首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To better define the biologic function of the type II insulin-like growth factor (IGF) receptor, we raised a blocking antiserum in a rabbit by immunizing with highly purified rat type II IGF receptor. On immunoblots of crude type II receptor preparations, only bands corresponding to the type II IGF receptor were seen with IgG 3637, indicating that the antiserum was specific for the type II receptor. Competitive binding and chemical cross-linking experiments showed that IgG 3637 blocked binding of 125I-IGF-II to the rat type II IGF receptor, but did not block binding of 125I-IGF-I to the type I IGF receptor, nor did IgG 3637 block binding of 125I-insulin to the insulin receptor. In addition, IgG 3637 did not inhibit the binding of 125I-IGF-II to partially purified 150- and 40-kDa IGF carrier proteins from adult and fetal rat serum. L6 myoblasts have both type I and type II IGF receptors. IGF-I was more potent than IGF-II in stimulating N-methyl-alpha-[14C]aminoisobutyric acid uptake, 2-[3H]deoxyglucose uptake, and [3H]leucine incorporation into cellular proteins. IgG 3637 did not stimulate either 2-[3H]deoxyglucose uptake, N-methyl-alpha-[14C]aminoisobutyric acid uptake, or [3H]leucine incorporation into protein when tested alone. Furthermore, IgG 3637 at concentrations sufficient to block type II receptors under conditions of the uptake and incorporation experiments did not cause a shift to the right of the dose-response curve for stimulation of these biologic functions by IGF-II. We conclude that the type II IGF receptor does not mediate IGF stimulation of N-methyl-alpha-[14C]aminoisobutyric acid and 2-[3H]deoxyglucose uptake and protein synthesis in L6 myoblasts; presumably, the type I receptor mediates these biologic responses. The anti-type II receptor antibody inhibited IGF-II degradation in the media by greater than 90%, suggesting that the major degradative pathway for IGF-II in L6 myoblasts utilizes the type II IGF receptor.  相似文献   

2.
Pentamannose 6-phosphate/trilysine substituted aprotinin (PMP-lys-aprotinin) and insulin like growth factor II (IGF II) were used as affinity ligands for the mannose 6-phosphate (M6P) and IGF II binding sites of the M6P/IGF II receptor. Both ligands were cross linked to intact receptor and tryptic fragments of the receptor. The pattern of receptor fragments with M6P and IGF II binding sites differed indicating that the two binding sites are located on different segments of the receptor. The receptor was incubated with [125I]IGF II and pentamannose 6-phosphate substituted bovine serum albumin (PMP-BSA). From these mixtures [125I]IGF II receptor complexes could be precipitated with antibodies against the PMP-BSA indicating that the M6P/IGF II receptor can bind simultaneously IGF II and M6P-containing ligands.  相似文献   

3.
Sheep thyroid cells cultured in serum-free medium were used to study the biologic activity, binding, and production of the insulin-like growth factors (IGFs). IGF-I, IGF-II, and insulin stimulated thyroid cell division. Abundant, specific IGF receptors on sheep thyroid cell membranes were identified by binding displacement studies. Maximal specific binding of [125I]-labeled IGF-I and IGF-II to 25 micrograms of membrane protein averaged 21% and 27% respectively. The presence of type I and type II IGF receptors was confirmed by polyacrylamide gel electrophoresis of [125I]IGFs covalently cross-linked to cell membranes. Under reducing conditions, [125I]IGF-I bound to a moiety of approximate Mr = 135,000 and [125I]IGF-II to a moiety of approximate Mr = 260,000. Cross-linking of [125I]IGF-I to medium conditioned by thyroid cells indicated the presence of four IGF binding proteins with apparent Mr = 34,000, 26,000, 19,000 and 14,000. Thyroid cells also secreted IGF-I and II into the medium. IGF synthesis was enhanced consistently by recombinant growth hormone. These data indicate that sheep thyroid cells are a site for IGF action, binding, and production and provide further evidence that IGFs may modulate thyroid gland growth in an autocrine or paracrine manner.  相似文献   

