首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jujuboside B has been reported to have protective effect on many cardiovascular diseases. However, the effects of Jujuboside B on vascular tension and endothelial function are unknown. The present study investigated the effects of Jujuboside B on reducing vascular tension, protecting endothelial function and the potential mechanisms. The tension of isolated rat thoracic aorta ring was measured by Wire myograph system. The concentration of nitric oxide (NO) and the activity of endothelial nitric oxide synthase (eNOS) in human aortic endothelial cells (HAECs) were determined by Griess reagent method and enzyme-linked immune sorbent assay. The protein levels of eNOS and p-eNOS at Serine-1177 were determined by western blot analysis. Intracellular Ca2+ concentration in HAECs was measured by laser confocal imaging microscopy. Results showed that Jujuboside B reduced the tension of rat thoracic aorta rings with intact endothelium in a dose-dependent manner. L-NAME, KN93, EGTA, SKF96365, iberiotoxin and glibenclamide significantly attenuated Jujuboside B-induced vasodilation in endothelium-intact tissues. In contrast, indometacin and 4-DAMP had no such effects. Jujuboside B also promoted NO generation and increased eNOS activity, which were attenuated by L-NAME, EGTA and SKF96365. Moreover, Jujuboside B increased intracellular Ca2+ concentration dose-dependently, which was inhibited by EGTA and SKF96365. Besides, Jujuboside B induced a rapid Ca2+ influx instantaneously after depleting intracellular Ca2+ store, which was significantly inhibited by SKF96365. In conclusion, this study preliminarily confirmed that Jujuboside B reduced vascular tension endothelium-dependently. The underlying mechanisms involved that Jujuboside B increased extracellular Ca2+ influx through endothelial transient receptor potential cation (TRPC) channels, phosphorylated eNOS and promoted NO generation in vascular endothelial cells. In addition, Jujuboside B-induced vasodilation involved endothelium-dependent hyperpolarizaiton through endothelial potassium channels. Jujuboside B is a natural compound with new pharmacological effects on improving endothelial dysfunction and treating vascular diseases.  相似文献   

2.
We have previously reported that dimethylsulfoxide-differentiation of U937 cells induced significant A23187-stimulatable arachidonate mobilization, consistent with characteristics of cytosolic phospholipase A2 (Rzigalinski, B.A. and Rosenthal, M.D. (1994) Biochim. Biophys. Acta 1223, 219–225). The present report demonstrates that differentiated cells attained higher elevations of intracellular free calcium in response to A23187 and thapsigargin, consistent with enhancement of the capacitative calcium influx pathway. Differentiation induced a significant increase in the size of the intracellular calcium stores, as well as in the capacity for store-activated calcium influx. Alterations in the capacitative calcium influx pathway were coupled to differentiation-induced activation of cPLA2 and mobilization of arachidonate in response to thapsigargin and fMLP stimulation. Although cPLA2 activity is often associated with influx of extracellular calcium, arachidonate mobilization in response to thapsigargin or fMLP was not simply a consequence of calcium influx. Assessment of intracellular free calcium elevations during thapsigargin or fMLP-induced stimulation suggest that a low level of arachidonic acid release was initiated upon release of intracellular store calcium. This initial release of arachidonate was unaffected by inhibition of calcium influx with nickel, EGTA, or SKF96365. Arachidonate release was observed when extracellular calcium was replaced with extracellular strontium, suggesting activation of the cytosolic PLA2 rather than secretory PLA2. Inhibition of PLA2 with prostaglandin B oligomer prevented both thapsigargin and fMLP-stimulated influx of extracellular calcium. Furthermore, exogenous free arachidonate stimulated influx of extracellular calcium in differentiated U937 cells. These results suggest that cPLA2-mediated release of free arachidonate may participate in the formation of a calcium influx factor which controls influx of extracellular calcium through store-controlled channels in the plasma membrane.  相似文献   

