首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cucumis sativus L. cv Burpee Hybrid II) grown under conditions of normal gravity, microgravity, and simulated microgravity (clinostat rotation). Seeds were germinated on the ground, in clinostats and on board the space shuttle (STS-95) for 1–2 days, frozen and subsequently examined for their stage of development, degree of hook formation, number of pegs formed, and peg morphology. The frequency of peg formation in space-grown seedlings was found to be nearly identical to that of clinostat-grown seedlings and to differ from that of seedlings germinated under normal gravity only in a minority of cases; ˜6% of the seedlings formed two pegs and nearly 2% of the seedlings lacked pegs, whereas such abnormalities did not occur in ground controls. The degree of hook formation was found to be less pronounced for space-grown seedlings, compared to clinostat-grown seedlings, indicating a greater degree of decoupling between peg formation and hook formation in space. Nonetheless, in all seedlings having single pegs and a hook, the peg was found to be positioned correctly on the inside of the hook, showing that there is coordinate development even in microgravity environments. Peg morphologies were altered in space-grown samples, with the pegs having a blunt appearance and many pegs showing alterations in expansion, with the peg extending out over the edges of the seed coat and downwards. These phenotypes were not observed in clinostat or ground-grown seedlings. Received 12 October 1999/ Accepted in revised form 18 October 1999  相似文献   

2.
In young cucumber seedlings, the peg is a polar outgrowth of tissue that functions by snagging the seed coat, thereby freeing the cotyledons. The development of the peg is thought to be gravity-dependent and has become a model system for plant-gravity response. Peg development requires rapid cell expansion, a process thought to be catalyzed by α -expansins, and thus was a good system to identify expansins that were regulated by gravity. This study identified 7 new α -expansin cDNAs from cucumber seedlings ( Cucumis sativus L. cv Burpee Hybrid II) and examined their expression patterns. Two α -expansins ( CsExp3 and CsExp4 ) were more highly expressed in the peg and the root. Earlier reports stated that pegs tend not to form in the absence of gravity, so the expression levels were compared in the pegs of seedlings grown in space (STS-95), on a clinostat, and on earth (1 g ). Pegs were observed to form at high frequency on clinostat and space-grown seedlings, yet on clinostats there was more than a 4-fold reduction in the expression of CsExp3 in the pegs of seedlings grown on clinostats vs. those grown at 1 g , while the CsExp4 gene appeared to be turned off (below detection limits). There were no detectable differences in expansin gene expression levels for the pegs of seedlings grown in space or in the orbiter environmental simulator (OES) (1 g ) at NASA. The microgravity environment did not affect the expression of CsExp3 or CsExp4 , and the clinostat did not simulate the microgravity environment well.  相似文献   

3.
Morphogenesis in cucumber seedlings is negatively controlled by gravity   总被引:4,自引:0,他引:4  
 Seedlings of most cucurbitaceous plants develop a peg (protuberance caused by cell outgrowth) on the transition zone between the hypocotyl and root. The peg is necessary for removing the seed coat after germination. In our spaceflight experiments on the STS-95 space shuttle, Discovery, we found that cucumber (Cucumis sativus L.) seedlings grown under microgravity conditions developed two pegs symmetrically at the transition zone. Thus, cucumber seedlings potentially develop two pegs and do not require gravity for peg formation itself, but on the ground the development of one peg is suppressed in response to gravity. This may be considered as negative control of morphogenesis by gravity. Received: 17 August 1999 / Accepted: 4 October 1999  相似文献   

4.
Seedlings of Cucurbitaceae plants form a protuberance, termed peg, on the transition zone between hypocotyl and root. Our spaceflight experiment verified that the lateral positioning of a peg in cucumber seedlings is modified by gravity. It has been suggested that auxin plays an important role in the gravity controlled positioning of a peg on the ground. Furthermore, cucumber seedlings grown in microgravity developed a number of the lateral roots that grew towards the water containing substrate in the culture vessel, whereas on the ground they oriented perpendicular to the primary root growing down. The response of the lateral roots in microgravity was successfully mimicked by clinorotation of cucumber seedlings on the three dimensional clinostat. However, this bending response of the lateral roots was observed only in an aeroponic culture of the seedlings but not in solid medium. We considered the response of the lateral roots in microgravity and on clinostat as positive hydrotropism that could easily be interfered by gravitropism on the ground. This system with cucumber seedlings is thus a useful model of spaceflight experiment for the study of the gravimorphogenesis, root hydrotropism and their interaction.  相似文献   