4.
M Huang  O P Rorstad 《Peptides》1990,11(5):1015-1020
Vasoactive intestinal peptide (VIP) and peptide histidine isoleucine (PHI) are homologous neuropeptides with parallel biological actions. These similarities raise the question whether VIP and PHI have common or distinct mechanisms of action, including receptors. The present study attempted to distinguish specific binding sites for VIP and PHI in normal rat tissues using the homologous radioligands [Tyr(125I)10]VIP and [Tyr(125I)10]rat PHI. In rat brain, anterior pituitary, and liver membranes both radioligands identified a VIP-preferring receptor. Rat PHI had less than 10% the binding potency of VIP in these tissues irrespective of which radioligand was used. In rat uterine membranes [Tyr(125I)10]VIP bound to a receptor with approximately 100 times greater affinity for VIP over PHI. No specific binding of [Tyr(125I)10]rat PHI to rat uterus could be demonstrated. In conclusion, these results support the predominance of VIP-preferring receptors as opposed to PHI-preferring receptors in normal rat brain, anterior pituitary, liver and uterus.  相似文献   

5.
We have used site-directed mutagenesis of a synthetic gene for insulin-like growth factor (IGF) I to prepare three analogs in which specific residues in the A region are replaced with the corresponding residues in the A chain of insulin. The analogs are [Ile41, Glu45, Gln46, Thr49, Ser50, Ile51, Ser53, Tyr55, Gln56]IGF I (A chain mutant), in which residue 41 is changed from threonine to isoleucine and residues 42 to 56 of the A region are replaced, [Thr49, Ser50, Ile51]IGF I, and [Tyr55, Gln56]IGF I. These analogs are all equipotent to IGF I at the type 1 IGF receptor in human placental membranes, and in stimulating the incorporation of [3H]thymidine into DNA in the rat vascular smooth muscle cell line A10. However, the A chain mutant and [Thr49, Ser50, Ile51]IGF I have greater than 20-fold lower relative affinity for the type 2 IGF receptor of rat liver membranes, respectively. In contrast, [Tyr55, Gln56]IGF I has 7-fold higher affinity than IGF I for the type 2 IGF receptor. Residues 49, 50, and 51 in IGF I are Phe-Arg-Ser and are strictly conserved in IGF II. Residues 55 and 56 of IGF I and the corresponding residues in IGF II are Arg-Arg and Ala-Leu, respectively. Thus, the presence of the charged residues at these positions in IGF I appears to be responsible, in part, for the lower affinity of IGF I for the type 2 IGF receptor. In addition to the alterations in affinity for the type 2 IGF receptor, the A chain mutant has a 7-fold increase in affinity for insulin receptors, and [Thr49, Ser50, Ile51]IGF I has a 4-fold lower affinity for acid-stable human serum binding protein. These data strongly suggest that specific determinants in the A region of IGF I are important for maintaining binding to the type 2 IGF receptor, and that these determinants are different from those required for maintaining high affinity for the type 1 IGF receptor.  相似文献   