3.
The present study investigates the effects of W-7 (a calmodulin antagonist involved in the Ca++ cascade) on the response of the ‘sugar’ and ‘water’ cells of labellar chemosensilla in the blowfly Protophormia terraenovae to stimulation with sucrose or fructose. In order to ascertain whether Ca++ conductance is involved, the effects of EGTA, one of the most used Ca++ chelating agent, and of SK&F-96365, an inhibitor of receptor mediated calcium influx, were also studied. Our electrophysiological data indicate that W-7 addition strongly depresses the ‘sugar’ chemoreceptor response to both sugars and in the case of sucrose stimulation also influences adaptation rate. The Ca++ chelator has no significant effects on the response of the ‘sugar’ cell following stimulation with sucrose, but lowers fructose stimulating effectiveness. In the presence of SK&F-96365 both sucrose and fructose responses are inhibited. A possible transduction mechanism for sugar reception is discussed.  相似文献   

4.
The effect of SK&F 96365 (1-(beta-[3-(4-methoxyphenyl)propoxyl]-4- methoxyphenethyl)-1H-imidazole hydrochloride), a recently synthesized inhibitor of receptor-mediated calcium entry, was investigated on human hematopoietic cell lines. We found that treatment of the T-cell leukemia line Jurkat with SK&F 96365 inhibited the Ca2+ influx triggered by antibodies against the CD3/TCR complex, while the inositol trisphosphate-dependent Ca2+ release from intracellular stores remained intact. A 50% inhibition of the Ca2+ influx was obtained with 5 microM SK&F 96365, while higher concentrations of the drug blocked the CD3-dependent Ca2+ influx completely. In addition to its blocking of the Ca2+ influx, treatment with SK&F 96365 was found to accumulate mitotic cells. The drug (5 microM) imposed a total cell cycle arrest in G2/M. The mitosis block could be reversed by removal of the inhibitor from the cultures, while elevation of intracellular or extracellular Ca2+ did not restore cell cycle progression. This suggests that the cell cycle block induced by SK&F 96365 is not directly related to its action as an inhibitor of receptor-mediated calcium entry. Our findings indicate that SK&F 96365, in addition to its ability to inhibit receptor-triggered Ca2+ influx, offers a new method for imposing a reversible mitosis arrest in hematopoietic cell lines.  相似文献   

5.
In microvillar photoreceptors, light stimulates the phospholipase C cascade and triggers an elevation of cytosolic Ca2+ that is essential for the regulation of both visual excitation and sensory adaptation. In some organisms, influx through light-activated ion channels contributes to the Ca2+ increase. In contrast, in other species, such as Lima, Ca2+ is initially only released from an intracellular pool, as the light-sensitive conductance is negligibly permeable to calcium ions. As a consequence, coping with sustained stimulation poses a challenge, requiring an alternative pathway for further calcium mobilization. We observed that after bright or prolonged illumination, the receptor potential of Lima photoreceptors is followed by the gradual development of an after-depolarization that decays in 1–4 minutes. Under voltage clamp, a graded, slow inward current (Islow) can be reproducibly elicited by flashes that saturate the photocurrent, and can reach a peak amplitude in excess of 200 pA. Islow obtains after replacing extracellular Na+ with Li+, guanidinium, or N-methyl-d-glucamine, indicating that it does not reflect the activation of an electrogenic Na/Ca exchange mechanism. An increase in membrane conductance accompanies the slow current. Islow is impervious to anion replacements and can be measured with extracellular Ca2+ as the sole permeant species; Ba can substitute for Ca2+ but Mg2+ cannot. A persistent Ca2+ elevation parallels Islow, when no further internal release takes place. Thus, this slow current could contribute to sustained Ca2+ mobilization and the concomitant regulation of the phototransduction machinery. Although reminiscent of the classical store depletion–operated calcium influx described in other cells, Islow appears to diverge in some significant aspects, such as its large size and insensitivity to SKF96365 and lanthanum; therefore, it may reflect an alternative mechanism for prolonged increase of cytosolic calcium in photoreceptors.  相似文献   

6.
The effects of SK&F 96365, a blocker of the receptor-operated Ca2+ channel, on contractilities and the Na+ channel of mouse diaphragm were studied. SK&F 96365 (10–50 µM) reversibly inhibited twitches, tetanic contractions and muscle and nerve action potentials. The IC50 was 17–24 µM. The inward Na+ current was suppressed and its recovery from inactivations delayed. Crotamine, a peptide toxin that binds to neurotoxin receptor site 3 of the muscle Na+ channel, enhanced the inhibitory effects of SK&F 96365 and reduced the IC50 to about 4 µM. Veratridine had similar effects, although it was less effective than crotamine. On the other hand, the crotamine-induced membrane depolarizations and spontaneous discharges of muscle action potentials were inhibited by SK&F 96365 noncompetitively. The inhibitory effects of tetrodotoxin and tetracaine were additive with those of SK&F 96365 but were enhanced slightly by crotamine. The results suggested that SK&F 96365 acts on a distinct site and blocks the Na+ channel of excitable membranes at a concentration range that inhibits the receptor-operated calcium channel.  相似文献   

