首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity and hormonal regulation of NAD- and NADP-linked isocitrate dehydrogenase (EC 1.1.1.41 and 1.1.1.42, respectively) in the brain and liver of rats of various ages were investigated. The activity of NAD-linked isocitrate dehydrogenase of the brain was greater than cytoplasmic or mitochondrial NADP-linked isocitrate dehydrogenase. In contrast, the cytoplasmic NADP-isocitrate dehydrogenase of the liver predominates over both NAD- and mitochondrial NADP-isocitrate dehydrogenases at the three ages studied. The activity of NAD-isocitrate dehydrogenase increased in the brain (139%) and liver (17%) of rats upt o 33 weeks of age and decreased (57 and 39%, respectively) in old rats (85-week-old). The activity of cytoplasmic NADP-isocitrate dehydrogenase was maximum in immature (6-week-old) rat brain and decreased as the age of the rats increased; whereas, in liver, the activity of this enzyme was found to be maximum in adult rats (33-week-old). Brain mitochondrial NADP-isocitrate dehydrogenase activity increased (64%) in adult rats, but in liver it decreased (45 and 33% in 33- and 85-week-old rats, respectively). In both tissues, adrenalectomy and hydrocortisone treatment showed differential age-dependent response. Hydrocortisone-mediated induction of the level of enzymes was inhibited by actinomycin D.  相似文献   

2.
Pathways of carbohydrate metabolism in the adults of Schistosomatium douthitti: were investigated. Histochemical reactions for adenosinetriphosphatase (EC 3.6.1.3) glucose 6-phosphate dehydrogenase (EC 1.1.1.49), phosphogluconate dehydrogenase (EC 1.1.1.43), glycerol-3-phosphate dehydrogenase (EC 1.1.1.8), lactate dehydrogenase (EC 1.1.1.27, 1.1.2.3) isocitrate dehydrogenase (EC 1.1.1.41), succinate dehydrogenase (EC 1.3.99.1), malate dehydrogenase (EC 1.1.1.37), cytochrome oxidase (EC 1.9.3.1), and adenosine triphosphatase (EC 3.6.1.3) were found in the adult worms. Glycogen deposits occurred in the parenchyma.Low oxygen tension immobilized the worms. Tartar emetic, sodium cyanide reduced adult motility in vitro. Manometric experiments demonstrated a respiratory quotient of approximately one. Oxygen uptake was completely inhibited by tartar emetic and partially inhibited by sodium fluoracetate and sodium cyanide. Inhibition by sodium fluoroacetate was partially counteracted by citric acid in the medium.Adults demonstrated an oxygen debt following anaerobic incubation. A maximum of 52% of the glucose consumed under aerobic conditions was excreted as lactic acid. Under anaerobic conditions the amount of lactic acid excreted increased. Acids other than lactic acid were also released. Results indicate that although glycolysis is the major pathway, two additional aerobic pathways also exist, one which is cyanide sensitive and the other cyanide insensitive.  相似文献   