5.
peg , on the transition zone between hypocotyl and root. Our spaceflight experiment verified that the lateral positioning of a peg in cucumber seedlings is modified by gravity. It has been suggested that auxin plays an important role in the gravity-controlled positioning of a peg on the ground. Furthermore, cucumber seedlings grown in microgravity developed a number of the lateral roots that grew towards the water-containing substrate in the culture vessel, whereas on the ground they oriented perpendicular to the primary root growing down. The response of the lateral roots in microgravity was successfully mimicked by clinorotation of cucumber seedlings on the three dimensional clinostat. However, this bending response of the lateral roots was observed only in an aeroponic culture of the seedlings but not in solid medium. We considered the response of the lateral roots in microgravity and on clinostat as positive hydrotropism that could easily be interfered by gravitropism on the ground. This system with cucumber seedlings is thus a useful model of spaceflight experiment for the study of the gravimorphogenesis, root hydrotropism and their interaction. Received 13 September 1999/ Accepted in revised form 12 October 1999  相似文献   

6.
7.
Cucumber (Cucumis sativus L.) seedlings grown in microgravity developed a peg on each side of the transition zone between hypocotyl and root, whereas seedlings grown in a horizontal position on the ground developed a peg on the concave side of the gravitropically bending transition zone. The morphological features of the space-grown seedlings were similar to those of seedlings grown in a vertical position on the ground with their radicles pointing down: both became two-pegged seedlings. Morphogenesis of cucumber seedlings is thus inhibited by gravity. Analysis by in-situ hybridization of an auxin-inducible gene, CS-IAA1, showed that its mRNA accumulated to a much greater extent on the lower side of the transition zone in the horizontally placed seedlings on the ground just prior to and during the initiation period of peg formation. On the other hand, when seedlings were grown in microgravity or in a vertical position on the ground, accumulation of CS-IAA1 mRNA occurred all around the transition zone. Accumulation of CS-IAA1 mRNA in horizontally grown seedlings appreciably decreased on the upper side of the transition zone and increased on the lower side upon gravistimulation, compared with the two-pegged seedlings. Application of IAA to seedlings in a horizontal position caused the development of a peg on each side of the transition zone, or a collar-like protuberance, depending on the concentration used. These results suggest that upon gravistimulation the auxin concentration on the upper side of the horizontally placed transition zone is reduced to a level below the threshold value necessary for peg formation. Space-grown seedlings of cucumber might develop two pegs symmetrically because the auxin level in the entire transition zone is maintained above the threshold. This spaceflight experiment verified for the first time that auxin does not redistribute in microgravity. Received: 10 February 2000 / Accepted: 15 March 2000  相似文献   

8.
Peg development on the lower side of the transition (TR) zoneof the hypocotyl and the root in cucumber seedlings was inhibitedby two inhibitors of ethylene biosynthesis, aminoethoxyvinylglycine and aminooxyacetic acid, and by an inhibitor of ethyleneaction, Ag-thiosulfate. These ethylene inhibitors also inhibitedplumular hook formation of the cucumber hypocotyl. When cucumberseeds were germinated in a vertical position or on a horizontalclinostat, the seedlings exhibited straight growth without formationof a plumular hook and failed to develop a protuberant peg.In the seedlings germinated in a vertical position, exogenousIAA induced a distinct peg-like protuberance, whereas ACC andethylene stimulated overall swelling around the TR zone, whichobviously differed from the normal peg. In horizontally placedseedlings, however, peg development was more pronounced dueto treatment with 5µl/liter of ethylene. These resultsindicate that a high ethylene level in the hook region playssome role in peg development. TIBA, an inhibitor of auxin transport,at 10–4 M inhibited peg development, as reported previouslyby Witztum and Gersani (1975), but a somewhat lower concentrationof TIBA induced two distinct pegs, on both the lower and uppersides of horizontally grown seedlings. (Received June 12, 1987; Accepted December 11, 1987)  相似文献   

