首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Dihydropyrimidinases (hydantoinases) catalyse the reversible hydrolytic ring-opening of cyclic diamides such as dihydropyrimidines in the catabolism of pyrimidines. In biotechnology, these enzymes find application in the enantiospecific production of amino acids from racemic hydantoins. The crystal structure of a D-enantio-specific dihydropyrimidinase from Thermus sp. (D-hydantoinase) was solved de novo by multiwavelength anomalous diffraction phasing. In spite of a large unit cell the D-hydantoinase crystals exhibit excellent diffraction properties. The structure was subsequently refined at 1.30 A resolution against native data. The core of D-hydantoinase consists of a (alpha/beta)(8)-barrel, which is flanked by a beta-sheet domain and some additional helices. In the active site, a carboxylated lysine residue and the catalytically active hydroxide ion bridge a binuclear zinc centre. The tertiary structure and shape of the active site show strong homology to that of ureases, dihydroorotases, and phosphotriesterases. The homology of the active site was exploited for in silicio docking of substrates in the active site. This could shed light both on the substrate binding in hydantoinases and on the recently highly discussed origin of the proton in the course of hydantoinase catalysis.  相似文献   

2.
A group of cyclic amidases, including hydantoinase, allantoinase, dihydropyrimidinase, and dihydroorotase, catalyze the reversible hydrolysis of cyclic ureides, such as 5-monosubstituted hydantoins and dihydropyrimidines. These four enzymes carry hydrophobic patches to form dimers. With the exception of dihydroorotase, these enzymes are further dimerized to form tetramers by hydrophobic interactions. This leads us to speculate that the hydrophobic interaction domain may be a significant factor in the catalytic property of these oligomeric cyclic amidases, for which activities are not allosterically regulated. We generated a dimeric D-hydantoinase by mutating five residues in the hydrophobic alpha-helical interface of a tetramer and analyzed the kinetic properties of the dimeric form of D-hydantoinase. The specific activity of the dimeric D-hydantoinase corresponds to 5.3% of the activity of tetrameric D-hydantoinase. This low specific activity of the dimeric D-hydantoinase indicates that the dimeric interaction to form a tetramer has a significant effect on the catalytic activity of this non-allosteric tetramer.  相似文献   

3.
Industrial production of antibiotics, such as semisynthetic penicillins and cephalosporins, requires optically pure D-p-hydroxylphenylglycine and its derivatives as important side-chain precursors. To produce optically pure D-amino acids, microbial D-hydantoinase (E.C. 3.5.2.2) is used for stereospecific hydrolysis of chemically synthesized cyclic hydantoins. We report the apo-crystal structure of D-hydantoinase from B. stearothermophilus SD1 at 3.0 A resolution. The structure has a classic TIM barrel fold. Despite an undetectable similarity in sequence, D-hydantoinase shares a striking structural similarity with the recently solved structure of dihydroorotase. A structural comparison of hydantoinase with dihydroorotase revealed that the catalytic chemistry is conserved, while the substrate recognition is not. This structure provides insight into the stereochemistry of enantioselectivity in hydrolysis and illustrates how the enzyme recognizes stereospecific exocyclic substituents and hydrolyzes hydantoins. It should also provide a rationale for further directed evolution of this enzyme for hydrolysis of new hydantoins with novel exocyclic substituents.  相似文献   

4.
In eukaryotes, dihydropyrimidinase catalyzes the second step of the reductive pyrimidine degradation, the reversible hydrolytic ring opening of dihydropyrimidines. Here we describe the three-dimensional structures of dihydropyrimidinase from two eukaryotes, the yeast Saccharomyces kluyveri and the slime mold Dictyostelium discoideum, determined and refined to 2.4 and 2.05 angstroms, respectively. Both enzymes have a (beta/alpha)8-barrel structural core embedding the catalytic di-zinc center, which is accompanied by a smaller beta-sandwich domain. Despite loop-forming insertions in the sequence of the yeast enzyme, the overall structures and architectures of the active sites of the dihydropyrimidinases are strikingly similar to each other, as well as to those of hydantoinases, dihydroorotases, and other members of the amidohydrolase superfamily of enzymes. However, formation of the physiologically relevant tetramer shows subtle but nonetheless significant differences. The extension of one of the sheets of the beta-sandwich domain across a subunit-subunit interface in yeast dihydropyrimidinase underlines its closer evolutionary relationship to hydantoinases, whereas the slime mold enzyme shows higher similarity to the noncatalytic collapsin-response mediator proteins involved in neuron development. Catalysis is expected to follow a dihydroorotase-like mechanism but in the opposite direction and with a different substrate. Complexes with dihydrouracil and N-carbamyl-beta-alanine obtained for the yeast dihydropyrimidinase reveal the mode of substrate and product binding and allow conclusions about what determines substrate specificity, stereoselectivity, and the reaction direction among cyclic amidohydrolases.  相似文献   