3.
In the subcommissural organ (SCO) of the guinea pig, rat, golden hamster, and mouse the activity and distribution of enzymes related to the energy-supplying metabolism and of some marker enzymes of different cell organelles have been investigated by means of mostly modified histochemical methods. The results were compared with findings in the ciliated ependyma of the ventricular wall and with those in the ependyma of the choroid plexus of the third ventricle. In the ependymal part of the SCO only a moderate activity of hexokinase is observed in its specialized columnar cells whereas a high activity is present both in the ciliated ependyma and the choroid plexus. - The staining pattern of glucose-6-phosphatase is similar to that of hexokinase but this enzyme is found is the SCO only. - Likewise hexokinase, glycogen granules and enzymes related to glycogen metabolism (phosphoglucomutase, uridine-diphosphoglucose pyrophosphorylase, glycogen synthetase and phosphorylase) are regularly found most numerous and active in the nuclear and supra-nuclear area of the ependymal part. These enzymes are less active in both the other ependymal regions. - Uridine-diphosphoglucose dehydrogenase could not be demonstrated in the SCO. The NADP-linked enzymes of the pentose phosphate shunt, glucose-6-phosphate and 6-phosphogluconate dehydrogenase, show a moderate activity which decreases also from the nuclear towards the apical area of the ependymal cells of the SCO. Enzymes of the glycolytic pathway, such as glucosephosphate isomerase, fructose-6-phosphate kinase, fructose-I,6-diphosphate aldolase, glyceraldehyde-3-phosphate and lactate dehydrogenase, are highly active in the SCO and are located mainly in the supranuclear area, too. Fructose-1,6-diphosphatase could not be demonstrated thus indicating that in the SCO the pathway is most probably only glycolytic but not gluconeogenetic. Compared to the ependyma of the ventricular wall and of the choroid plexus, in the SCO the M type subunits of lactate dehydrogenase predominate. Glycolytic enzymes are also very active in the choroid plexus but less in the ciliated ependyma. Compared to the ciliated ependyma and especially to the ependyma of the choroid plexus, the activities of enzymes which are only present in mitochondria (NAD-linked isocitrate dehydrogenase, succinate dehydrogenase, NAD-linked malate dehydrogenase after preextraction, cytochrome oxidase, 3-hydroxybutyrate and glycerolphosphate and glutamate dehydrogenase) are relatively low. Mitochondria are accumulated near the superior pole of the nuclei as well as in the most apical part of the ependymal cells. - The staining pattern of NADP-linked isocitrate and malate dehydrogenase as well as of NADH dehydrogenase suggests that these enzymes are localized both in and out of mitochondria. The extramitochondrial activity of the first two enzymes might be localized in the cytosol. The extramitochondrial activity of NADH dehydrogenase might be localized in the endoplasmic reticulum...  相似文献   

4.
Abstract Cell-free extracts of the photosynthetic eubacterium Rhodomicrobium vannielii contained both NADP and NAD-linked isocitrate dehydrogenase activities. Apparent K m values of 12 μM for NADP, 0.75 mM for NAD, 9.3 μM for isocitrate (NADP utilising) and 8.2 μM for isocitrate (NAD utilising) were determined in such extracts. Four lines of evidence indicated that one enzyme was responsible for the two activities; (i) non-additivity of reaction rates in the presence of both NADP and NAD (ii) the presence of one band which stained for activity with both cofactors on non-denaturing polyacrylamide gels (iii) identical heat inactivation kinetics for both activities (iv) co-elution of both activities after ion-exchange and hydrophobic interaction chromatography. This is the first report of a eubacterial isocitrate dehydrogenase with dual cofactor specificity.  相似文献   

5.
Cercariae of Plagiorchis elegans Rudolphi 1802 collected from experimentally infected snails, Lymnaea palustris, were subjected to various histochemical tests for dehydrogenase systems. A high degree of activity was demonstrated for succinic dehydrogenase (EC 1.3.99.1), malic dehydrogenase (EC 1.1.1.37), isocitric dehydrogenase (EC 1.1.1.41), α-glycerophosphate dehydrogenase (EC 1.1.1.8), and glucose 6-phosphate dehydrogenase (EC 1.1.1.49). These enzymes were present in the tegument, tail, caudal pocket, excretory bladder, acetabulum, and oral sucker, particularly in the muscles around the stylet. Only moderate activity was obtained for lactic dehydrogenase (EC 1.1.1.27) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) at these sites, glutamic dehydrogenase (EC 1.4.1.2) was localized only in the tails of the cercariae and tests for alcohol dehydrogenase (EC 1.1.1.1) were completely negative. The cerebral ganglia and its commissures stained intensely in the tests for succinic, isocitric, α-glycerophosphate, and glucose 6-phosphate dehydrogenase systems. The results indicate the possibility that several energy-producing sequences may be available to these cercariae.  相似文献   