9.
Etiolated pea (Pisum sativum L. cv. Alaska) seedlings grown under microgravity conditions in space show automorphosis: bending of epicotyls, inhibition of hook formation and changes in root growth direction. In order to determine the mechanisms of microgravity conditions that induce automorphosis, we used a three-dimensional clinostat and obtained the successful induction of automorphosis-like growth of etiolated pea seedlings. Kinetic studies revealed that epicotyls bent at their basal region towards the clockwise direction far from the cotyledons from the vertical line (0 degrees) at approximately 40 degrees in seedlings grown both at 1 g and in the clinostat within 48 h after watering. Thereafter, epicotyls retained this orientation during growth in the clinostat, whereas those at 1 g changed their growth direction against the gravity vector and exhibited a negative gravitropic response. On the other hand, the plumular hook that had already formed in the embryo axis tended to open continuously by growth at the inner basal portion of the elbow; thus, the plumular hook angle initially increased; this was followed by equal growth on the convex and concave sides at 1 g, resulting in normal hook formation; in contrast, hook formation was inhibited on the clinostat. The automorphosis-like growth and development of etiolated pea seedlings was induced by auxin polar transport inhibitors (9-hydroxyfluorene-9-carboxylic acid, N-(1-naphthyl)phthalamic acid and 2,3,5-triiodobenzoic acid), but not by anti-auxin (p-chlorophenoxyisobutyric acid) at 1 g. An ethylene biosynthesis inhibitor, 1-aminooxyacetic acid, inhibited hook formation at 1 g, and ethylene production of etiolated seedlings was suppressed on the clinostat. Clinorotation on the clinostat strongly reduced the activity of auxin polar transport of epicotyls in etiolated pea seedlings, similar to that observed in space experiments (Ueda J, Miyamoto K, Yuda T, Hoshino T, Fujii S, Mukai C, Kamigaichi S, Aizawa S, Yoshizaki I, Shimazu T, Fukui K (1999) Growth and development, and auxin polar transport in higher plants under microgravity conditions in space: BRIC-AUX on STS-95 space experiment. J Plant Res 112: 487492). These results suggest that clinorotation on a three-dimensional clinostat is a valuable tool for simulating microgravity conditions, and that automorphosis of etiolated pea seedlings is induced by the inhibition of auxin polar transport and ethylene biosynthesis.  相似文献   

10.
White clover (Trifolium repens) was germinated and grown in microgravity aboard the Space Shuttle (STS-60, 1994; STS-63, 1995), on Earth in stationary racks and in a slow-rotating two-axis clinostat. The objective of this study was to determine if normal root cap development and early plant gravity responses were dependent on gravitational cues. Seedlings were germinated in space and chemically fixed in orbit after 21, 40, and 72 h. Seedlings 96 h old were returned viable to earth. Germination and total seedling length were not dependent on gravity treatment. In space-flown seedlings, the number of cell stories in the root cap and the geometry of central columella cells did not differ from those of the Earth-grown seedlings. The root cap structure of clinorotated plants appeared similar to that of seedlings from microgravity, with the exception of three-day rotated plants, which displayed significant cellular damage in the columella region. Nuclear polarity did not depend on gravity; however, the positions of amyloplasts in the central columella cells were dependent on both the gravity treatment and the age of the seedlings. Seedlings from space, returned viable to earth, responded to horizontal stimulation as did 1 g controls, but seedlings rotated on the clinostat for the same duration had a reduced curvature response. This study demonstrates that initial root cap development is insensitive to either chronic clinorotation or microgravity. Soon after differentiation, however, clinorotation leads to loss of normal root cap structure and plant graviresponse while microgravity does not.  相似文献   

