首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
A 1 kb DNA band from strains of Brenneria nigrifluens, as shown by amplification of their genomic DNA by polymerase chain reaction (PCR) using minisatellite primer designed on the minisatellite sequence of the M13 phage, was isolated, cloned and sequenced. Specific oligonucleotides (F1–C3) were selected into this 1 kb DNA sequence and used in a PCR assay to detect and identify strains of B. nigrifluens . Several strains of B. nigrifluens were assessed with F1–C3 primers producing a specific band of approximately 250 bp pairs in length. This target was successfully amplified from purified genomic DNA, from bacterial culture and directly from infected walnut bark tissue. No amplification was obtained when the PCR assay was performed on other plant-pathogenic species from the following genera Brenneria, Erwinia, Agrobacterium, Pseudomonas, Ralstonia, Pectobacterium, Xanthomonas and from walnut-associated bacteria, indicating the specificity of these primers. The PCR assay with the primers described here provides a rapid, specific and sensitive diagnostic method for B. nigrifluens and a useful tool for epidemiological studies.  相似文献   

2.
Potato cyst nematodes (PCN) are serious pests in commercial potato production, causing yield losses valued at approximately $300 million in the European Community. The nematophagous fungus Plectosphaerella cucumerina has demonstrated its potential as a biological control agent against PCN populations by reducing field populations by up to 60% in trials. The use of biological control agents in the field requires the development of specific techniques to monitor the release, population size, spread or decline, and pathogenicity against its host. A range of methods have therefore been developed to monitor P. cucumerina. A species-specific PCR primer set (PcCF1-PcCR1) was designed that was able to detect the presence of P. cucumerina in soil, root, and nematode samples. PCR was combined with a bait method to identify P. cucumerina from infected nematode eggs, confirming the parasitic ability of the fungus. A selective medium was adapted to isolate the fungus from root and soil samples and was used to quantify the fungus from field sites. A second P. cucumerina-specific primer set (PcRTF1-PcRTR1) and a Taqman probe (PcRTP1) were designed for real-time PCR quantification of the fungus and provided a very sensitive means of detecting the fungus from soil. PCR, bait, and culture methods were combined to investigate the presence and abundance of P. cucumerina from two field sites in the United Kingdom where PCN populations were naturally declining. All methods enabled differences in the activity of P. cucumerina to be detected, and the results demonstrated the importance of using a combination of methods to investigate population size and activity of fungi.  相似文献   

3.
Pinus radiata (Monterey pine), a tree native to coastal California and Mexico, is widely planted worldwide for timber production. A major threat to Monterey pine plantations is the fungal disease pine pitch canker, caused by Fusarium circinatum (Hypocreales). We present a novel trapping approach using filter paper in combination with a rapid molecular method to detect the presence of inoculum in the air. The assay is also useful for diagnosing the presence of the pathogen on plants. The test is based on the F. circinatum specific primer pair CIRC1A-CIRC4A, which amplifies a 360-bp DNA fragment in the intergenic spacer region of the nuclear ribosomal operon. Real-time PCR was used to calculate the number of fungal spores present in each reaction mixture by comparing the threshold cycle (Ct) of unknown spore samples to the Ct values of standards with known amounts of F. circinatum spores. The filter paper method allows prolonged and more sensitive spore sampling in the field compared to traditional traps using petri dishes filled with selective medium. A field test at two sites in coastal California infested with pine pitch canker was carried out during the summer and fall of 2002. Spore counts were in the range of ca. 1 x 10(3) to ca. 7 x 10(5)/m(2), with the highest spore counts in the fall, suggesting a seasonal fluctuation.  相似文献   

4.

Background

Duplex real-time PCR assays have been widely used to determine amounts and concentrations of free circulating DNA in human blood plasma samples. Circulatory plasma DNA is highly fragmented and hence a PCR-based determination of DNA concentration may be affected by the limited availability of full-length targets in the DNA sample. This leads to inaccuracies when counting PCR target copy numbers as whole genome equivalents.

Methodology/Principal Findings

A model system was designed allowing for assessment of bias in a duplex real-time PCR research assay. We collected blood plasma samples from male donors in pools of 6 to 8 individuals. Circulatory plasma DNA was extracted and separated by agarose gel electrophoresis. Separated DNA was recovered from the gel in discrete size fractions and analyzed with different duplex real-time PCR Taqman assays detecting a Y chromosome-specific target and an autosomal target. The real-time PCR research assays used differed significantly in their ability to determine the correct copy number ratio of 0.5 between Y chromosome and autosome targets in DNA of male origin. Longer PCR targets did not amplify quantitatively in circulatory DNA, due to limited presence of full-length target sequence in the sample.