7.
ATP is an abundant biochemical component of the tumor microenvironment and a physiologic ligand for the P2Y2 nucleotide receptor (P2Y2R). In this study, we investigated the effect of ATP on the cellular behavior of human hepatocellular carcinoma (HCC) cells and the role of P2Y2R in ATP action and aimed to find a new therapeutic target against HCC. The experiments were performed in native isolated human HCC cells, normal hepatocytes, human HCC cell lines, and nude mice. We found that the mRNA and protein expression levels of P2Y2R in native human HCC cells and the human HCC cell lines HepG2 and BEL-7404 were enhanced markedly compared with human normal hepatocytes and the normal hepatocyte line LO2, respectively. ATP induced intracellular Ca2+ increases in HCC cells and promoted the proliferation and migration of HCC cells and the growth of HCC in nude mice. The P2Y receptor antagonist suramin, P2Y2R-specific shRNA, the store-operated calcium channel inhibitors 2-aminoethoxydiphenyl borate (2-APB) and 1-(β-3-(4-methoxy-phenyl) propoxyl-4-methoxyphenethyl)1H-imidazole-hydrochloride (SKF96365), and stromal interaction molecule (STIM1)-specific shRNA inhibited the action of ATP on HCC cells. In conclusion, P2Y2R mediated the action of ATP on the cellular behavior of HCC cells through store-operated calcium channel-mediated Ca2+ signaling, and targeting P2Y2R may be a promising therapeutic strategy against human HCC.  相似文献   

8.
The effects of the imidazole compound SK&F 96365 on Ca2+ movements and production of nitric oxide (NO) and von Willebrand factor (vWF) have been investigated in human endothelial cells. Changes in cytosolic Ca2+ concentration ([Ca2+]i) were measured with Fura-2. Real-time production of NO was monitored with a porphyrinic microsensor and the release of vWF with an enzyme-linked immunosorbent assay. Irrespective of the transmembrane Ca2+ gradient, 30 μM SK&F 96365 doubled [Ca2+]i suggesting a Ca2+ release from intracellular stores. The SK&F 96365-induced [Ca2+]i rise was not accompanied by detectable NO and vWF production, while 1 μM thapsigargin enhanced [Ca2+]i 2.5 times, doubled the secretion of vWF and increased the NO production to 10 ± 4 nM (n = 5). Pretreatment with SK&F 96365 prevented thapsigargin from increasing [Ca2+]i, NO production and vWF secretion. To investigate the mechanism by which SK&F 96365 released Ca2+, from internal pools, its effect and that of thapsigargin on the ATP-dependent 45Ca2+, uptake into platelet membrane vesicles were compared. SK&F 96365 as thapsigargin, dose-dependently reduced the initial rate of 45Ca2+ uptake. In conclusion, we demonstrate that, in the absence of Ca2+ entry from the extracellular space, the [Ca2+]i increase elicited by SK&F 96365 or thapsigargin is not sufficient to initiate NO synthesis and vWF secretion. This confirms the important role of Ca2+ influx in endothelial secretion processes.  相似文献   