11.
Cucumber seedlings have potential to develop two pegs on the transition zone between the hypocotyl and root. Seedlings grown in a horizontal position suppress the development of the peg on the upper side of the transition zone in response to gravity. To understand how the response to gravity suppresses peg formation, we screened cucumber mRNAs to identify the mRNA in the non-peg side that accumulates more than in the peg side. For screening, we determined conditions of fluorescent differential display (FDD). Then, we carried out FDD and found 4 cDNA bands that repeatedly showed stronger intensity in the non-peg side than the peg side. We isolated one of these RT-PCR products. Northern blotting showed the pattern of its mRNA accumulations corresponding to the results of FDD.  相似文献   

12.
The ability of clinostats to simulate microgravity was evaluated by comparing lentil ( Lens culinnrias L. cv. Verte du Puy) seedlings grown in space (Spacelab D1 Mission) with seedlings grown on a slowly rotating elinostat. Seeds were germinated and incubated for 25.5 h at 22°C (1) in microgravity, (2) on a 1g-centrifuge in space. (3) on a slowly rotating elinostat and (4) on the ground. Morphological (root length and orientation) and ultrastructural (distribution of amyloplasts, location of the nucleus in statocytes) parameters were studied. For clinostat experiments, two different configurations were employed: the longitudinal axis of the root was parallel (horizontal elinorotation) or perpendicular (vertical elinorotation) to the axis of rotation. the same configurations were used for the lg-controls. Root length and orientation were similar for roots grown on the clinostat and in microgravity. The amyloplasts were identically distributed in statocytes of horizontally clinorolated roots and in statocytes differentiated in microgravity. However, the location of the nucleus was similar in vertically rotated roots and microgravity samples. Since the involvement of the nucleus in graviperception is not known, it can be concluded that horizontal clinorotation simulates microgravity better than vertical elinorotation.  相似文献   

13.
MOORE  RANDY 《Annals of botany》1990,65(2):213-216
Columella cells of seedlings of Zea mays L. cv. Bear Hybridgrown in the microgravity of orbital flight allocate significantlylarger relative-volumes to hyaloplasm and lipid bodies, andsignificantly smaller relative-volumes to dictyosomes, plastids,and starch than do columella cells of seedlings grown at I g.The ultrastructure of columella cells of seedlings grown atI g and on a rotating clinostat is not significantly different.However, the ultrastructure of cells exposed to these treatmentsdiffers significantly from that of seedlings grown in microgravity.These results indicate that the actions of a rotating clinostatdo not mimic the ultrastructural effects of microgravity incolumella cells of Z. mays. Zea mays L., gravity, microgravity, ultrastructure, clinostat, space shuttle, space biology  相似文献   

14.
The "starch‐statolith" hypothesis has been used by plant physiologists to explain the gravity perception mechanism in higher plants. In order to help resolve some of the controversy associated with ground‐based research that has supported this theory, we performed a spaceflight experiment during the January 1997 mission of the Space Shuttle STS‐81. Seedlings of wild‐type (WT) Arabidopsis , two reduced‐starch strains, and a starchless mutant were grown in microgravity and then given a gravity stimulus on a centrifuge. In terms of development in space, germination was greater than 90% for seeds in microgravity, and flight seedlings were smaller (60% in total length) compared to control plants grown on the ground and to control plants on a rotating clinostat. Seedlings grown in space had two structural features that distinguished them from the controls: a greater density of root hairs and an anomalous hypocotyl hook structure. However, the slower growth and morphological changes observed in the flight seedlings may be due to the effects of ethylene present in the spacecraft. Nevertheless, during the flight, hypocotyls of WT seedlings responded to a unilateral 60‐min stimulus provided by a 1‐ g centrifuge while those of the starch‐deficient strains did not. Thus, the strain with the greatest amount of starch responded to the stimulus given in‐flight, and, therefore, these data support the starch‐statolith model for gravity sensing.  相似文献   