6.
Yeast peroxisomal NADP+-specific isocitrate dehydrogenase (IDP3) contains a canonical type I peroxisomal targeting sequence (a carboxyl-terminal Cys-Lys-Leu tripeptide), and provides the NADPH required for β-oxidation of some fatty acids in that organelle. Cytosolic yeast IDP2 carrying a PTS1 (IDP2+CKL) was only partially localized to peroxisomes, and the enzyme was able to function in lieu of either peroxisomal IDP3 or cytosolic IDP2. The analogous isocitrate dehydrogenase enzyme (IDPA) from Aspergillus nidulans, irrespective of the presence or absence of a putative PTS1, was found to exhibit patterns of dual compartmental distribution and of dual function in yeast similar to those observed for IDP2+CKL. To test a potential cellular limit on peroxisomal levels, authentic yeast IDP3, which is normally strictly peroxisomal, was over-expressed. This also resulted in dual distribution and function of the enzyme in both the cytosol and in peroxisomes, supporting the possibility of a restriction on organellar amounts of IDP.  相似文献   

7.
The specific activities of the enzymes of the tricarboxylic acid cycle; citrate synthase, aconitase, isocitrate dehydrogenase, succinate dehydrogenase, fumarase, and malate dehydrogenase, were determined in early fifth-stage, young and mature adult Obeliscoides cuniculi, the rabbit stomach worm. ∝-Ketoglutarate dehydrogenase activity could not be determined in any fraction. Fumarate reductase activity was found only in the mitochondrial fraction while all other enzymes, including an NADP-dependent malic enzyme were localized in the cytoplasm. Glutamate dehydrogenase, acid and alkaline phosphatase activities were also recorded. High levels of those enzymes acting in the “reversed” direction, i.e. MDH and fumarase relative to the enzymes of the “forward” direction, i.e. citrate synthase, aconitase and isocitrate dehydrogenase suggests that under anaerobic conditions a modified tricarboxylic acid cycle can operate. Some variations in specific activities were apparent as the worms matured but no qualitative differences were observed.  相似文献   

8.
In the green alga Chlamydomonas reinhardtii , nitrogen staravation induced a reversible increase (2-fold) in NAD-isocitrate dehydrogenase (NAD-IDH; EC 1.1.1.41) and NADP-isocitrate dehydrogenase (NADP-IDH; EC 1.1.1.42) activities. Both enzymes were not affected by the concentration of CO2, the dark or the nature of the nitrogen source (nitrate, nitrite, or ammonium). When cells growing autotrophically were transferred to heterotrophic conditions, a 40% reduction of the NAD-IDH activity was detected, a 2-fold increase of NADP-IDH was observed and isocitrate lyase (ICL; EC 4.1.3.1) activity was induced. The replacement of autotrophic conditions led to the initial activity levels. NAD- and NADP-IDH activities showed markedly different patterns of increase in synchronous cultures of this alga obtained by 12 h light/12 h dark transitions. While NAD-IDH increased in the last 4 h of the dark period, NADP-IDH increased during the last 4 h of the light period, remaining constant for the rest of the cycle.  相似文献   

9.
This study revealed that cytosolic aconitase (ACO, EC 4.2.1.3) and isocitrate lyase (ICL, EC 4.1.3.1, marker of the glyoxylate cycle) are active in germinating protein seeds of yellow lupine. The glyoxylate cycle seems to function not only in the storage tissues of food-storage organs, but also in embryonic tissue of growing embryo axes. Sucrose (60 mM) added to the medium of in vitro culture of embryo axes and cotyledons decreased activity of lipase (LIP, EC 3.1.1.3) and activity of glutamate dehydrogenase (NADH-GDH, EC 1.4.1.2). The opposite effect was caused by sucrose on activity of cytosolic ACO, ICL as well as NADP+-dependent (EC 1.1.1.42) and NAD+-dependent (EC 1.1.1.41) isocitrate dehydrogenase (NADP-IDH and NAD-IDH, respectively); activity of these enzymes was clearly stimulated by sucrose. Changes in the activity of LIP, ACO, NADP-IDH, and NAD-IDH caused by sucrose were based on modifications in gene expression because corresponding changes in the enzyme activities and in the mRNA levels were observed. The significance of cytosolic ACO and NADP-IDH in carbon flow from storage lipid to amino acids, as well as the peculiar features of storage lipid breakdown during germination of lupine seeds are discussed.  相似文献   