9.
This study investigated how modulation of intracellular calcium alters the functional activity of the EAAC1 glutamate transporter in C6 glioma cells. Pre-incubation of C6 glioma cells with the endoplasmic reticulum Ca2+ ATP pump inhibitor, thapsigargin (10 μM) produced a time-dependent increase in the Vmax for d-[3H]aspartate transport that reached a maximum at 15 min (143% of control; P < 0.001) that was accompanied by increased plasma membrane expression of EAAC1 and was blocked by inhibition of protein kinase C. Pre-incubation of C6 glioma cells with phorbol myristate-3-acetate (100 nM for 20 min) also caused a significant increase in the Vmax of sodium-dependent d-[3H]aspartate transport (190% of control; P < 0.01). In contrast, in the absence of extracellular calcium, thapsigargin caused a significant inhibition in d-[3H]aspartate transport that was not mediated by protein kinase C. Blockade of store-operated calcium channels with 2-aminoethoxydiphenyl borate (50 μM) or SKF 96365 (10 μM) caused a net inhibition of d-[3H]aspartate uptake. Co-incubation of C6 glioma cells with both thapsigargin and 2-aminoethoxydiphenyl borate (but not SKF 96365) prevented the increase in d-[3H]aspartate transport that was observed in the presence of thapsigargin alone. Furthermore, 2-aminoethoxydiphenyl borate, but not SKF 96365, reduced the increase in intracellular calcium that occurred following pre-incubation of the cells with thapsigargin. It is concluded that, in C6 glioma cells, stimulation of EAAC1-mediated glutamate transport by thapsigargin is dependent on entry of calcium via the NSCC-1 subtype of store operated calcium channel and is mediated by protein kinase C. In contrast, in the absence of store operated calcium entry, thapsigargin inhibits transport.  相似文献   

10.

Background

Sildenafil, a potent phosphodiesterase type 5 (PDE5) inhibitor, has been proposed as a treatment for pulmonary arterial hypertension (PAH). The mechanism of its anti-proliferative effect on pulmonary artery smooth muscle cells (PASMC) is unclear. Nuclear translocation of nuclear factor of activated T-cells (NFAT) is thought to be involved in PASMC proliferation and PAH. Increase in cytosolic free [Ca2+] ([Ca2+]i) is a prerequisite for NFAT nuclear translocation. Elevated [Ca2+]i in PASMC of PAH patients has been demonstrated through up-regulation of store-operated Ca2+ channels (SOC) which is encoded by the transient receptor potential (TRP) channel protein. Thus we investigated if: 1) up-regulation of TRPC1 channel expression which induces enhancement of SOC-mediated Ca2+ influx and increase in [Ca2+]i is involved in hypoxia-induced PASMC proliferation; 2) hypoxia-induced promotion of [Ca2+]i leads to nuclear translocation of NFAT and regulates PASMC proliferation and TRPC1 expression; 3) the anti-proliferative effect of sildenafil is mediated by inhibition of this SOC/Ca2+/NFAT pathway.

Methods

Human PASMC were cultured under hypoxia (3% O2) with or without sildenafil treatment for 72 h. Cell number and cell viability were determined with a hemocytometer and MTT assay respectively. [Ca2+]i was measured with a dynamic digital Ca2+ imaging system by loading PASMC with fura 2-AM. TRPC1 mRNA and protein level were detected by RT-PCR and Western blotting respectively. Nuclear translocation of NFAT was determined by immunofluoresence microscopy.

Results

Hypoxia induced PASMC proliferation with increases in basal [Ca2+]i and Ca2+ entry via SOC (SOCE). These were accompanied by up-regulation of TRPC1 gene and protein expression in PASMC. NFAT nuclear translocation was significantly enhanced by hypoxia, which was dependent on SOCE and sensitive to SOC inhibitor SKF96365 (SKF), as well as cGMP analogue, 8-brom-cGMP. Hypoxia-induced PASMC proliferation and TRPC1 up-regulation were inhibited by SKF and NFAT blocker (VIVIT and Cyclosporin A). Sildenafil treatment ameliorated hypoxia-induced PASMC proliferation and attenuated hypoxia-induced enhancement of basal [Ca2+]i, SOCE, up-regulation of TRPC1 expression, and NFAT nuclear translocation.

Conclusion

The SOC/Ca2+/NFAT pathway is, at least in part, a downstream mediator for the anti-proliferative effect of sildenafil, and may have therapeutic potential for PAH treatment.  相似文献   

