首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transport of urocortin, a potent satiety peptide, occurs at the blood-brain barrier of the mouse. Endocytosis of urocortin by the cerebral microvessel endothelial cells composing the blood-brain barrier is a rate-limiting step of this transport, but the cellular mechanisms involved have not been fully elucidated. The presence of both CRH receptors R1 and R2 in isolated cerebral microvessels shown in this study suggested that both subtypes might mediate urocortin transport. The roles of these two receptors in the endocytosis and signal transduction of urocortin were tested by overexpression studies in human embryonic kidney 293 cells. Both receptors led to a significant increase of binding and endocytosis of radiolabeled urocortin. CRHR1-mediated urocortin endocytosis was blocked by astressin (antagonist for both CRHRs), whereas CRHR2-mediated urocortin endocytosis was also blocked by antisauvagine 30 (selective CRHR2beta antagonist). Chlorpromazine, filipin, and nystatin had no effect on urocortin endocytosis, indicating the lack of significant involvement of clathrin or caveolae membrane microdomains. Both CRHR1 and CRHR2 were able to mediate the ligand-induced increase of cAMP production, suggesting that the overexpressed receptors were biologically active. Elevation of intracellular cAMP by forskolin or dibutyryl-cAMP, however, did not show acute modulation of the binding and endocytosis of urocortin. Despite the substantial intracellular degradation of endocytosed urocortin in cells overexpressing either CRHR1 or CRHR2, intact urocortin could be exocytosed during the 1-h study interval. We conclude that both CRHR1 and CRHR2 play a facilitatory role in the non-clathrin-, non-caveolae-mediated endocytosis and intracellular signal transduction of this potent peptide.  相似文献   

2.
Somatostatin receptor (SSTR) endocytosis influences cellular responsiveness to agonist stimulation and somatostatin receptor scintigraphy, a common diagnostic imaging technique. Recently, we have shown that SSTR1 is differentially regulated in the endocytic and recycling pathway of pancreatic cells after agonist stimulation. Additionally, SSTR1 accumulates and releases internalized somatostatin-14 (SST-14) as an intact and biologically active ligand. We also demonstrated that SSTR2A was sequestered into early endosomes, whereas internalized SST-14 was degraded by endosomal peptidases and not routed into lysosomal degradation. Here, we examined the fate of peptide agonists in rat insulinoma cells expressing SSTR3 by biochemical methods and confocal laser scanning microscopy. We found that [(125)I]Tyr11-SST-14 rapidly accumulated in intracellular vesicles, where it was degraded in an ammonium chloride-sensitive manner. In contrast, [(125)I]Tyr1-octreotide accumulated and was released as an intact peptide. Rhodamine-B-labeled SST-14, however, was rapidly internalized into endosome-like vesicles, and fluorescence signals colocalized with the lysosomal marker protein cathepsinD. Our data show that SST-14 was cointernalized with SSTR3, was uncoupled from the receptor, and was sorted into an endocytic degradation pathway, whereas octreotide was recycled as an intact peptide. Chronic stimulation of SSTR3 also induced time-dependent downregulation of the receptor. Thus, the intracellular processing of internalized SST-14 and the regulation of SSTR3 markedly differ from the events mediated by the other SSTR subtypes.  相似文献   

3.
Astrocytic leptin receptors (ObR) can be up-regulated in conditions such as adult-onset obesity. To determine whether the levels and subtypes of astrocytic ObR modulate leptin transport, we co-cultured hCMEC/D3 human brain endothelial cells and C6 astrocytoma cells in the Transwell system, and tested leptin permeation from apical to basolateral chambers. In comparison with hCMEC alone, co-culture of C6 cells reduced the permeability of paracellular markers and leptin. Unexpectedly, ObRb over-expression in C6 cells increased leptin permeation whereas ObRa over-expression showed no effect when compared with the control group of pcDNA-transfected C6 cells. By contrast, the paracellular permeability to the sodium fluorescein control was unchanged by over-expression of ObR subtypes. Leptin remained intact after crossing the monolayer as shown by HPLC and acid precipitation, and this was not affected by C6 cell co-culture or the over-expression of different ObR subtypes. Thus, increased expression of ObRb (and to a lesser extent ObRe) in C6 cells specifically increased the permeation of leptin across the hCMEC monolayer. Consistent with the evidence that the most apparent regulatory changes of ObR during obesity and inflammation occur in astrocytes, the results indicate that astrocytes actively regulate leptin transport across the blood-brain barrier, a mechanism independent of reduction of paracellular permeability.  相似文献   