5.
Dihydroorotases are universal proteins catalyzing the third step of pyrimidine biosynthesis. These zinc metalloenzymes belong to the superfamily of cyclic amidohydrolases, comprising also other enzymes that are involved in degradation of either purines (allantoinases), pyrimidines (dihydropyrimidinases) or hydantoins (hydantoinases). The evolutionary relationships between these mechanistically related enzymes were estimated after designing a method to build an accurate multiple sequence alignment. The amino acid sequences that have been crystallized were used to build a seed alignment. All the remaining homologues were progressively added by aligning their HMM profiles to the seed HMM profile, allowing to obtain a reliable phylogeny of the superfamily. This helped us to propose a new evolutionary classification of dihydroorotases into three major types, while at the same time disentangling an important part of the history of their complex structure–function relationships. Although differing in their substrate specificity, allantoinases, hydantoinases and dihydropyrimidinases are found to be phylogenetically closer to DHOase Type I than the proximity of the three DHOase types to each other. This suggests that the primordial cyclic amidohydrolase was a multifunctional, highly evolvable generalist, with high conformational diversity allowing for promiscuous activities. Then, successive gene duplications allowed resolving the primordial substrate ambiguity in various substrate specificities. The present-day superfamily of cyclic amidohydrolases is the result of the progressive divergence of these ancestral paralogous copies by descent with modification.  相似文献   

6.
Stereospecific conversion of hydantoins into their carbamoyl acid derivatives could be achieved by using the enzyme hydantoinase. Specific hydantoinases convert either the D-form or the L-form of the hydantoin and the amino acids responsible for stereospecificity have not been identified. Structural studies on hydantoinases from a few bacterial species were published recently. The structure of a thermostable D-hydantoinase from Bacillus sp. AR9 (bar9HYD) was solved to 2.3 angstroms resolution. The usual modification of carboxylation of the active-site residue Lys150 did not happen in bar9HYD. Two manganese ions were modelled in the active site. Through biochemical studies, it was shown that mercury inhibits the activity of the enzyme. The mercury derivative provided some information about the binding site of the mercuric inhibitors and a possible reason for inhibition is presented.  相似文献   

7.
A reaction system was developed for the production of D-amino acids from D,L-5-monosubstituted hydantoins with a very slow rate of spontaneous racemization. For this purpose the D-hydantoinase and D-carbamoylase from Agrobacterium radiobacter NRRL B11291 were cloned in separate plasmids and expressed in Escherichia coli. The third enzyme, hydantoin racemase, was cloned from Agrobacterium tumefaciens C58. The hydantoin racemase amino acid sequence was significantly similar to those previously described. A reaction system consisting of recombinant Escherichia coli whole cell biocatalysts containing separately expressed D-hydantoinase, D-carbamoylase, and hydantoin recemase showed high substrate specificity and was effective toward both aliphatic and aromatic D,L-5-monosubstituted hydantoins. After optimizing reaction conditions (pH 8 and 50 degrees C), 100% conversion of D,L-5-(2-methylthioethyl)-hydantoin (15 mM) into D-methionine was obtained in 30 min.  相似文献   

8.
An interesting phenomenon was observed that the existence of the intact cell membrane can enhance the D-amino acids production from D,L-5-substituted hydantoins by reacting with the whole cells of Agrobacterium radiobacter. Two intracellular enzymes were involved in the reaction process. The first enzyme D-hydantoinase converted hydantoins to carbamoyl derivatives which were further converted to D-amino acids by D-amidohydrolase. The amount of D-amino acids produced from hydantoins by the intact cells were 1.8–2.4 fold higher than the toluene treated cells. In addition, by using the intact cells the amount of D-amino acids produced from hydantoins was about 10 fold higher than that produced directly from carbamoyl derivatives. The relatively lower permeability of cell membrane to the reaction intermediate carbamoyl derivatives was confirmed by a simple mathematical model to be the main factor for the better performance of the intact cells for D-amino acid production. Besides, the low intracellular enzymes activities also contributed to the effect of intact cell membrane on enhancing the D-amino acid production.  相似文献   