11.
Capacitative calcium entry (CCE) refers to the influx of calcium through plasma membrane channels activated on depletion of endoplasmic sarcoplasmic/reticulum (ER/SR) Ca2+ stores, which is performed mainly by the transient receptor potential (TRP) channels. TRP channels are expressed in cardiomyocytes. Calcium-sensing receptor (CaR) is also expressed in rat cardiac tissue and plays an important role in mediating cardiomyocyte apoptosis. However, there are no data regarding the link between CaR and TRP channels in rat heart. In this study, in rat neonatal myocytes, by Ca2+ imaging, we found that the depletion of ER/SR Ca2+ stores by thapsigargin (TG) elicited a transient rise in cytoplasmic Ca2+ ([Ca2+]i), followed by sustained increase depending on extracellular Ca2+. But, TRP channels inhibitor (SKF96365), not L-type channels or the Na+/Ca2+ exchanger inhibitors, inhibited [Ca2+]i relatively high. Then, we found that the stimulation of CaR with its activator gadolinium chloride (GdCl3) or by an increased extracellular Ca2+([Ca2+]o) increased the concentration of intracelluar Ca2+, whereas, the sustained elevation of [Ca2+]i was reduced in the presence of SKF96365. Similarly, the duration of [Ca2+]i increase was also shortened in the absence of extracellular Ca2+. Western blot analysis showed that GdCl3 increased the expression of TRPC6, which was reversed by SKF96365. Additionally, SKF96365 reduced cardiomyocyte apoptosis induced by GdCl3. Our results suggested that CCE exhibited in rat neonatal myocytes and CaR activation induced Ca2+-permeable cationic channels TRPCs to gate the CCE, for which TRPC6 was one of the most likely candidates. TRPC6 channel was functionally coupled with CaR to enhance the cardiomyocyte apoptosis.  相似文献   

12.
The posttranslational modification of nuclear and cytosolic proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) has been shown to play an important role in cellular response to stress. Although increases in O-GlcNAc levels have typically been thought to be substrate-driven, studies in several transformed cell lines reported that glucose deprivation increased O-GlcNAc levels by a number of different mechanisms. A major goal of this study therefore was to determine whether in primary cells, such as neonatal cardiomyocytes, glucose deprivation increases O-GlcNAc levels and if so by what mechanism. Glucose deprivation significantly increased cardiomyocyte O-GlcNAc levels in a time-dependent manner and was associated with decreased O-GlcNAcase (OGA) but not O-GlcNAc transferase (OGT) protein. This response was unaffected by either the addition of pyruvate as an alternative energy source or by the p38 MAPK inhibitor SB203580. However, the response to glucose deprivation was blocked completely by glucosamine, but not by inhibition of OGA with 2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate. Interestingly, the CaMKII inhibitor KN93 also significantly reduced the response to glucose deprivation. Lowering extracellular Ca2+ with EGTA or blocking store operated Ca2+ entry with SKF96365 also attenuated the glucose deprivation-induced increase in O-GlcNAc. In C2C12 and HEK293 cells both glucose deprivation and heat shock increased O-GlcNAc levels, and CaMKII inhibitor KN93 attenuated the response to both stresses. These results suggest that increased intracellular calcium and subsequent activation of CaMKII play a key role in regulating the stress-induced increase in cellular O-GlcNAc levels.  相似文献   

13.
Abstract: The toxicity of thapsigargin, a selective inhibitor of endoplasmic reticular Ca2+-ATPase, was investigated in GT1-7 cells, a murine hypothalamic cell line. Treatment of these cells with 50 or 100 nM thapsigargin greatly reduced cell viability at 24 and 48 h. These doses of thapsigargin induced a rapid rise in free cytosolic Ca2+ ([Ca2+]i), followed by a sustained increase. Addition of EGTA to chelate extracellular Ca2+ diminished somewhat the size of the initial increase of [Ca2+]i caused by thapsigargin, and abolished the sustained increase. The sustained increase could also be abolished by addition of La3+ and by SKF 96365, a drug selective for receptor-mediated calcium entry, but not by verapamil or flunarizine. Pretreatment with 50 µM BAPTA/AM, a cytosolic Ca2+ chelator, inhibited the peak [Ca2+]i caused by thapsigargin but did not inhibit the sustained elevation of [Ca2+]i. Neither EGTA nor BAPTA/AM inhibited the cell death induced by thapsigargin. The cell death was characterized by DNA fragmentation (“laddering”), nuclear condensation and fragmentation, and was inhibited by protein synthesis inhibitor cycloheximide, all characteristic of apoptotic cell death. Overexpression of the proto-oncogene bcl-2 in GT1-7 cells inhibited significantly DNA fragmentation, nuclear condensation and fragmentation, and cell death induced by thapsigargin. However, Bcl-2 did not alter either basal [Ca2+]i or the elevation of [Ca2+]i induced by thapsigargin. Our results suggest that abnormal Ca2+ release from endoplasmic reticulum caused by thapsigargin induces GT1-7 death by apoptosis and that this effect does not depend on Ca2+ influx from the extracellular space. Bcl-2 inhibited apoptosis induced by thapsigargin, but the mechanism is unlikely to be inhibition of endoplasmic reticular Ca2+ release in GT1-7 neuronal cells.  相似文献   

