely to subsequently be parasitized and have more intense infections. For individual males sampled both before and after egg laying, those whose mates had larger reproductive outputs were also more likely to become parasitized, or remain parasitized, between sampling periods. Increased parasite loads of males may be one mechanism by which the costs of reproduction are paid.  相似文献   

4.
In dioecious parasite species, genetic structure can differ between sexes, as recently demonstrated for the digenetic trematode Schistosoma mansoni and the ectoparasitic tick Ixodes ricinus. This article presents some of the methods that allow detecting such a pattern in natural populations. The proximate and ultimate factors that potentially generate a sex-specific genetic structure are discussed, as are evolutionary and epidemiological consequences for dioecious parasites and vectors.  相似文献   

5.
Genetic approaches to controlling the transmission of mosquito-borne diseases are being developed to augment the available chemical control practices and environmental manipulation methods. Much progress has been made in laboratory-based research that seeks to develop antipathogen or antivector effector genes and methods for genetically manipulating host vector strains. Research is summarized here in the development of a malaria-resistant phenotype using as a model system the avian parasite, Plasmodium gallinaceum, and the mosquito, Aedes aegypti. Robust transformation technology based on a number of transposable elements, the identification of promoter regions derived from endogenous mosquito genes, and the development of single-chain antibodies as effector genes have made it possible to produce malaria-resistant mosquitoes. Future challenges include discovery of methods for spreading antiparasite genes through mosquito populations, determining the threshold levels below which parasite intensities of infection must be held, and defining the circumstances in which a genetic control strategy would be employed in the field.  相似文献   

6.
Several vector-borne infectious agents facultatively alter their life history strategies in response to local vector densities. Some evidence suggests that malaria parasites invest more heavily in transmission stage production (gametocytogenesis) when vectors are present. Such a strategy could rapidly increase malaria transmission rates, particularly when adult mosquitoes begin to appear after dry seasons. However, in contrast to a recent experiment with a rodent malaria (Plasmodium chabaudi), we found no change in gametocytogenesis in either P. chabaudi or in another rodent malaria, P. vinckei, when their mouse hosts were exposed to mosquitoes. Positive results in the earlier study may have been because mosquito-feeding caused anaemia in hosts, a known promoter of gametocytogenesis. The substantial evidence that malaria and a variety of other parasites facultatively alter transmission strategies in response to a variety of environmental influences makes our results surprising.  相似文献   

7.
The genetic basis of a host's resistance to parasites has important epidemiological and evolutionary consequences. Understanding this genetic basis can be complicated by non-genetic factors, such as environmental quality, which may influence the expression of genetic resistance and profoundly alter patterns of disease and the host's response to selection. In particular, understanding the environmental influence on the genetic resistance of mosquitoes to malaria gives valuable knowledge concerning the use of malaria-resistant transgenic mosquitoes as a measure of malaria control. We made a step towards this understanding by challenging eight isofemale lines of the malaria vector Anopheles stephensi with the rodent malaria parasite Plasmodium yoelii yoelii and by feeding the mosquitoes with different concentrations of glucose. The isofemale lines differed in infection loads (the numbers of oocysts), corroborating earlier studies showing a genetic basis of resistance. In contrast, the proportion of infected mosquitoes did not differ among lines, suggesting that the genetic component underlying infection load differs from the genetic component underlying infection rate. In addition, the mean infection load and, in particular, its heritable variation in mosquitoes depended on the concentration of glucose, which suggests that the environment affects the expression and the evolution of the mosquitoes' resistance in nature. We found no evidence of genotype-by-environment interactions, i.e. the lines responded similarly to environmental variation. Overall, these results indicate that environmental variation can significantly reduce the importance of genes in determining the resistance of mosquitoes to malaria infection.  相似文献   

8.
Myxozoan parasites are responsible for important economic losses among fisheries and aquaculture industries, and hence the high interest in studying the immune response of fish against them. The most important data available concerning the immune response of fish against myxosporeans are reviewed, with emphasis on the different innate and adaptive immune mechanisms, their relationship with natural and acquired resistance and the strategies to control and prevent myxosporoses. Cellular effectors (lymphocytes, granulocytes, phagocytes, non-specific cytotoxic cells, rodlet cells) and humoral factors (lysozyme, peroxidades, antiproteases, complement, specific antibodies) have been examined for several myxosporoses, and some immune relevant genes have been studied. This information will be crucial for the future development of vaccines and other preventive strategies such as immunomodulation and selection of disease-resistant strains  相似文献   

9.

Background

Ants use the odour of the colony to discriminate nestmates. In some species, this odour is learned during the first days following emergence, and thus early experience has a strong influence on nestmate discrimination. Slave-making ants are social parasites that capture brood of other ant species to increase the worker force of their colony. After emerging in the slave-maker nest, slave workers work as if they were in their own colony. We tested the hypothesis that early experience allows the deception of commonly enslaved species, while non-host species use a different mechanism, which does not involve learning.