Conclusions

PCR targets of the same small size are preferred over longer targets when comparing fractional circulatory DNA concentrations by real-time PCR. As an example, a DYS14/18S duplex real-time PCR research assay is presented that correctly measures the fractional concentration of male DNA in a male/female mixture of circulatory, fragmented DNA.  相似文献   

5.
6.
A detection, viability, and infectivity assay was developed for Cryptosporidiurn parvum. Oocysts or excysted sporozoites were inoculated onto monolayers of CaCo-2 cells grown on chamber slides. C. parvum infection was monitored by three methods: a) application of a fluorescein-labeled anti-sporozoite antibody; b) PCR of a heat-shock protein gene fragment; and c) detection of mRNA from the heat-shock protein gene by RT-PCR.  相似文献   

7.
A number of intervention strategies against Campylobacter-contaminated poultry focus on postslaughter reduction of the number of cells, emphasizing the need for rapid and reliable quantitative detection of only viable Campylobacter bacteria. We present a new and rapid quantitative approach to the enumeration of food-borne Campylobacter bacteria that combines real-time quantitative PCR (Q-PCR) with simple propidium monoazide (PMA) sample treatment. In less than 3 h, this method generates a signal from only viable and viable but nonculturable (VBNC) Campylobacter bacteria with an intact membrane. The method''s performance was evaluated by assessing the contributions to variability by individual chicken carcass rinse matrices, species of Campylobacter, and differences in efficiency of DNA extraction with differing cell inputs. The method was compared with culture-based enumeration on 50 naturally infected chickens. The cell contents correlated with cycle threshold (CT) values (R2 = 0.993), with a quantification range of 1 × 102 to 1 × 107 CFU/ml. The correlation between the Campylobacter counts obtained by PMA-PCR and culture on naturally contaminated chickens was high (R2 = 0.844). The amplification efficiency of the Q-PCR method was not affected by the chicken rinse matrix or by the species of Campylobacter. No Q-PCR signals were obtained from artificially inoculated chicken rinse when PMA sample treatment was applied. In conclusion, this study presents a rapid tool for producing reliable quantitative data on viable Campylobacter bacteria in chicken carcass rinse. The proposed method does not detect DNA from dead Campylobacter bacteria but recognizes the infectious potential of the VBNC state and is thereby able to assess the effect of control strategies and provide trustworthy data for risk assessment.As Campylobacter remains the leading cause of food-borne bacterial gastrointestinal disease in large parts of the developed world (34), much effort is devoted to improving the detection and elimination of the pathogen, especially in poultry. The ultimate goal is to supply consumers with fresh, Campylobacter-free poultry products, but in order to achieve that goal, it is important to gain more insight into the epidemiology of Campylobacter, to make quantitative risk assessments, and to improve control and intervention strategies.Traditional culture-based detection of Campylobacter bacteria, including enrichment, isolation, and confirmation, is a time-consuming procedure requiring 5 to 6 working days (4, 14). Furthermore, bacterial cells may enter a viable but nonculturable (VBNC) state in which they may have the potential to cause human infection (37) but are not detected by the culture method. The introduction of real-time quantitative PCR (Q-PCR) has enabled faster, more sensitive, and less labor-intensive quantitative detection. Q-PCR methods for food-borne Campylobacter jejuni and C. coli in poultry, which is recognized as an important source of human Campylobacter infections, have been published (11, 12, 15, 38, 46). However, since control strategies mostly focus on reduction of the number of bacterial cells on the chicken carcass, the usefulness of these Q-PCR methods for risk assessment could be limited, since they detect all of the Campylobacter bacteria present in a sample, including the dead cells.The Q-PCR method described in the present study quantifies the three major food-borne Campylobacter species (C. jejuni, C. coli, and C. lari), thereby covering all possible prevalence shifts and coinfections. The PCR assay was previously validated according to the Nordic Organization for Validation of Alternative Microbiological Methods (NordVal) and is certified for detection of Campylobacter bacteria in chickens, cloacal swabs, and boot swabs (7). The present study concerns its suitability for the quantification of Campylobacter bacteria in chicken carcass rinse. Furthermore, a propidium monoazide (PMA) sample treatment step has been incorporated into the method (PMA-PCR), ensuring the quantification of only viable cells with intact membranes. PMA can intercalate into the double-helical DNA available from dead cells with compromised membranes, and upon extensive visible light exposure, cross-linking of the two strands of DNA occurs, leaving it unavailable for PCR amplification (30). PMA is a chemical alteration (additional azide group) of propidium iodide (PI), one of the most frequently applied non-membrane-permeating dyes in flow cytometry, and it can be expected to have the same permeating potential as PI (29). This could be of value from a food safety perspective, since PI penetrates only permeabilized cells and not cells with intact membranes (including the Campylobacter VBNC state), which can still cause infection. Nocker et al. demonstrated that no uptake of PMA occurred in bacterial cells with intact membranes, and PMA was exclusively found in bacteria with compromised membranes (31).PMA sample treatment combined with real-time PCR for detection of viable pathogens has been tested successfully on Listeria monocytogenes and Escherichia coli O157:H7 (31, 36). However, these studies were limited to laboratory-cultured strains and the methods have not been validated on naturally infected samples with the pathogen embedded in a food matrix.This is the first study to establish a correlation between results obtained by PMA-PCR and culture-based enumeration of Campylobacter bacteria for a large number of naturally infected chickens.  相似文献   