14.
The intracellular concentration of calcium ([Ca2+]i) of rat submandibular ductal cells was measured with the intracellular fluorescent dye Fura-2. Carbachol (100 μM) and ATP (1 mM) both increased the [Ca2+]j. The late response to ATP was blocked by 0.5 mM Ni2+. This concentration of Ni2+ also blocked the increase of the [Ca2+]i and the uptake of manganese and calcium in response to 2′- and 3′-O-(4-benzoylbenzoyl) adenosine 5′-triphosphate (BzATP, 100 μM), a specific agonist of P2X receptors from salivary glands. The increase of the [Ca2+]i in response to 2-methylthioadenosine 5′-triphosphate (2-McSATP, 100 μM) a specific P2Y agonist in salivary glands or to a muscarinic agonist (carbachol) was not affected by 0.5 mM Ni2+. Only higher concentrations of Ni2+ (in the millimolar range) inhibited the uptake of extracellular calcium in response to carbachol. SK&F 96365, a blocker of store-operated calcium channels, inhibited the uptake of extracellular calcium in response to carbachol without affecting the response to BzATP. It is concluded that at low concentrations (below 0.5 mM), Ni2+ inhibits the non-specific cation channel coupled to P2X receptors. The uptake of extracellular calcium by store-operated calcium channels is inhibited by higher concentrations of Ni2+ and by SK&F96365.  相似文献   

15.
Summary The signaling pathways leading to extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) activation by N-formyl-Met-Leu-Phe (fMLP) or platelet activating factor (PAF) in human neutrophils were examined. Previously, we found that changes of intracellular Ca2+ ([Ca ) stimulated by PAF and fMLP were due to Ca2+ influx and internal Ca2+ release, respectively. To further determine the mechanism of MAPK activation and its relation with Ca2+ influx, blood from healthy human volunteers was taken by venous puncture. Human polymorphonuclear cells (PMNs) were isolated and incubated with protein kinase C (PKC) inhibitor Calphostin C, PKC- isoform inhibitor GF109203X, phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and LY294002, phospholipase C (PLC) inhibitor U73122, phospholipase A2 (PLA2) inhibitor Aristolochic acid, store-operated calcium (SOC) channel inhibitor SKF96365, or extracellular calcium chelator EGTA followed by fMLP or PAF treatment. Phosphorylation of ERK p38 was determined by immunoblotting analysis. Our data indicate that neutrophil MAPK signaling pathways mediated by fMLP and PAF are different. PAF-induced ERK phosphorylation is mediated by PI3K, PKC, PLA2, PLC, and extracellular calcium, whereas fMLP-induced ERK phosphorylation does not involve the PKC- isoform and extracellular calcium. PAF-induced p38 phosphorylation involves PLA2, whereas fMLP-induced p38 activation is PLC dependent.  相似文献   

16.
Angiotensin II (AngII) receptor (ATR) is involved in pathologic local events such as neovascularisation and inflammation including in the brain and retina. The retinal pigment epithelium (RPE) expresses ATR in its AT1R form, angiotensin-receptor-associated protein (Atrap), and transient-receptor-potential channel-V2 (TRPV2). AT1R and Atrap co-localize to the basolateral membrane of the RPE, as shown by immunostaining. Stimulation of porcine RPE (pRPE) cells by AngII results in biphasic increases in intracellular free Ca2+inhibited by losartan. Xestospongin C (xest C) and U-73122, blockers of IP3R and PLC respectively, reduced AngII-evoked Ca2+response. RPE cells from Atrap−/− mice showed smaller AngII-evoked Ca2+peak (by 22%) and loss of sustained Ca2+elevation compared to wild-type. The TRPV channel activator cannabidiol (CBD) at 15 µM stimulates intracellular Ca2+-rise suggesting that porcine RPE cells express TRPV2 channels. Further evidence supporting the functional expression of TRPV2 channels comes from experiments in which 100 µM SKF96365 (a TRPV channel inhibitor) reduced the cannabidiol-induced Ca2+-rise. Application of SKF96365 or reduction of TRPV2 expression by siRNA reduced the sustained phase of AngII-mediated Ca2+transients by 53%. Thus systemic AngII, an effector of the local renin-angiotensin system stimulates biphasic Ca2+transients in the RPE by releasing Ca2+from cytosolic IP3-dependent stores and activating ATR/Atrap and TRPV2 channels to generate a sustained Ca2+elevation.  相似文献   