10.
Mitochondria were isolated from tomato (Lycopersicon esculentum L.) fruit at the mature green, orange-green and red stages and from fruit artificially suspended in their ripening stage. The specific activities of citrate synthase (EC 4.1.3.7), malate dehydrogenase (EC 1.1.1.37), NAD-linked isocitrate dehydrogenase (EC 1.1.1.41) and NAD-linked malic enzyme (EC 1.1.1.38) were determined. The specific activities of all these enzymes fell during ipening, although the mitochondria were fully functional as demonstrated by the uptake of oxygen. The fall in activity of mitochondrial malate dehydrogenase was accompanied by a similar fall in the activity of the cytosolic isoenzyme. Percoll-purified mitochondria isolated from mature green fruit remained intact for more than one week and at least one enzyme, citrate synthase, did not exhibit the fall in specific activity found in normal ripening fruit.  相似文献   

11.
Activities of six enzymes from extracts of separated embryos and gametophytes of tamarack [ Larix laricina (Du Roi) K. Koch] seeds were assayed at various stages of imbibition and germination. On a per seed part basis, activities of 6-phosphogluconate dehydrogenase (6-PGD, EC 1.1.1.44), glucose-6-phosphate dehydrogenase (G-6-PD, EC 1.1.1.49), malate dehydrogenase (NAD+–MDH, EC 1.1.1.37), isocitrate dehydrogenase (NADP+–IDH, EC 1.1.1.42), soluble peroxidase (PER, EC 1.11.1.7), and acid phosphatase (ACP, EC 3.1.3.2) from both the embryo and gametophyte tissues generally increased slowly, following cold stratification for 30 days and imbibition under germinating conditions for 5 days, but then increased at a faster rate with emergence of the radicle and subsequent growth of the seedling. The rate of increase of enzyme activity was highest for PER. Soluble protein levels also increased with imbibition and germination, with about 3 times greater levels present in the gametophyte than in the embryo. Heat inactivation experiments showed that, except for G-6-PD, activities were stable up to 40°C. Inactivation occurred at lower temperatures for G-6-PD, while higher temperatures were required for PER. Incubation of extracts for 7 days at 4°C indicated that loss of enzyme activity was greatest for G-6-PD (3.9% remaining) and least for PER and ACP (94 and 95% remaining, respectively).  相似文献   

12.
In order to obtain a quantitative estimate of the capacity of the pancreatic islets for provision of cytoplasmic acetyl-coenzyme A and for the turnover of nicotinamide adenine dinucleotide phosphate and its reduced form (NADP+/NADPH), the following enzymes were assayed in islets taken from New Zealand Obese mice: adenosine triphosphate citrate lyase (EC 4.1.3.8), malate dehydrogenase (decarboxylating) (NADP+) (EC 1.1.1.40), glutathione reductase (EC 1.6.4.2) and isocitrate dehydrogenase (NADP+) (EC 1.1.1.42). In addition, the activity of isocitrate dehydrogenase (NAD+) (EC 1.1.1.41) was determined. For comparative purposes the activities in exocrine pancreas, liver, heart muscle, kidney cortex and skeletal muscle were also determined. Specimens of pancreatic islets and the other tissues were microdissected from freeze-dried sections. In comparison with the other tissues, adenosine triphosphate citrate lyase was particularly active in the islets. The NADP+/NAPH-converting enzymes had activities, which suggested a rapid turnover of the islet NADP+/NADPH pool.  相似文献   

13.
A NADP+-specific isocitrate dehydrogenase (EC 1.1.1.42) was isolated and purified over 400-fold from Anacystis nidulans. The enzyme activity responded slowly to rapid changes in ligand (NADP+, isocitrate, Mg2+-ions) or enzyme concentration as well as to rapid changes in temperature. These are properties characteristic of the hysteretic enzymes. In addition, the enzyme activity was subject to product (-ketoglutarate) inhibition. ATP, ADP and CDP also inhibited the enzyme. Unlike several other cyanobacterial enzymes, the isocitrate dehydrogenase of Anacystis is not under redox control.  相似文献   