15.
In higher plants, calcium redistribution is believed to be crucial for the root to respond to a change in the direction of the gravity vector. To test the effects of clinorotation and microgravity on calcium localization in higher plant roots, sweet clover (Melilotus alba L.) seedlings were germinated and grown for two days on a slow rotating clinostat or in microgravity on the US Space Shuttle flight STS-60. Subsequently, the tissue was treated with a fixative containing antimonate (a calcium precipitating agent) during clinorotation or in microgravity and processed for electron microscopy. In root columella cells of clinorotated plants, antimonate precipitates were localized adjacent to the cell wall in a unilateral manner. Columella cells exposed to microgravity were characterized by precipitates mostly located adjacent to the proximal and lateral cell wall. In all treatments some punctate precipitates were associated with vacuoles, amyloplasts, mitochondria, and euchromatin of the nucleus. A quantitative study revealed a decreased number of precipitates associated with the nucleus and the amyloplasts in columella cells exposed to microgravity as compared to ground controls. These data suggest that roots perceive a change in the gravitational field, as produced by clinorotation or space flights, and respond respectively differently by a redistribution of free calcium.  相似文献   

16.
Current models of gravity perception in higher plants focus on the buoyant weight of starch-filled amyloplasts as the initial gravity signal susceptor (statolith). However, no tests have yet determined if statolith mass is regulated to increase or decrease gravity stimulus to the plant. To this end, the root caps of white clover (Trifolium repens) grown in three gravity environments with three different levels of gravity stimulation have been examined: (i) 1-g control with normal static gravistimulation, (ii) on a slow clinostat with constant gravistimulation, and (iii) in the stimulus-free microgravity aboard the Space Shuttle. Seedlings were germinated and grown in the BioServe Fluid Processing Apparatus and root cap structure was examined at both light and electron microscopic levels, including three-dimensional cell reconstruction from serial sections. Quantitative analysis of the electron micrographs demonstrated that the starch content of amyloplasts varied with seedling age but not gravity condition. It was also discovered that, unlike in starch storage amyloplasts, all of the starch granules of statolith amyloplasts were encompassed by a fine filamentous, ribosome-excluding matrix. From light micrographic 3-D cell reconstructions, the absolute volume, number, and positional relationships between amyloplasts showed (i) that individual amyloplast volume increased in microgravity but remained constant in seedlings grown for up to three days on the clinostat, (ii) the number of amyloplasts per cell remained unchanged in microgravity but decreased on the clinostat, and (iii) the three-dimensional positions of amyloplasts were not random. Instead amyloplasts in microgravity were grouped near the cell centers while those from the clinostat appeared more dispersed. Taken together, these observations suggest that changing gravity stimulation can elicit feedback control over statolith mass by changing the size, number, and grouping of amyloplasts. These results support the starch-statolith theory of graviperception in higher plants and add to current models with a new feedback control loop as a mechanism for modulation of statolith responsiveness to inertial acceleration.  相似文献   

17.
Photographic observations on germinating seedlings of Lepidium sativum L., Cucumis sativus L., and Helianthus annuus L. showed that the hypocotyl hook is not present in the seed but forms during the early stages of growth. Evidence that gravity plays a major role in inducing curvature of the hypocotyl, and in maintaining the hook once it has been formed, was obtained from clinostat experiments, from the use of morphactin to remove geotropic sensitivity and from inversion of seedlings to change the direction of the geostimulus. In L. sativum and H. annuus gravity perception seemed to be the only mechanism responsible for hook formation. In C. sativus hook formation was additionally aided by the mode of emergence of the cotyledons from the seed coat but gravity played an indirect role in regulating such emergence. Further evidence that hook formation is linked to a georesponse was derived from a comparison of hypocotyl development in wild-type Arabidopsis thaliana seedlings with that of an ageotropic mutant, hook formation being found to occur only in the wild type. Hook formation and maintenance is discussed in terms of contrasting geosensitivity between the apical and basal ends of the hypocotyl and it is suggested that light-induced hook opening is a reversal to a condition of uniformly negative georesponse throughout the hypocotyl.  相似文献   