9.
Pseudomonas putida DSM 84 produces N-carbamyl-D-amino acids from the corresponding D-5-monosubstituted hydantoins. The gene encoding this D-hydantoinase enzyme was cloned and expressed in Escherichia coli. The nucleotide sequence of the 1.8-kb insert of subclone pGES19 was determined. One open reading frame of 1,104 bp was found and was predicted to encode a polypeptide with a molecular size of 40.5 kDa. Local regions of identity between the predicted amino acid sequence and that of other known amidohydrolases (two other D-hydantoinases, allantionase and dihydroorotase) were found. The D-hydantoinase gene was used as a probe to screen DNA isolated from diverse organisms. Within Pseudomonas strains of rRNA group I, the probe was specific. The probe did not detect D-hydantoinase genes in pseudomonads not in rRNA group I, other bacteria, or plants known to express D-hydantoinase activity.  相似文献   

10.
The continuous cultivation technique has been used to screen for microorganisms producing d-hydantoinase, a biocatalyst involved in the production of optically active amino acids. Pseudomonas putida strain DSM 84 was used as a model hydantoinase producer to establish selective culture conditions through the addition of various pyrimidines, dihydropyrimidines, hydantoins and 5-monosubstituted hydantoins. Thymine induced more activity than all cyclic amides tested. Addition of thymine as a non-metabolised inducer at a concentration of 0.05 g l–1 in a continuous culture of P. putida stimulated hydantoinase production up to 80 times the basal level. Using continuous culture conditions established with the model strain, a different strain of P. putida having hydantoinase activity was isolated from commercial mixed cultures of microorganisms. DNA fingerprinting revealed that this new isolate was distinct from strain DSM 84. When used as a probe, the d-hydantoinase gene of strain DSM 84 hybridized with the DNA of the new P. putida isolate.  相似文献   

11.
Cheon YH  Park HS  Kim JH  Kim Y  Kim HS 《Biochemistry》2004,43(23):7413-7420
We previously proposed that the stereochemistry gate loops (SGLs) constituting the substrate binding pocket of D-hydantoinase, a (beta/alpha)(8)-barrel enzyme, might be major structural determinants of the substrate specificity [Cheon, Y. H., et al. (2002) Biochemistry 41, 9410-9417]. To construct a mutant D-hydantoinase with favorable substrate specificity for the synthesis of commercially important non-natural amino acids, the SGL loops of the enzyme were rationally manipulated on the basis of the structural analysis and sequence alignment of three hydantoinases with distinct substrate specificities. In the SGLs of D-hydantoinase from Bacillus stearothermophilus SD1, mutations of hydrophobic and bulky residues Met 63, Leu 65, Phe 152, and Phe 159, which interact with the exocyclic substituent of the substrate, induced remarkable changes in the substrate specificities. In particular, the substrate specificity of mutant F159A toward aromatic substrate hydroxyphenylhydantoin (HPH) was enhanced by approximately 200-fold compared with that of the wild-type enzyme. Saturation mutagenesis at position 159 revealed that k(cat) for aromatic substrates increased gradually as the size of the amino acid side chain decreased, and this seems to be due to reduced steric hindrance between the bulky exocyclic group of the substrate and the amino acid side chains. When site-directed random mutagenesis of residues 63 and 65 was conducted with the wild type and mutant F159A, the selected enzymes (M63F/L65V and L65F/F159A) exhibited approximately 10-fold higher k(cat) values for HPH than the wild-type counterpart, which is likely to result from reorganization of the active site for efficient turnover. These results indicate that the amino acid residues of SGLs forming the substrate binding pocket are critical for the substrate specificity of D-hydantoinase, and the results also imply that substrate specificities of cyclic amidohydrolase family enzymes can be modulated by rational design of these SGLs.  相似文献   

12.
Summary D, L-5-monosubstituted hydantoins can be used as substrates for a two-step-enzymatic production of optically active aminoacids. The substrate- and stereospecificity of the first enzyme — a hydantoinase -, investigations on its induction and on its dependence upon metallo-ions are described. It is shown, that the activity of this hydantoinase, which is not identical with the well-known enzyme D-hydantoinase, depends on manganese-ions. Of synthetic and natural compounds tested as inductors, D, L-5-indolylmethylhydantoin showed the best effect. The hydantoinase has a wide substrate-specificity. Its stereoselectivity seems to depend on the structure of the side chain in 5-position of the hydantoin.  相似文献   