14.
Quantitative histochemistry (scanning microphotometry) was used to determine the activities of the mitochondrial enzymes NAD-linked isocitrate dehydrogenase (EC 1.1.1.41),l-glutamate dehydrogenase (EC 1.4.1.3) and GABA transaminase (EC 2.6.1.19) in various layers of the hippocampus (middle one third) of young (3–4 months old) and memory-impaired aged rats (28–30 months old). For comparison, determinations of cytochrome c oxidase (EC 1.9.3.1) as a marker for mitochondria and energy metabolism were also performed. The study showed that there was a layered reaction pattern in the hippocampus and that the cellular distribution and the levels of enzyme activity were different. However, the activities of the different enzymes (excepting GABA transaminase and cytochrome c oxidase) were significantly correlated in the hippocampus in both age groups. Age-dependent changes were only observed for NAD-linked isocitrate dehydrogenase and GABA transaminase (significant increases of activities in some layers of the hippocampus, preferentially in the terminal field of the perforant path). From the present study it is concluded that,1. the enzymatic complement of mitochondria in neurons and glia depends upon layer specific metabolic processes of the hippocampus (also with respect to glutamatergic and GABAergic terminal fields) indicating a layer specific interaction of the enzymes studied to produce or catabolize glutamate and GABA, and2. the age dependent changes of the studied enzymes are very restricted.  相似文献   

15.
Sequence alignment of pig mitochondrial NADP-dependent isocitrate dehydrogenase with eukaryotic (human, rat, and yeast) and Escherichia coli isocitrate dehydrogenases reveals that Tyr316 is completely conserved and is equivalent to the E. coli Tyr345, which interacts with the 2'-phosphate of NADP in the crystal structure [Hurley et al., Biochemistry 30 (1991) 8671-8678]. Lys321 is also completely conserved in the five isocitrate dehydrogenases. Either an arginine or lysine residue is found among the enzymes from other species at the position corresponding to the pig enzyme Arg314. While Arg323 is not conserved among all species, its proximity to the coenzyme site makes it a good candidate for investigation. The importance of these four amino acids to the function of pig mitochondrial NADP-isocitrate dehydrogenase was studied by site-directed mutagenesis. Mutants (R314Q, Y316F, Y316L, K321Q, and R323Q) were generated by a megaprimer polymerase chain reaction method. Wild-type and mutant enzymes were expressed in E. coli and purified to homogeneity. All mutant and wild-type enzymes exhibited comparable molecular weights indicative of the dimeric enzyme. Mutations do not cause an appreciable change in enzyme secondary structure as revealed by circular dichroism measurements. The kinetic parameters (V(max) and K(M) values) of K321Q and R323Q are similar to those of wild-type, indicating that Lys321 and Arg323 are not involved in enzyme function. R314Q exhibits a 10-fold increase in K(M) for NADP as compared to that of wild-type, while they have comparable V(max) values. These results suggest that Arg314 contributes to the affinity between the enzyme and NADP. The hydroxyl group of Tyr316 is not required for enzyme function since Y316F exhibits similar kinetic parameters to those of wild-type. Y316L shows a 4-fold increase in K(M) for NADP and a decrease in V(max) as compared to wild-type, suggesting that the aromatic ring of the Tyr of isocitrate dehydrogenase contributes to the affinity for coenzyme, as well as to catalysis. The K(i) for NAD of R314Q, Y316F, and Y316L is comparable to that of wild-type, indicating that the Arg314 and Tyr316 may be located near the 2'-phosphate of enzyme-bound NADP.  相似文献   