8.
A reliable, accurate and rapid multigene-based assay combining real time quantitative PCR (qPCR) and a Razor Ex BioDetection System (Razor Ex) was validated for detection of Xylella fastidiosa subsp. pauca (Xfp, a xylem-limited bacterium that causes citrus variegated chlorosis [CVC]). CVC, which is exotic to the United States, has spread through South and Central America and could significantly impact U.S. citrus if it arrives. A method for early, accurate and sensitive detection of Xfp in plant tissues is needed by plant health officials for inspection of products from quarantined locations, and by extension specialists for detection, identification and management of disease outbreaks and reservoir hosts. Two sets of specific PCR primers and probes, targeting Xfp genes for fimbrillin and the periplasmic iron-binding protein were designed. A third pair of primers targeting the conserved cobalamin synthesis protein gene was designed to detect all possible X. fastidiosa (Xf) strains. All three primer sets detected as little as 1 fg of plasmid DNA carrying X. fastidiosa target sequences and genomic DNA of Xfp at as little as 1 - 10 fg. The use of Razor Ex facilitates a rapid (about 30 min) in-field assay capability for detection of all Xf strains, and for specific detection of Xfp. Combined use of three primer sets targeting different genes increased the assay accuracy and broadened the range of detection. To our knowledge, this is the first report of a field-deployable rapid and reliable bioforensic detection and discrimination method for a bacterial phytopathogen based on multigene targets.  相似文献   

9.
The FASTPlaqueTB assay is an established diagnostic aid for the rapid detection of Mycobacterium tuberculosis from human sputum samples. Using the FASTPlaqueTB assay reagents, viable Mycobacterium avium subsp. paratuberculosis cells were detected as phage plaques in just 24 h. The bacteriophage used does not infect M. avium subsp. paratuberculosis alone, so to add specificity to this assay, a PCR-based identification method was introduced to amplify M. avium subsp. paratuberculosis-specific sequences from the DNA of the mycobacterial cell detected by the phage. To give further diagnostic information, a multiplex PCR method was developed to allow simultaneous amplification of either M. avium subsp. paratuberculosis or M. tuberculosis complex-specific sequences from plaque samples. Combining the plaque PCR technique with the phage-based detection assay allowed the rapid and specific detection of viable M. avium subsp. paratuberculosis in milk samples in just 48 h.  相似文献   

10.
Kim SK  Abe H  Little CH  Pharis RP 《Plant physiology》1990,94(4):1709-1713
A simple and improved dwarf rice (Oryza sativa var Tan-ginbozu) lamina inclination bioassay for brassinosteroids (BRs) was developed based on a previously published method (K Takeno, RP Pharis [1982] Plant Cell Physiol 23: 1275-1281). The assay used 3-day-old intact seedlings, and detection of BR was made more sensitive by synergizing the response to BR with indole-3-acetic acid (IAA). The minimum detectable amount of BR was less than 0.1 nanogram/rice plant (brassinolide equivalents). Purification steps for isolation of BR from tissue scrapings taken from the cambial region of Scots pine (Pinus silverstris) harvested during the period of rapid wood production were guided by this assay. After column chromatography (silica gel and PrepPak C18) and reversed phase C18 high performance liquid chromatography, the biologically active fractions were analyzed by gas chromatography-mass spectrometry (GC-MS) and/or GC-MS-selected ion monitoring. Two BRs, castasterone (major) and brassinolide (minor) were identified. This is the first identification of BR from the cambial region of a conifer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号