6.
The cell surface of human fibroblasts contains not only type I IGF receptors but at least two forms of IGFBPs. Studies were undertaken to analyze the mechanisms by which these IGFBPs alter IGF-I-cell surface interactions. Human fetal fibroblasts (GM10) and a human glioblastoma cell line (1690) were chosen for analysis. During assays to quantify [125I]-IGF-I binding, both cell lines were shown to release IGFBPs into the binding assay buffer. Under equilibrium conditions, [125I]-IGF-I preferentially associates with IGFBPs in the assay buffer (up to 40% of the [125I]-IGF-I added) since they have a higher affinity than type I IGF receptors or IGFBPs associated with the cell surface. Likewise the addition of increasing concentrations of unlabeled IGF-I results in preferential competition for binding to assay buffer IGFBPs. This results in a repartitioning of the [125I]-IGF-I that is bound to assay buffer IGFBPs onto cell surface binding sites. The degree of repartitioning is quantitatively related to the amount of [125I]-IGF-I bound to released IGFBPs. When cultures are exposed to cycloheximide before the binding assay, both the amount of IGFBPs that are released into the assay buffer and the amount of [125I]-IGF-I that is repartitioned are decreased. In contrast when [Gln3, Ala4, Tyr15, Leu16]-IGF-I ([QAYL]-IGF-I, an IGF analog that has unaltered affinity for type I IGF receptors) is iodinated and tested, the competition curve with unlabeled IGF-I shows no repartitioning effect. This form of IGF can be used to quantify type I receptor number independent of the presence of IGFBPs. IGF-I and the [QAYL]-IGF-I compete equally with the [125I]-[QAYL]-IGF-I for binding to cell surfaces, whereas unlabeled [QAYL]-IGF-I is greater than 25-fold less potent compared to IGF-I in competing with [125I]-IGF-I for cell surface binding. Specific binding of [125I]-[QAYL]-IGF-I to GM10 and 1690 cell surfaces is less than 20% of [125I]-IGF-I binding. These findings suggest that IGFBPs that are present on human fibroblast surfaces represent a large portion of the IGF binding sites. We conclude that the amount of IGFBPs released into assay buffer is a major determinant of the repartitioning of [125I]-IGF-I to cell surface binding sites and that both cell surface and assay buffer IGFBPs modulate type I IGF receptor binding.  相似文献   

7.
The human platelet contains a functional 5-hydroxytryptamine (5-HT) receptor that appears to resemble the 5-HT2 subtype. In this study, we have used the iodinated derivative [125I]iodolysergic acid diethylamide ([125I]iodoLSD) in an attempt to label 5-HT receptors in human platelet and frontal cortex membranes under identical assay conditions to compare the sites labelled in these two tissues. In human frontal cortex, [125I]iodoLSD labelled a single high-affinity site (KD = 0.35 +/- 0.02 nM). Displacement of specific [125I]iodoLSD binding indicated a typical 5-HT2 receptor inhibition profile, which demonstrated a significant linear correlation (r = 0.97, p less than 0.001, n = 17) with that observed using [3H]ketanserin. However, [125I]iodoLSD (Bmax = 136 +/- 7 fmol/mg of protein) labelled significantly fewer sites than [3H]ketanserin (Bmax = 258 +/- 19 fmol/mg of protein) (p less than 0.001, n = 6). In human platelet membranes, [125I]iodoLSD labelled a single site with affinity (KD = 0.37 +/- 0.03 nM) similar to that in frontal cortex. The inhibition profile in the platelet showed significant correlation with that in frontal cortex (r = 0.96, p less than 0.001, n = 16). We conclude that the site labelled by [125I]iodoLSD in human platelet membranes is biochemically similar to that in frontal cortex and most closely resembles the 5-HT2 receptor subtype, although the discrepancy in binding capacities of [125I]iodoLSD and [3H]ketanserin raises a question about the absolute nature of this receptor.  相似文献   