16.
Isocitrate dehydrogenase (IDH) activities were measured in mitochondria isolated from aerial parts of 21-day-old spruce (Picea abies L. Karst.) seedlings. Mitochondria were purified by two methods, involving continuous and discontinuous Percoll gradients. Whatever the method of purification, the mitochondrial outer membrane was about 69% intact, and the mitochondria contained very low cytosolic, chloroplastic and peroxisomal contaminations. Nevertheless, as judged by the recovery of fumarase activity, purification on a continuous 28% Percoll gradient gave the best yield in mitochondria, which exhibited a high degree of inner membrane intactness (91%). The purified mitochondria oxidized succinate and malate with good respiratory control and ADP/O ratios. The highest oxidation rate was obtained with succinate as substrate, and malate oxidation was improved (+ 60%) by addition of exogenous NAD+. Experiments using standard respiratory chain inhibitors indicated that, in spruce mitochondria, the alternative pathway was present. Both NAD+-isocitrate dehydrogenase (EC 1.1.1.41) and NADP+-isocitrate dehydrogenase (EC 1.1.1.42) were present in the mitochondrial matrix fraction, and NAD+-IDH activity was about 2-fold higher than NADP+-IDH activity. The NAD+-IDH showed sigmoidal kinetics in response to isocitrate and standard Michaelis-Menten kinetics for NAD+ and Mg2+. The NADP+-IDH, in contrast, displayed lower Km values. For NAD+-IDH the pH optimum was at 7.4, whereas NADP+-IDH exhibited a broad pH optimum between 8.3 and 9. In addition, NAD+-IDH was more thermolabile. Adenine nucleotides and 2-oxoglutarate were found to inhibit NAD(P)+-IDH activities only at high concentrations.  相似文献   

17.
It is well known that proteolysis often occurs after rupture of metazoan cells. Thus proteins isolated from extracts may not be representative of their native cellular counterparts. In the present research, extensive proteolysis was observed in crude extracts of the freeliving soil nematode Caenorhabditis elegans and the parasitic nematode Ascaris suum. Phenylmethylsulfonyl fluoride (PMSF) reduced the loss in activity of isocitrate lyase (EC 4.1.3.1), fumarase (EC 4.2.1.2), and citrate synthase (EC 4.1.3.7) in extracts of C. elegans but had little or no effect upon loss of malate synthase (EC 4.1.3.2). Catalase (EC 1.11.1.6) was stable. The loss of isocitrate lyase and citrate synthase was less pronounced in extracts of 22-day-old embryos of A. suum. Catalase decayed in these extracts. The addition of PMSF reduced the loss in all three of these activities. Fumarase was stable. The number of active fragments of isocitrate lyase recovered after filtration on Sephadex G-200 increased with the length of storage of crude extracts in the absence of PMSF at 4 C. Even in the presence of PMSF five activity peaks were observed after storage of extracts of C. elegans at 4 C for 72 hr. The molecular weights of active species ranged between 549,000 and 128,000 for isocitrate lyase in extracts of either C. elegans or A. suum. The 549,000- and 214,000-dalton species of isocitrate lyase from A. suum were much more labile at 50 C than the 543,000- and 195,000-dalton species from C. elegans.  相似文献   

18.
Kay Denyer  Alison M. Smith 《Planta》1988,173(2):172-182
In order to determine whether the enzymes required to convert triose phosphate to acetyl CoA were present in pea (Pisum sativum L.) seed plastids, a rapid, mechanical technique was used to isolate plastids from developing cotyledons. The plastids were intact and the extraplastidial contamination was low. The following glycolytic enzymes, though predominantly cytosolic, were found to be present in plastids: glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12), phosphoglycerate kinase (EC 2.7.2.3), and pyruvate kinase(EC 2.7.1.40). Evidence is presented which indicates that plastids also contained low activities of enolase (EC 4.2.1.11) and phosphoglycerate mutase (EC 2.7.5.3). Pyruvate dehydrogenase, although predominantly mitochondrial, was also present in plastids. The plastidial activities of the above enzymes were high enough to account for the rate of lipid synthesis observed in vivo.Abbreviations FPLC fast protein liquid chromatography - PPi pyrophosphate  相似文献   