Results

Pupae of a host species, Temnothorax unifasciatus, and a non-host species, T. parvulus, were allowed to emerge in the presence of workers of one of two slave-maker species, Chalepoxenus muellerianus or Myrmoxenus ravouxi. When T. unifasciatus was exposed to slave-makers for 10 days following emergence, they were more aggressive towards their own sisters and groomed the slave-maker more. T. parvulus gave a less clear result: while workers behaved more aggressively towards their sisters when exposed early to C. muellerianus workers, this was not the case when exposed early to M. ravouxi workers. Moreover, T. parvulus workers allogroomed conspecific nestmates less than T. unifasciatus. Allogrooming activity might be very important for the slave-makers because they are tended by their slaves.

Conclusion

Our findings show that early experience influences nestmate discrimination in the ant T. unifasciatus and can account for the successful enslavement of this species. However, the non-host species T. parvulus is less influenced by the early environment. This might help to explain why this species is never used by social parasites.  相似文献   

10.

Background

Genomic analyses have the potential to impact selective breeding programs by identifying markers that serve as proxies for traits which are expensive or difficult to measure. Also, identifying genes affecting traits of interest enhances our understanding of their underlying biochemical pathways. To this end we conducted genome scans of seven rainbow trout families from a single broodstock population to identify quantitative trait loci (QTL) having an effect on stress response to crowding as measured by plasma cortisol concentration. Our goal was to estimate the number of major genes having large effects on this trait in our broodstock population through the identification of QTL.

Results

A genome scan including 380 microsatellite markers representing 29 chromosomes resulted in the de novo construction of genetic maps which were in good agreement with the NCCCWA genetic map. Unique sets of QTL were detected for two traits which were defined after observing a low correlation between repeated measurements of plasma cortisol concentration in response to stress. A highly significant QTL was detected in three independent analyses on Omy16, many additional suggestive and significant QTL were also identified. With linkage-based methods of QTL analysis such as half-sib regression interval mapping and a variance component method, we determined that the significant and suggestive QTL explain about 40-43% and 13-27% of the phenotypic trait variation, respectively.

Conclusions

The cortisol response to crowding stress is a complex trait controlled in a sub-sample of our broodstock population by multiple QTL on at least 8 chromosomes. These QTL are largely different from others previously identified for a similar trait, documenting that population specific genetic variants independently affect cortisol response in ways that may result in different impacts on growth. Also, mapping QTL for multiple traits associated with stress response detected trait specific QTL which indicate the significance of the first plasma cortisol measurement in defining the trait. Fine mapping these QTL can lead towards the identification of genes affecting stress response and may influence approaches to selection for this economically important stress response trait.
  相似文献   

11.
The mosquito midgut stages of malaria parasites are crucial for establishing an infection in the insect vector and to thus ensure further spread of the pathogen. Parasite development in the midgut starts with the activation of the intraerythrocytic gametocytes immediately after take‐up and ends with traversal of the midgut epithelium by the invasive ookinetes less than 24 h later. During this time period, the plasmodia undergo two processes of stage conversion, from gametocytes to gametes and from zygotes to ookinetes, both accompanied by dramatic morphological changes. Further, gamete formation requires parasite egress from the enveloping erythrocytes, rendering them vulnerable to the aggressive factors of the insect gut, like components of the human blood meal. The mosquito midgut stages of malaria parasites are unprecedented objects to study a variety of cell biological aspects, including signal perception, cell conversion, parasite/host co‐adaptation and immune evasion. This review highlights recent insights into the molecules involved in gametocyte activation and gamete formation as well as in zygote‐to‐ookinete conversion and ookinete midgut exit; it further discusses factors that can harm the extracellular midgut stages as well as the measures of the parasites to protect themselves from any damage.  相似文献   

12.
A total of 232 mosquitoes were collected and dissected for leishmanial parasites in the Baringo District, Kenya. Anopheles gambiae sensu lato comprised 90.9% of the sample. One female A. gambiae was found to be infected with leishmanial promastigotes. The parasites when injected into Balb C mice caused skin lesions characterized by heavy amastigote infections. The average size of the parasite was: body length, 11.7 ± 0.19 μm; width, 1.3 ± 0.04 μm; flagellum length, 15.5 ± 0.28 μm.  相似文献   

13.
Immunization with radiation-attenuated Plasmodium spp. sporozoites induces sterile protective immunity against parasite challenge. This immunity is targeted primarily against the intrahepatic parasite and appears to be sustained long term even in the absence of sporozoite exposure. It is mediated by multifactorial mechanisms, including T cells directed against parasite antigens expressed in the liver stage of the parasite life cycle and antibodies directed against sporozoite surface proteins. In rodent models, CD8+ T cells have been implicated as the principal effector cells, and IFN-gamma as a critical effector molecule. IL-4 secreting CD4+ T cells are required for induction of the CD8+ T cell responses, and Th1 CD4+ T cells provide help for optimal CD8+ T cell effector activity. Components of the innate immune system, including gamma-delta T cells, natural killer cells and natural killer T cells, also play a role. The precise nature of pre-erythrocytic stage immunity in humans, including the contribution of these immune responses to the age-dependent immunity naturally acquired by residents of malaria endemic areas, is still poorly defined. The importance of immune effector targets at the pre-erythrocytic stage of the parasite life cycle is highlighted by the fact that infection-blocking immunity in humans rarely, if ever, occurs under natural conditions. Herein, we review our current understanding of the molecular and cellular aspects of pre-erythrocytic stage immunity.  相似文献   