18.
Xylem development and cell wall changes of soybean seedlings grown in space   总被引:2,自引:0,他引:2  
BACKGROUND AND AIMS: Plants growing in altered gravity conditions encounter changes in vascular development and cell wall deposition. The aim of this study was to investigate xylem anatomy and arrangement of cellulose microfibrils in vessel walls of different organs of soybean seedlings grown in Space. METHODS: Seeds germinated and seedlings grew for 5 d in Space during the Foton-M2 mission. The environmental conditions, other than gravity, of the ground control repeated those experienced in orbit. The seedlings developed in space were compared with those of the control test on the basis of numerous anatomical and ultrastructural parameters such as number of veins, size and shape of vessel lumens, thickness of cell walls and deposition of cellulose microfibrils. KEY RESULTS: Observations made with light, fluorescence and transmission electron microscopy, together with the quantification of the structural features through digital image analysis, showed that the alterations due to microgravity do not occur at the same level in the various organs of soybean seedlings. The modifications induced by microgravity or by the indirect effect of space-flight conditions, became conspicuous only in developing vessels at the ultrastructural level. The results suggested that the orientation of microfibrils and their assembly in developing vessels are perturbed by microgravity at the beginning of wall deposition, while they are still able to orient and arrange in thicker and ordered structures at later stages of secondary wall deposition. CONCLUSIONS: The process of proper cell-wall building, although not prevented, is perturbed in Space at the early stage of development. This would explain the almost unaltered anatomy of mature structures, accompanied by a slower growth observed in seedlings grown in Space than on Earth.  相似文献   

19.
Kraft TF  van Loon JJ  Kiss JZ 《Planta》2000,211(3):415-422
 In order to study gravity effects on plant structure and function, it may become necessary to remove the g-stimulus. On Earth, various instruments such as clinostats have been used by biologists in an attempt to neutralize the effects of gravity. In this study, the position of amyloplasts was assayed in columella cells in the roots of Arabidopsisthaliana (L.) Heynh. seedlings grown in the following conditions: on Earth, on a two-dimensional clinostat at 1 rpm, on a three-dimensional clinostat (also called a random-positioning machine, or an RPM), and in space (true microgravity). In addition, the effects of these gravity treatments on columella cell area and plastid area also were measured. In terms of the parameters measured, only amyloplast position was affected by the gravity treatments. Plastid position was not significantly different between spaceflight and RPM conditions but was significantly different between spaceflight and the classical two-dimensional clinostat treatments. Flanking columella cells showed a greater susceptibility to changes in gravity compared to the central columella cells. In addition, columella cells of seedlings that were grown on the RPM did not exhibit deleterious effects in terms of their ultrastructure as has been reported previously for seedlings grown on a two-dimensional clinostat. This study supports the hypothesis that the RPM provides a useful simulation of weightlessness. Received: 5 January 2000 / Accepted: 22 February 2000  相似文献   

20.
We launched imbibed seeds and seedlings of Zea mays into outer space aboard the space shuttle Columbia to determine the influence of microgravity on 1) root-cap regeneration, and 2) the distribution of amyloplasts and endoplasmic reticulum (ER) in the putative statocytes (i.e., columella cells) of roots. Decapped roots grown on Earth completely regenerated their caps within 4.8 days after decapping, while those grown in microgravity did not regenerate caps. In Earth-grown seedlings, the ER was localized primarily along the periphery of columella cells, and amyloplasts sedimented in response to gravity to the lower sides of the cells. Seeds germinated on Earth and subsequently launched into outer space had a distribution of ER in columella cells similar to that of Earth-grown controls, but amyloplasts were distributed throughout the cells. Seeds germinated in outer space were characterized by the presence of spherical and ellipsoidal masses of ER and randomly distributed amyloplasts in their columella cells. These results indicate that 1) gravity is necessary for regeneration of the root cap, 2) columella cells can maintain their characteristic distribution of ER in microgravity only if they are exposed previously to gravity, and 3) gravity is necessary to distribute the ER in columella cells of this cultivar of Z. mays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号