8.
The cells of the IM-9 human lymphocyte-derived line contain a sub-population of insulin-binding sites whose immunological and hormone-binding characteristics closely resemble those of the atypical insulin-binding sites of human placenta. These binding sites, which have moderately high affinity for multiplication-stimulating activity [MSA, the rat homologue of insulin-like growth factor (IGF) II] and IGF-I, are identified on IM-9 cells by 125I-MSA binding. They account for approximately 30% of the total insulin-receptor population, and do not react with a monoclonal antibody to the type I IGF receptor (alpha IR-3). The relative concentrations of unlabelled insulin, MSA and IGF-I required to displace 50% of 125I-MSA from these binding sites (1:4.7:29 respectively) are maintained for cells, particulate membranes, Triton-solubilized membranes precipitated either by poly(ethylene glycol) or a polyclonal antibody (B-10) to the insulin receptor, and receptors purified by insulin affinity chromatography. Because the atypical insulin/MSA-binding sites outnumber the type I IGF receptors in IM-9 cells by approximately 10-fold, they also compete with the latter receptors for 125I-IGF-I binding. Thus 125I-IGF-I binding to IM-9 cells is inhibited by moderately low concentrations of insulin (relative potency ratios for insulin compared with IGF-I are approx. 1/14 to 1/4) and is partially displaced (65-80%) by alpha IR-3. When type I IGF receptors are blocked by alpha IR-3 or removed by B-10 immunoprecipitation or insulin affinity chromatography, the hormone-displacement patterns for 125I-IGF-I binding resemble those of the atypical insulin/MSA-binding sites.  相似文献   

9.
Biologic actions of insulin and insulin-like growth factors (IGFs) are thought to be initiated by binding of peptides to tissues, followed by phosphorylation of specific hormone receptors. Both insulin and IGF bind to renal membranes, suggesting functional roles for these peptides in kidney. The present studies further characterize the interaction of multiplication-stimulating activity (MSA)/IGF II with its renal receptor. Specific binding of 125I-IGF II was measured in basolateral membranes isolated from proximal tubular cells of dog kidney. Binding was half-maximal at 10(-9) M MSA and was not inhibited by human growth hormone, IGF I, insulin, or anti-insulin receptor antibodies. Concentration-dependent MSA-stimulated phosphorylation of a Mr 135,000 protein band was demonstrated in autoradiograms of sodium dodecyl sulfate-polyacrylamide gels from basolateral membrane suspensions. Insulin increased phosphorylation of this band only in the presence of MSA, while a Mr 92,000 band was consistently phosphorylated with insulin alone. The phosphorylated Mr 135,000 band which had been solubilized with detergent from basolateral membranes was immunoprecipitated using serum from a patient with anti-insulin receptor antibodies suggesting that the band is the alpha subunit of the insulin receptor. This was supported by the demonstration of covalent cross-linkage of 125I-insulin to the Mr 135,000 band. We conclude that receptor-mediated MSA-stimulated phosphorylation of isolated basolateral membranes may reflect a process by which biological actions of IGF II are mediated in vivo. Our data suggest that insulin and IGF II may interact by regulating protein phosphorylation.  相似文献   

10.
The immunoglobulin fraction prepared from the serum of a rabbit immunized with purified type II insulin-like growth factor (IGF) receptor from rat placenta was tested for its specificity in inhibiting receptor binding of 125I-IGF II and for its ability to modulate IGF II action on rat hepatoma H-35 cells. The specific binding of 125I-IGF II to plasma membrane preparations from several rat cell types and tissues was inhibited by the anti-IGF II receptor Ig. Affinity cross-linking of 125I-IGF II to the Mr = 250,000 type II IGF receptor structure in rat liver membranes was blocked by the anti-receptor Ig, while no effect on affinity labeling of insulin receptor with 125I-insulin or IGF I receptor with 125I-IGF I or 125I-IGF II was observed. The specific inhibition of ligand binding to the IGF II receptor by anti-receptor Ig was species-specific such that mouse receptor was less potently inhibited and human receptor was unaffected. Rat hepatoma H-35 cells contain insulin and IGF II receptor, but not IGF I receptor, and respond half-maximally to insulin at 10(-10) M and to IGF II at higher concentrations with increased cell proliferation (Massague, J., Blinderman, L.A., and Czech, M.P. (1982) J. Biol. Chem. 257, 13958-13963). Addition of anti-IGF II receptor Ig to intact H-35 cells inhibited the specific binding of 125I-IGF II to the cells by 70-90%, but had no detectable effect on 125I-insulin binding. Significantly, under identical conditions anti-IGF II receptor Ig was without effect on IGF II action on DNA synthesis at both submaximal and maximal concentrations of IGF II. This finding and the higher concentrations of IGF II required for growth promotion in comparison to insulin strongly suggest that the Mr = 250,000 receptor structure for IGF II is not involved in mediating this physiological response. Rather, at least in H-35 cells, the insulin receptor appears to mediate the effects of IGF II on cell growth. Consistent with this interpretation, anti-insulin receptor Ig but not anti-IGF II receptor Ig mimicked the ability of growth factors to stimulate DNA synthesis in H-35 cells. We conclude that the IGF II receptor may not play a role in transmembrane signaling, but rather serves some other physiological function.  相似文献   