13.
The cyclic-imide-hydrolyzing activity of a prokaryotic cyclic-ureide-hydrolyzing enzyme, D-hydantoinase, was investigated. The enzyme hydrolyzed cyclic imides with bulky substituents such as 2-methylsuccinimide, 2-phenylsuccinimide, phthalimide, and 3,4-pyridine dicarboximide to the corresponding half-amides. However, simple cyclic imides without substituents, which are substrates of imidase (ie.g., succinimide, glutarimide, and sulfur-containing cyclic imides such as 2,4-thiazolidinedione and rhodanine), were not hydrolyzed. The combined catalytic actions of bacterial D-hydantoinase and imidase can cover the function of a single mammalian enzyme, dihydropyrimidinase. Prokaryotic D-hydantoinase also catalyzed the dehyrative cyclization of the half-amide phthalamidic acid to the corresponding cyclic imide, phthalimide. The reversible hydrolysis of cyclic imides shown by prokaryotic D-hydantoinase suggested that, in addition to pyrimidine metabolism, it may also function in cyclic-imide metabolism.  相似文献   

14.
A d-specific hydantoinase has been purified to homogeneity from Arthrobacter crystallopoietes DSM 20117 with a yield of 5% related to the crude extract. The active enzyme is a tetramer of 257 kDa consisting of four identical subunits, each with a molecular mass of 60 kDa. Incubation of the enzyme with the metal-chelating agent EDTA had no inhibitory effect, while 8-hydroxyquinoline-5-sulfonic acid resulted in a complete and irreversible inactivation. The purified enzyme contains zinc as cofactor, which could be detected by subjection to direct analysis using inductive/coupled plasma-atomic emission spectrometry. The hydantoinase has a wide substrate specificity for the d-selective cleavage of 5-monosubstituted hydantoin derivatives with aliphatic and aromatic side chains. The Vmax-value for phenylhydantoin is 217 U/mg, the Km-value is 8 mM. Dihydrouracil was found to be a natural substrate (Vmax=35 U/mg). The N-terminal amino acid sequence of the enzyme shows distinct homologies to other metal-dependent cyclic amidases involved in the nucleotide metabolism especially to dihydropyrimidinases as well as to ureases, l- and unselective hydantoinases. Due to these findings, this enzyme has to be considered as a possible link in the evolution to related l-selective and unselective hydantoinases from the genus of Arthrobacter.  相似文献   

15.
Thermococcus litoralis 4-alpha-glucanotransferase (TLGT) belongs to glucoside hydrolase family 57 and catalyzes the disproportionation of amylose and the formation of large cyclic alpha-1,4-glucan (cycloamylose) from linear amylose. We determined the crystal structure of TLGT with and without an inhibitor, acarbose. TLGT is composed of two domains: an N-terminal domain (domain I), which contains a (beta/alpha)7 barrel fold, and a C-terminal domain (domain II), which has a twisted beta-sandwich fold. In the structure of TLGT complexed with acarbose, the inhibitor was bound at the cleft within domain I, indicating that domain I is a catalytic domain of TLGT. The acarbose-bound structure also clarified that Glu123 and Asp214 were the catalytic nucleophile and acid/base catalyst, respectively, and revealed the residues involved in substrate binding. It seemed that TLGT produces large cyclic glucans by preventing the production of small cyclic glucans by steric hindrance, which is achieved by three lids protruding into the active site cleft, as well as an extended active site cleft. Interestingly, domain I of TLGT shares some structural features with the catalytic domain of Golgi alpha-mannosidase from Drosophila melanogaster, which belongs to glucoside hydrolase family 38. Furthermore, the catalytic residue of the two enzymes is located in the same position. These observations suggest that families 57 and 38 evolved from a common ancestor.  相似文献   

16.
Here we report the structure of acireductone dioxygenase (ARD), the first determined for a new family of metalloenzymes. ARD represents a branch point in the methionine salvage pathway leading from methylthioadenosine to methionine and has been shown to catalyze different reactions depending on the type of metal ion bound in the active site. The solution structure of nickel-containing ARD (Ni-ARD) was determined using NMR methods. X-ray absorption spectroscopy, assignment of hyperfine shifted NMR resonances and conserved domain homology were used to model the metal-binding site because of the paramagnetism of the bound Ni2+. Although there is no structure in the Protein Data Bank within 3 A r.m.s deviation of that of Ni-ARD, the enzyme active site is located in a conserved double-stranded b-helix domain. Furthermore, the proposed Ni-ARD active site shows significant post-facto structural homology to the active sites of several metalloenzymes in the cupin superfamily.  相似文献   