4.
Divergent roles of SHP-2 in ERK activation by leptin receptors   总被引:21,自引:0,他引:21  
The protein tyrosine phosphatase SHP-2 has been proposed to serve as a regulator of leptin signaling, but its specific roles are not fully examined. To directly investigate the role of SHP-2, we employed dominant negative strategies in transfected cells. We show that a catalytically inactive mutant of SHP-2 blocks leptin-stimulated ERK phosphorylation by the long leptin receptor, ObRb. SHP-2, lacking two C-terminal tyrosine residues, partially inhibits ERK phosphorylation. We find similar effects of the SHP-2 mutants after examining stimulation of an ERK-dependent egr-1 promoter-construct by leptin. We also demonstrate ERK phosphorylation and egr-1 mRNA expression in the hypothalamus by leptin. Analysis of signaling by ObRb lacking intracellular tyrosine residues or by the short leptin receptor, ObRa, enabled us to conclude that two pathways are critical for ERK activation. One pathway does not require the intracellular domain of ObRb, whereas the other pathway requires tyrosine residue 985 of ObRb. The phosphatase activity of SHP-2 is required for both pathways, whereas activation of ERK via Tyr-985 of ObRb also requires tyrosine phosphorylation of SHP-2. SHP-2 is thus a positive regulator of ERK by leptin receptors, and both the adaptor function and the phosphatase activity of SHP-2 are critical for this regulation.  相似文献   

5.
6.
The transferrin receptor is a target protein for phosphorylation by activated intracellular protein kinase C (May, W. S., Sahyoun, N., Jacobs, S., Wolf, M., and Cuatrecasas, P. (1985) J. Biol. Chem. 260, 9419-9426). Recently we reported that the potent tumor-promoting agent phorbol diester or a synthetic diacylglycerol could mediate rapid down-regulation of the surface transferrin receptor in association with receptor phosphorylation in HL60 leukemic cells and suggested that this phosphorylation may provide a signal for receptor internalization. In this communication we have tested experimentally the predictions generated by the hypothesis that receptor phosphorylation may play such a role in the intracellular cycling of the transferrin receptor. Results indicate that phorbol diester-stimulated phosphorylation occurs stoichiometrically only on the surface-oriented receptor and precedes internalization. Using a specific inhibitor of protein kinase C, it was found that both phorbol diester-mediated receptor phosphorylation and down-regulation could be antagonized. While the mechanism of internalization of the phosphorylated receptor is not clear, phorbol diester treatment significantly increases the rate constant for endocytosis from 0.183 to 0.462 min-1, while inhibiting only slightly the rate constant for exocytosis of the internalized receptor from 0.113 to 0.079 min-1. Thus, we conclude that phorbol diester treatment affects intracellular cycling of receptors and establishes a new steady state distribution of surface and intracellular receptors. These data support a role for receptor phosphorylation as a trigger for internalization primarily by stimulating the process of transferrin receptor endocytosis while affecting the subsequent exocytosis of the receptor cycling only slightly.  相似文献   

7.
Leptin, the ob gene product secreted by adipocytes, controls overall energy balance. We previously showed that leptin administration to leptin-deficient obese (ob/ob) mice suppressed mRNA expression and activity of renal 25-hydroxyvitamin D(3)-1alpha-hydroxylase (CYP27B1). In leptin receptor-deficient (db/db) mice, we presently examined whether leptin affects 1alpha-hydroxylase expression in renal tubules through the active form of the leptin receptor (ObRb). Elevated serum concentrations of calcium and 1,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)] in untreated ob/ob mice showed sharp reduction with leptin administration (4 mg/kg, i.p. every 12h for 2 days); no such reduction of elevation occurred in db/db mice. ObRb mRNA was expressed in kidney, brain, fat, lung, and bone in wild-type and ob/ob mice, but not db/db mice. The ob/ob and db/db mice showed large increases in renal 1alpha-hydroxylase mRNA expression and activity. Leptin administration (4 mg/kg) completely abrogated these increases in ob/ob but not db/db mice. Renal 25-hydroxyvitamin D(3)-24-hydroxylase (CYP24) mRNA synthesis also was greatly elevated in ob/ob and db/db mice; excesses decreased significantly with leptin administration in ob/ob mice, but increased in db/db mice. Renal tubular cells in primary culture expressed mRNAs including proximal tubules markers (1alpha-hydroxylase and megalin), parathyroid hormone receptor, and vitamin D receptor. Calcitonin receptor mRNA, synthesized mainly in distal tubules, was scant, indicating that most cultured cells were from proximal tubules. Cells did not express ObRb mRNA. Forskolin exposure at 10(-6)M for 3 or 6h significantly increased 1alpha-hydroxylase mRNA. Leptin at 10(-6)M did not change mRNA expression in either presence or absence of forskolin. Accordingly, leptin attenuates renal 1alpha-hydroxylase gene expression through ObRb. Furthermore, leptin appears to act indirectly on renal proximal tubules to regulate 1alpha-hydroxylase gene expression.  相似文献   