11.
Preincubation of turkey erythrocytes with isoproterenol results in an impaired ability of beta-adrenergic agonists to stimulate adenylate cyclase in membranes prepared from these cells. The biochemical basis for this agonist-induced desensitization was investigated using the new beta-adrenergic antagonist photoaffinity label [125I]p-azidobenzylcarazolol ([125I]PABC). Exposure of [125I]PABC-labeled turkey erythrocyte membranes to high intensity light leads to specific covalent incorporation of the labeled compound into two polypeptides, Mr approximately equal to 38,000 and 50,000, as determined by sodium dodecyl sulfate-polyacrylamide electrophoresis. Incorporation of [125I]PABC into these two polypeptides is completely blocked by a beta-adrenergic agonist and antagonist consistent with covalent labeling of the beta-adrenergic receptor. After desensitization of the turkey erythrocyte by preincubation with 10(-5) M isoproterenol, the beta-adrenergic receptor polypeptides specifically labeled by [125I]PABC in membranes prepared from desensitized erythrocytes were of larger apparent molecular weight (Mr approximately equal to 42,000 versus 38,000, and 53,000 versus 50,000) compared to controls. When included during the preincubation of the erythrocytes with isoproterenol, the antagonist propranolol (10(-5) M) inhibited both agonist-promoted desensitization of the adenylate cyclase and the altered mobility of the [125I]PABC-labeled receptor polypeptides. These data indicate that structural alterations in the beta-adrenergic receptor accompany the desensitization process in turkey erythrocytes.  相似文献   

12.
The present study was designed to identify and characterize specific endothelin binding sites in membranes of rat renal papillae and glomeruli which appear to be target tissues for this new peptide hormone. Saturation binding studies indicate that the sites have a high and uniform affinity. The dissociation constants averaged 662 +/- 151 and 1309 +/- 123 pM and the receptor densities 7666 +/- 920 and 5831 +/- 348 fmol/mg protein for papillary and glomerular membranes, respectively. Endothelin 1, endothelin 3 and sarafotoxin all inhibited [125I]-endothelin binding with IC50's in the 100-300 pM range, whereas unrelated peptides, namely angiotensin II, atrial natriuretic peptide, and platelet-derived growth factor failed to compete for [125I]-endothelin binding. Deletion of the carboxyterminal tryptophan in endothelin 1 reduced its affinity for glomerular binding sites by 2 orders of magnitude. Specific endothelin binding to these membranes was maximal at pH 4 and was markedly inhibited as the pH was raised above 8. When [125I]-endothelin is covalently linked to glomerular membrane binding sites, SDS-PAGE of these solubilized membranes followed by autoradiography reveals a predominant specifically labeled band of 45 kDa. Whether this band represents a subunit of the endothelin receptor(s), the receptor proper, or an intracellular endothelin binding protein remains to be determined.  相似文献   