17.
SK&F 96365, a novel inhibitor of receptor-mediated calcium entry.   总被引:6,自引:0,他引:6       下载免费PDF全文
A novel inhibitor of receptor-mediated calcium entry (RMCE) is described. SK&F 96365 (1-(beta-[3-(4-methoxy-phenyl)propoxy]-4-methoxyphenethyl)-1H- imidazole hydrochloride) is structurally distinct from the known 'calcium antagonists' and shows selectivity in blocking RMCE compared with receptor-mediated internal Ca2+ release. Human platelets, neutrophils and endothelial cells were loaded with the fluorescent Ca2(+)-indicator dyes quin2 or fura-2, in order to measure Ca2+ or Mn2+ entry through RMCE as well as Ca2+ release from internal stores. The IC50 (concn. producing 50% inhibition) for inhibition of RMCE by SK&F 96365 in platelets stimulated with ADP or thrombin was 8.5 microM or 11.7 microM respectively; these concentrations of SK&F 96365 did not affect internal Ca2+ release. Similar effects of SK&F 96365 were observed in suspensions of neutrophils and in single endothelial cells. SK&F 96365 also inhibited agonist-stimulated Mn2+ entry in platelets and neutrophils. The effects of SK&F 96365 were independent of cell type and of agonist, as would be expected for a compound that modulates post-receptor events. Voltage-gated Ca2+ entry in fura-2-loaded GH3 (pituitary) cells and rabbit ear-artery smooth-muscle cells held under voltage-clamp was also inhibited by SK&F 96365; however, the ATP-gated Ca2(+)-permeable channel of rabbit ear-artery smooth-muscle cells was unaffected by SK&F 96365. Thus SK&F 96365 (unlike the 'organic Ca2+ antagonists') shows no selectivity between voltage-gated Ca2+ entry and RMCE, although the lack of effect on ATP-gated channels indicates that it discriminates between different types of RMCE. The effects of SK&F 96365 on functional responses of cells thought to be dependent on Ca2+ entry via RMCE were also studied. Under conditions where platelet aggregation is dependent on stimulated Ca2+ entry via RMCE, the response was blocked by SK&F 96365 with an IC50 of 15.9 microM, which is similar to the IC50 of 8-12 microM observed for inhibition of RMCE. Adhesion and chemotaxis of neutrophils were also inhibited by SK&F 96365. SK&F 96365 is a useful tool to distinguish RMCE from internal Ca2+ release, and to probe the role of RMCE in mediating functional responses of cells. However, SK&F 96365 is not as potent (IC50 around 10 microM) or selective (also inhibits voltage-gated Ca2+ entry) as would be desirable, so caution must be exercised when using this compound.  相似文献   