14.
Cytokines are extracellular signalling molecules, produced by different cell types and displaying a wide range of activities such as the induction or inhibition of target cell survival, proliferation and differentiation. When directly interacting with different parasites, cytokines exert similar activities, acting as growth factors and, in one of the examples given here, also enhancing parasite survival. The importance of this interaction in the natural history of parasitic diseases as well as the selective forces maintaining functional cytokine 'receptors' in protozoan parasites is discussed in this review by Marcello Barcinski and Maria Elisabete Costa-Moreira.  相似文献   

15.
16.
Crowding is known to have a major influence on reproduction in the freshwater microcrustacean Daphnia pulex. We analyzed reproductive output of six different D. pulex genotypes under two different density regimes in the laboratory. Four of these genotypes reproduce via obligate parthenogenesis, allowing thorough analysis of the life history strategies of some asexual lines. Among 30,109 neonate offspring and 1041 resting egg ephippia collected, several trends were evident. Crowding induced increased resting egg production and reduced neonate offspring production among all genotypes. Offspring sex ratios grew more male-biased with maternal age. The extent, but not direction, of each of these trends varied among genotypes. Offspring sex ratios, and the very direction in which they changed in response to crowding, differed significantly among genotypes with some genotypes producing more and others fewer males in response to crowding. Obligately parthenogenetic genotypes seemed to respond to the crowding stimulus in similar ways as the facultatively parthenogenetic genotypes, as expected from the sexual origins of their genomes. The inter-genotype variation in life-history traits observed in this and other investigations calls into question the common practice of extrapolating results from a single Daphnia genotype to an entire species. Our findings are considered in the context of other research in the field of environmental influences on Daphnia reproduction with a review of representative literature.  相似文献   

17.
Animals with complex life cycles respond to early food limitation by altering the way resources are allocated in the adult stage. Response to food limitation should differ between males and females, especially in organisms whose mating systems include nutritional nuptial gifts. In these organisms, males are predicted to keep their allocation to reproduction (sperm and nuptial gift production) constant, while females are predicted to sacrifice allocation to reproduction (egg production) since they can compensate by acquiring nuptial gifts when mating. In this study, we investigated how dietary nitrogen limitation during the larval stage affects sex-specific resource allocation in Pieris rapae butterflies. Also, we tested whether nutrient-limited females increased nuptial gift acquisition as a way to compensate for low allocation to reproduction. We found that as predicted females, but not males, sacrifice allocation to reproduction when larval dietary nitrogen is limited. However, females were unable to compensate for this low reproductive allocation by increasing their mating rate to acquire additional gifts. Females reared on low nitrogen diets also reduced wing coloration, a potential signal of female fecundity status. We suggest that female mating frequency is constrained by male mate choice based on females’ wing coloration. This study provides new insights into how larval dietary nitrogen, a key nutritional resource for all herbivores, alters male and female allocation to reproduction as well as to ornamentation.  相似文献   

18.
This review examines what is presently known of the molecular interactions between Plasmodium and Anopheles that take place in the latter's midgut upon ingestion of the parasites with an infectious blood meal. In order to become 'established' in the gut and to transform into a sporozoite-producing oocyst, the malaria parasite needs to undergo different developmental steps that are often characterized by the use of selected resources provided by the mosquito vector. Moreover, some of these resources may be used by the parasite in order to overcome the insect host's defence mechanisms. The molecular partners of this interplay are now in the process of being defined and analyzed for both Plasmodium and mosquito and, thus, understood; these will be presented here in some detail.  相似文献   

19.
20.
Response of endophytic fruit fly species (Tephritidae) to larval crowding is a form of scramble competition that may affect important life history traits of adults, such as survival and reproduction. Recent empirical evidence demonstrates large differences in adult life history traits, especially longevity, among Mediterranean fruit fly (Ceratitis capitata; "medfly") biotypes obtained from different regions of the world. However, whether the evolution of long lifespan is associated with response to stress induced by larval crowding has not been fully elucidated. We investigated, under constant laboratory conditions, the response of a short‐ and a long‐lived medfly biotypes to stress induced by larval crowding. Survival and development of larvae and pupae and the size of resulting pupae were recorded. The lifespan and age‐specific egg production patterns of the obtained adults were recorded. Our findings reveal that increased larval density reduced immature survival (larvae and pupae) in the short‐lived biotype but had rather neutral effects on the longed‐lived one. Only larvae of the long‐lived biotype were capable of prolonging their developmental duration under the highest crowding regime to successfully pupate and emerge as adults. Response of emerging adults to larvae crowding conditions was similar in the two medfly biotypes. Those individuals emerging from high larval density regimes had reduced longevity and fecundity. Long‐lived biotype individuals, however, appeared to suffer a higher cost in longevity compared with the short‐lived one. The importance of our findings to understand the evolution of long lifespan is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号