13.
A Elgavish  D J Pillion  E Meezan 《Life sciences》1989,44(15):1037-1042
[125I]VIP (vasoactive intestinal peptide) bound to apical membranes isolated from the bovine tracheal epithelium with a half maximal inhibition by unlabeled VIP (IC50) of 0.6 x 10(-9)M and binding was reversible. Glucagon did not affect [125I]VIP binding to the membranes. [125I]VIP was covalently cross-linked to tracheal membrane proteins using disuccinimidyl suberate. SDS-polyacrylamide gel electrophoresis of labeled tracheal membranes revealed one major [125I]-receptor complex of Mr = 71,000 to which binding of [125I]VIP was inhibited by 10 microM unlabeled VIP. These results are consistent with the presence of a specific, high-affinity receptor for VIP, with a Mr = 71,000, in apical membrane vesicles isolated from the bovine tracheal epithelium.  相似文献   

14.
Characterization and Regulation of Insulin Receptors in Rat Brain   总被引:9,自引:7,他引:2  
An in vitro receptor binding assay, using filtration to separate bound from free [125I]insulin, was developed and used to characterize insulin receptors on membranes isolated from specific areas of rat brain. The kinetic and equilibrium binding properties of central receptors were similar to those of hepatic receptors. The binding profiles in all tissues were complex and were consistent with binding in multiple steps or to multiple sites. Similar binding properties were found among receptors in olfactory tubercle/bulb, cerebral cortex, hippocampus, striatum, hypothalamus, and cerebellum. High affinity [125I]insulin binding sites (KD = 3-11 nM) were distributed evenly between membranes isolated from P1 and P2 fractions of these brain areas, with the exception of the olfactory tubercle in which binding to P2 membranes was four-fold greater (Bmax = 150 fmol/mg protein). One difference between insulin receptors in brain and peripheral target tissues, however, was observed. Following exposure to 0.17 microM insulin for 3 h at 37 degrees C, the number of specific [125I]insulin binding sites on adipocytes decreased by 40%, while the number of binding sites on minces of cerebral cortex/olfactory tubercle remained constant. The results suggest that although the binding characteristics of central and peripheral insulin receptors are similar, these receptors do not appear to be regulated in the same manner.  相似文献   

15.
An iodinated photosensitive derivative of norepinephine, N-(p-azido-m-iodophenethylamidoisobutyl)-norepinephrine (NAIN), has been synthesized and characterized. NAIN stimulated adenylate cyclase activity in guinea pig lung membranes in a manner similar to (-)-isoproterenol and was inhibited by (-)-alprenolol. NAIN was shown to compete with [125I]iodocyanobenzylpindolol for the beta-adrenergic receptor in guinea pig lung membranes with an affinity which was dependent on the presence of guanyl nucleotides. Carrier-free radioiodinated NAIN ([125I]NAIN) was used at 2 nM to photoaffinity label the beta-adrenergic receptor in guinea pig lung membranes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of (-)-alprenolol (1 microM) protectable [125I]NAIN labeling showed the same molecular mass polypeptide (65 kDa) that was specifically derivatized with the antagonist photolabel [125I]iodoazidobenzylpindolol. Specific labeling of the beta-adrenergic receptor with [125I]NAIN was dependent on the presence of MgCl2 and the absence of guanyl nucleotide. Guanosine-5'-O-(3-thiotriphosphate (100 microM) abolished specific labeling by [125I]NAIN. N-Ethylmaleimide (2 mM) in the presence of [125I]NAIN protected against the magnesium and guanyl nucleotide effect. These data show that NAIN is an agonist photolabel for the beta-adrenergic receptor.  相似文献   