18.
Research has shown that mechanical stress stimulation can cause airway remodeling. We investigate the effects of mechanical stretch on the expression of the airway remodeling-associated factors interleukin-13 (IL-13) and matrix metalloprotein-9 (MMP-9) and signaling pathways in human bronchial epithelioid (16HBE) cells under mechanical stretch. A Flexcell FX-4000 Tension System with a flexible substrate was applied to stretch 16HBE cells at a 15% elongation amplitude and 1 Hz frequency, with stretching for 0.5 h, 1 h, 1.5 h and 2 h. The experimental group with higher IL-13, MMP-9, and TRPC1 expression and higher Ca2+ levels was selected for performing intervention experiment. These cells were pretreated with the transient receptor potential canonical 1 (TRPC1) channel antagonist SKF96365 and TRPC1-specific siRNA, and then mechanical stretch was applied. Our results provided evidences that mechanical pressure significantly increased IL-13, MMP-9, and TRPC1 protein and mRNA expression levels and intracellular Ca2+ fluorescence intensity at 4 time points compared with the control group. The peak IL-13, MMP-9, and TRPC1 expression levels were observed at 0.5 h after exposure to mechanical pressure. IL-13 and MMP-9 expression levels and Ca2+ fluorescence intensity in the stretch+SKF96365 group and in the stretch+TRPC1 siRNA group were significantly lower than those were in the mechanical stretch group. By incubating the cells with the intracellular calcium chelator BAPTA-AM, the expression of IL-13 and MMP9 was significantly decreased, and the expression level of TRPC1 remained unchanged. These observations suggest that mechanical stretch may induce an influx of Ca2+ and up-regulation of IL-13 and MMP-9 expression in 16HBE cells via activation of TRPC1.  相似文献   

19.
Cardiotonic glycosides, like ouabain, inhibit Na+-K+-ATPase. Recent evidence suggests that low molar concentrations of ouabain alter cell growth. Studies were conducted to examine the effect of ouabain on Akt phosphorylation and rate of cell proliferation in opossum kidney (OK) proximal tubule cells. Cells exposed to 10 nM ouabain displayed increased Akt Ser473 phosphorylation, as evidenced by an increase in phospho-Akt Ser473 band density. Ouabain-stimulated Akt Ser473 phosphorylation was inhibited by pretreatment with phosphatidylinositol 3-kinase (PI3K) inhibitors (LY294002 and wortmannin), a PLC inhibitor (edelfosine), and an Akt inhibitor. Moreover, ouabain-mediated Akt Ser473 phosphorylation was suppressed by reduction of extracellular calcium (EGTA) or when intracellular calcium was buffered by BAPTA-AM. An inhibitor of calcium store release (TMB-8) and an inhibitor of calcium entry via store-operated calcium channels (SKF96365) also suppressed ouabain-mediated Akt Ser473 phosphorylation. In fura-2 AM-loaded cells, 10 nM ouabain increased capacitative calcium entry (CCE). Ouabain at 10 nM did not significantly alter baseline cytoplasmic calcium concentration in control cells. However, treatment with 10 nM ouabain caused a significantly higher ATP-mediated calcium store release. After 24 h, 10 nM ouabain increased the rate of cell proliferation. The Akt inhibitor, BAPTA-AM, SKF96365, and cyclopiazonic acid suppressed the increase in the rate of cell proliferation caused by 10 nM ouabain. Ouabain at 10 nM caused a detectable increase in 86Rb uptake but did not significantly alter Na+-K+-ATPase (ouabain-sensitive pNPPase) activity in crude membranes or cell sodium content. Taken together, the results point to a role for CCE and Akt phosphorylation, in response to low concentrations of ouabain, that increase the rate of cell proliferation without inhibiting Na+-K+-ATPase-mediated ion transport. Na+-K+-ATPase; opossum kidney cells  相似文献   

20.
The phosphatidylinositol-3-kinase (PI3K)/AKT axis and the Nuclear Factor kappa B (NFκB) pathway play critical roles in macrophage survival. In cells other than macrophages proper operation of those two pathways requires Ca2+ influx into the cell, but if that is the case in macrophages remains unexplored. In the present work we used THP-1-derived macrophages and a pharmacological approach to examine for the first time the role of constitutive, non-regulated Ca2+ influx in PI3K/AKT and NFκB signaling. Blocking constitutive function of Ca2+-permeable channels with the organic channel blocker SKF96365 completely prevented phosphorylation of IκBα, AKT and its downstream target BAD in TNFα-treated macrophages. A similar effect was observed upon treating macrophages with the calmodulin (CAM) inhibitor W-7 or the calmodulin-dependent kinase II (CAMKII) inhibitor KN-62. In addition, pre-treating macrophages with SKF96365 significantly enhanced TNFα-induced apoptosis. Our findings suggest that in THP-1-derived macrophages survival signaling depends, to a significant extent, on constitutive Ca2+ influx presumably through a mechanism that involves the CAM/CAMKII axis as a coupling component between constitutive Ca2+ influx and activation of survival signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号