19.
The maximum extractable activities of twenty-one photosynthetic and glycolytic enzymes were measured in mature leaves of Mesembryanthemum crystallinum plants, grown under a 12 h light 12 h dark photoperiod, exhibiting photosynthetic characteristics of either a C3 or a Crassulacean acid metabolism (CAM) plant. Following the change from C3 photosynthesis to CAM in response to an increase in the salinity of in the rooting medium from 100 mM to 400 mM NaCl, the activity of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) increased about 45-fold and the activities of NADP malic enzyme (EC 1.1.1.40) and NAD malic enzyme (EC 1.1.1.38) increased about 4- to 10-fold. Pyruvate, Pi dikinase (EC 2.7.9.1) was not detected in the non-CAM tissue but was present in the CAM tissue; PEP carboxykinase (EC 4.1.1.32) was detected in neither tissue. The induction of CAM was also accompanied by large increases in the activities of the glycolytic enzymes enolase (EC 4.2.1.11), phosphoglyceromutase (EC 2.7.5.3), phosphoglycerate kinase (EC 2.7.2.3), NAD glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), and glucosephosphate isomerase (EC 2.6.1.2). There were 1.5- to 2-fold increases in the activities of NAD malate dehydrogenase (EC 1.1.1.37), alanine and aspartate aminotransferases (EC 2.6.1.2 and 2.6.1.1 respectively) and NADP glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13). The activities of ribulose-1,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39), fructose-1,6-bisphosphatase (EC 3.1.3.11), phosphofructokinase (EC 2.7.1.11), hexokinase (EC 2.7.1.2) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49) remained relatively constant. NADP malate dehydrogenase (EC 1.1.1.82) activity exhibited two pH optima in the non-CAM tissue, one at pH 6.0 and a second at pH 8.0. The activity at pH 8.0 increased as CAM was induced. With the exceptions of hexokinase and glucose-6-phosphate dehydrogenase, the activities of all enzymes examined in extracts from M. crystallinum exhibiting CAM were equal to, or greater than, those required to sustain the maximum rates of carbon flow during acidification and deacidification observed in vivo. There was no day-night variation in the maximum extractable activities of phosphoenolpyruvate carboxylase, NADP malic enzyme, NAD malic enzyme, fructose-1,6-bisphosphatase and NADP malate dehydrogenase in leaves of M. crystallinum undergoing CAM.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

20.
SYNOPSIS. The activities of glucose-6-phosphate dehydrogenase (G-6-PD) (EC No. 1.1.1.49), 6-phosphogluconate dehydrogenase (PGD) (EC No. 1.1.1.44), and isocitrate dehydrogenase (ICD) (EC No. 1.1.1.42) from promastigotes of Leishmania donovani strain 3S grown at 25 C in modified Tobie's (mT) medium and from promastigotes of the 37 C-adapted substrain of this strain cultivated in the mT at 37 C were assayed at 25 and 37 C. At 25 C ICD from both the strain and the substrain had the highest, and PGD, the lowest activity; the activity of G-6-PD was intermediate, but much closer to that of ICD. Irrespective of the temperature of the assay, the activities of G-6-PD and ICD from the 37 C substrain were significantly higher than those of these enzymes from the parental strain; however, the activity of PGD from the 25 C strain was slightly higher than that of this dehydrogenase from the 37 C-adapted stock. No significant activity losses of G-6-PD and ICD from either the strain or the substrain were noted after incubation of the extracts in the presence of 0.25 M sucrose at 37 C for 2 hr. PGD was unstable in such extracts, but it could be rendered stable by the addition of 4 mM 6-phosphogluconate. G-6-PD was the least and ICD the most dependent on Mg2+ ions. In the 15–25 C range, the Q10 values of the enzymes from the 25 C strain were 2.83, 2.5, and 2.63 for G-6-PD, PGD, and ICD, respectively. These values for the respective enzymes in the 25–35 C range were 2.06, 1.67, and 1.62. The Q10 values of the enzymes from the 37 C substrain in the 15–25 C range were 2.06 for G-6-PD, 3.25 for PGD, and 2.77 for ICD; in the 25–35 C range, the corresponding values were 1.67, 1.46, and 1.83. Cultivation of the 37 C substrain at 25 C was accompanied by a drop in G-6-PD and ICD activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号