16.
We have studied insulin-like-growth-factor (IGF) binding in two subclones of the C2 myogenic cell line. In the permissive parental subclone, myoblasts differentiate spontaneously into myotubes in medium supplemented with fetal calf serum. Unlike permissive myoblasts, inducible myoblasts require high concentrations of insulin (1.6 microM) or lower concentrations of IGF-I (25 nM) to differentiate, and expression of MyoD1 is not constitutive. IGF receptors were studied in microsomal membranes of proliferating and quiescent myoblasts and myotubes. IGF-II binding was also studied in inducible myoblasts transfected with the MyoD1 cDNA (clone EP5). Both inducible and permissive cells exhibited a single class of binding sites with similar affinity for IGF-I (Kd 0.8-1.2 nM). Affinity cross-linking of [125I]IGF-I to microsomal membranes, under reducing conditions, revealed a binding moiety with an apparent molecular mass of 130 kDa in permissive cells and 140 kDa in inducible cells, which corresponded to the alpha subunit of the IGF-I receptor. In permissive quiescent myoblasts, linear Scatchard plots suggested that [125I]IGF-II bound to a single class of binding sites (Kd 0.6 nM) compatible with binding to the IGF-II/M6P receptor. This was confirmed by affinity cross-linking experiments showing a labeled complex with an apparent molecular mass of 260 kDa and 220 kDa when studied under reducing and non-reducing conditions, respectively. In contrast, competitive inhibition of [125I]IGF-II binding to inducible quiescent myoblasts generated curvilinear Scatchard plots which could be resolved into two single classes of binding sites. One of them corresponded to the IGF-II/M6P receptor (Kd 0.2 nM) as evidenced by cross-linking experiments. The second was the binding site of highest affinity (Kd 0.04 nM) which was less inhibited by IGF-I than by IGF-II and was not inhibited by insulin. It migrated in SDS/PAGE at a position equivalent a molecular mass of 140 kDa, under reducing conditions, and at approximately 300 kDa, under non-reducing conditions. The labeling of this atypical binding moiety was not inhibited by anti(IGF-II/M6P-receptor) immunoglobulin. It was also observed in permissive and inducible myoblasts at proliferating stage. It was absent for permissive quiescent myoblasts and from permissive and inducible myotubes. Forced expression of MyoD1 in inducible cells (EP5 cells) dramatically reduced [125I]IGF-II binding to this atypical receptor. It emerges from these experiments that C2 cells express a putative alpha 2 beta 2 IGF-II receptor structurally related to the insulin/IGF-I receptor family. It is present in myoblasts but not in myotubes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
125I]iodopindolol: a new beta adrenergic receptor probe   总被引:1,自引:0,他引:1  
When utilizing iodohydroxybenzylpindolol (IHYP) as an adrenergic receptor probe in muscle membrane systems, the data demonstrated an unacceptably high nonspecific binding component. Bearer et al. have reported that chloramine-T induced iodination of hydroxybenzylpindolol (HYP) results in the incorporation of iodine into the indole ring rather than into the phenolic moiety as noted previously by others. These results suggest that pindolol itself can also be iodinated. Therefore, the usefulness of carrier free 125I-labeled iodopindolol (IPIN) as an adrenergic receptor probe was investigated. Using between 0.01 nM and 0.1 nM [125I]IPIN in two different muscle membrane systems, we found the nonspecific binding component to be 10% or less of total binding. When [125I]IPIN was used with membranes prepared from rat skeletal muscle, we found it to interact with a single set of high affinity binding sites (KD = 0.13 +/- 0.01 nM) with the characteristics of beta adrenergic receptors and a density of 48.5 fmoles/mg protein. IPIN binding was also studied with purified dog cardiac sarcolemma. A single set of binding sites was detected having a KD of 1.64 +/- 0.5 nM; the density of these sites was 289 fmoles/mg membrane protein. [125I]IPIN may be a useful probe for the beta adrenergic receptor of tissues in which [125I]IHYP and other beta adrenergic receptor probes have a non-specific binding component which approaches that of the specific binding component.  相似文献   