17.
海因酶法制备D-对羟基苯甘氨酸的研究进展   总被引:3,自引:1,他引:2  
D-对羟基苯甘氨酸(D-HPG)主要用于合成β-内酰胺类半合成抗生素,是国内最紧缺的医药中间体之一。微生物酶法是目前获得光学纯D-HPG的重要途径,微生物中起催化作用的主要是D-海因酶和N-氨甲酰水解酶。文章综述了产酶微生物的来源,酶的理化性质,以及培养条件的优化、基因工程、酶的固定化技术生产D-HPG的研究进展。  相似文献   

18.
Two recombinant reaction systems for the production of optically pure D-amino acids from different D,L-5-monosubstituted hydantoins were constructed. Each system contained three enzymes, two of which were D-hydantoinase and D-carbamoylase from Agrobacterium tumefaciens BQL9. The third enzyme was hydantoin racemase 1 for the first system and hydantoin racemase 2 for the second system, both from A. tumefaciens C58. Each system was formed by using a recombinant Escherichia coli strain with one plasmid harboring three genes coexpressed with one promoter in a polycistronic structure. The D-carbamoylase gene was cloned closest to the promoter in order to obtain the highest level of synthesis of the enzyme, thus avoiding intermediate accumulation, which decreases the reaction rate. Both systems were able to produce 100% conversion and 100% optically pure D-methionine, D-leucine, D-norleucine, D-norvaline, D-aminobutyric acid, D-valine, D-phenylalanine, D-tyrosine, and D-tryptophan from the corresponding hydantoin racemic mixture. For the production of almost all D-amino acids studied in this work, system 1 hydrolyzed the 5-monosubstituted hydantoins faster than system 2.  相似文献   

19.
L-aspartyl and L-asparaginyl residues in proteins spontaneously undergo intra-residue rearrangements forming isoaspartyl/beta-aspartyl residues linked through their side-chain beta-carboxyl group with the following amino acid. In order to avoid accumulation of isoaspartyl dipeptides left over from protein degradation, some bacteria have developed specialized isoaspartyl/beta-aspartyl zinc dipeptidases sequentially unrelated to other peptidases, which also poorly degrade alpha-aspartyl dipeptides. We have expressed and crystallized the 390 amino acid residue isoaspartyl dipeptidase (IadA) from E.coli, and have determined its crystal structure in the absence and presence of the phosphinic inhibitor Asp-Psi[PO(2)CH(2)]-LeuOH. This structure reveals an octameric particle of 422 symmetry, with each polypeptide chain organized in a (alphabeta)(8) TIM-like barrel catalytic domain attached to a U-shaped beta-sandwich domain. At the C termini of the beta-strands of the beta-barrel, the two catalytic zinc ions are surrounded by four His, a bridging carbamylated Lys and an Asp residue, which seems to act as a proton shuttle. A large beta-hairpin loop protruding from the (alphabeta)(8) barrel is disordered in the free peptidase, but forms a flap that stoppers the barrel entrance to the active center upon binding of the dipeptide mimic. This isoaspartyl dipeptidase shows strong topological homology with the alpha-subunit of the binickel-containing ureases, the dinuclear zinc dihydroorotases, hydantoinases and phosphotriesterases, and the mononuclear adenosine and cytosine deaminases, which all are catalyzing hydrolytic reactions at carbon or phosphorous centers. Thus, nature has adapted an existing fold with catalytic tools suitable for hydrolysis of amide bonds to the binding requirements of a peptidase.  相似文献   

20.
Rv1900c, a Mycobacterium tuberculosis adenylyl cyclase, is composed of an N-terminal alpha/beta-hydrolase domain and a C-terminal cyclase homology domain. It has an unusual 7% guanylyl cyclase side-activity. A canonical substrate-defining lysine and a catalytic asparagine indispensable for mammalian adenylyl cyclase activity correspond to N342 and H402 in Rv1900c. Mutagenic analysis indicates that these residues are dispensable for activity of Rv1900c. Structures of the cyclase homology domain, solved to 2.4 A both with and without an ATP analog, form isologous, but asymmetric homodimers. The noncanonical N342 and H402 do not interact with the substrate. Subunits of the unliganded open dimer move substantially upon binding substrate, forming a closed dimer similar to the mammalian cyclase heterodimers, in which one interfacial active site is occupied and the quasi-dyad-related active site is occluded. This asymmetry indicates that both active sites cannot simultaneously be catalytically active. Such a mechanism of half-of-sites-reactivity suggests that mammalian heterodimeric adenylyl cyclases may have evolved from gene duplication of a primitive prokaryote-type cyclase, followed by loss of function in one active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号