18.
The glucose transporter has been identified in a variety of mammalian cell membranes using a photoactivatable carrier-free radioiodinated derivative of forskolin, 3-[125I]iodo-4-azidophenethylamido-7-O-succinyldeacetylforskoli n ([125I]IAPS-forskolin) at 1-3 nM. The membranes that were photolabelled with [125I]IAPS-forskolin were human placental membranes, rat cortical and cerebellar synaptic membranes, rat cardiac sarcolemmal membranes, rat adipocyte plasma membranes, smooth-muscle membranes, and S49 wild-type (WT) lymphoma-cell membranes. The glucose transporter in plasma membranes prepared from the insulin-responsive rat cardiac sarcolemmal cells, rat adipocytes and smooth-muscle cells were determined to be approx. 45 kDa by SDS/polyacrylamide-gel electrophoresis (PAGE). Photolysis of human placental membranes, rat cortical and cerebellar synaptic membranes, and WT lymphoma membranes with [125I]-IAPS-forskolin, followed by SDS/PAGE, indicated specific derivatization of a broad band (43-55 kDa) in placental membranes and a narrower band (approx. 45 kDa) in synaptic membranes and WT lymphoma membranes. Digestion of the [125I]IAPS-forskolin-labelled placental and WT lymphoma membranes with endo-beta-galactosidase showed a reduction in the apparent molecular mass of the radiolabelled band to approx. 40 kDa. The membranes that were photolabelled with [125I]IAPS-forskolin and trypsin-treated produced a radiolabelled proteolytic fragment with an apparent molecular mass of 18 kDa. [125I]IAPS-forskolin is a highly effective probe for identifying low levels of glucose transporters in mammalian tissues.  相似文献   

19.
Photoaffinity labeling of dopamine D1 receptors   总被引:5,自引:0,他引:5  
A high-affinity radioiodinated D1 receptor photoaffinity probe, (+/-)-7-[125I]iodo-8-hydroxy-3-methyl-1-(4-azidophenyl)-2,3,4,5-tetra hyd ro- 1H-3-benzazepine ([125I]IMAB), has been synthesized and characterized. In the absence of light, [125I]IMAB bound in a saturable and reversible manner to sites in canine brain striatal membranes with high affinity (KD approximately equal to 220 pM). The binding of [125I]IMAB was stereoselectively and competitively inhibited by dopaminergic agonists and antagonists with an appropriate pharmacological specificity for D1 receptors. The ligand binding subunit of the dopamine D1 receptor was visualized by autoradiography following photoaffinity labeling with [125I]IMAB and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Upon photolysis, [125I]IMAB incorporated into a protein of apparent agents in a stereoselective manner with a potency order typical of dopamine D1 receptors. In addition, smaller subunits of apparent Mr 62,000 and 51,000 were also specifically labeled by [125I]IMAB in these species. Photoaffinity labeling in the absence or presence of multiple protease inhibitors did not alter the migration pattern of [125I]IMAB-labeled subunits upon denaturing electrophoresis in both the absence or presence of urea or thiol reducing/oxidizing reagents. [125I]IMAB should prove to be a useful tool for the subsequent molecular characterization of the D1 receptor from various sources and under differing pathophysiological states.  相似文献   

20.
We studied whether specific receptors for endothelins (ETs) exist in human parathyroid tissues and whether ETs may have any effect on secretion of PTH from parathyroid cells. Binding studies using [125I]ET-1 to the parathyroid membranes obtained from patients with hyperparathyroidism (2 adenomas, 2 hyperplasias) revealed that ET-1 competitively inhibited the binding of [125I]ET-1 to the membranes (the apparent Kd: 62 +/- 18 pM), whereas ET-3 showed biphasic and less steep inhibition curve than ET-1 in all tissue membranes examined. Northern blot analysis of poly(A)+ RNA from the parathyroid adenoma clearly demonstrated gene expression of both ETA and ETB receptors as well as preproET-1. ET-1 inhibited basal PTH secretion from dispersed adenoma cells more potently than ET-3. The present study clearly demonstrates the presence of both ETA and ETB receptor subtypes in human parathyroid tissues through which ETs may modulate PTH secretion in an autocrine and/or paracrine manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号