8.
Sustained activation of most G protein-coupled receptors causes a time-dependent reduction of receptor density in intact cells. This phenomenon, known as down-regulation, is believed to depend on a ligand-promoted change of receptor sorting from the default endosome-plasma membrane recycling pathway to the endosome-lysosome degradation pathway. This model is based on previous studies of epidermal growth factor (EGF) receptor degradation and implies that receptors need to be endocytosed to be down-regulated. In stable clones of L cells expressing beta(2)-adrenergic receptors (beta(2)ARs), sustained agonist treatment caused a time-dependant decrease in both beta(2)AR binding sites and immuno-detectable receptor. Blocking beta(2)AR endocytosis with chemical treatments or by expressing a dominant negative mutant of dynamin could not prevent this phenomenon. Specific blockers of the two main intracellular degradation pathways, lysosomal and proteasome-associated, were ineffective in preventing beta(2)AR down-regulation. Further evidence for an endocytosis-independent pathway of beta(2)AR down-regulation was provided by studies in A431 cells, a cell line expressing both endogenous beta(2)AR and EGF receptors. In these cells, inhibition of endocytosis and inactivation of the lysosomal degradation pathway did not block beta(2)AR down-regulation, whereas EGF degradation was inhibited. These data indicate that, contrary to what is currently postulated, receptor endocytosis is not a necessary prerequisite for beta(2)AR down-regulation and that the inactivation of beta(2)ARs, leading to a reduction in binding sites, may occur at the plasma membrane.  相似文献   

9.
Soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins mediate cellular membrane fusion events and provide a level of specificity to donor-acceptor membrane interactions. However, the trafficking pathways by which individual SNARE proteins are targeted to specific membrane compartments are not well understood. In neuroendocrine cells, synaptosome-associated protein of 25 kDa (SNAP25) is localized to the plasma membrane where it functions in regulated secretory vesicle exocytosis, but it is also found on intracellular membranes. We identified a dynamic recycling pathway for SNAP25 in PC12 cells through which plasma membrane SNAP25 recycles in approximately 3 h. Approximately 20% of the SNAP25 resides in a perinuclear recycling endosome-trans-Golgi network (TGN) compartment from which it recycles back to the plasma membrane. SNAP25 internalization occurs by constitutive, dynamin-independent endocytosis that is distinct from the dynamin-dependent endocytosis that retrieves secretory vesicle constituents after exocytosis. Endocytosis of SNAP25 is regulated by ADP-ribosylation factor (ARF)6 (through phosphatidylinositol bisphosphate synthesis) and is dependent upon F-actin. SNAP25 endosomes, which exclude the plasma membrane SNARE syntaxin 1A, merge with those derived from clathrin-dependent endocytosis containing endosomal syntaxin 13. Our results characterize a robust ARF6-dependent internalization mechanism that maintains an intracellular pool of SNAP25, which is compatible with possible intracellular roles for SNAP25 in neuroendocrine cells.  相似文献   

10.
To increase the sensitivity of fluorescence in situ hybridization (FISH) for detection of low-abundance mRNAs, we performed FISH on cryostat sections of rat hypothalamus with biotin-labeled riboprobes to leptin receptor (ObRb) and amplified the signal by combining tyramide signal amplification (TSA) and Enzyme-Labeled Fluorescent alkaline phosphatase substrate (ELF) methods. First, TSA amplification was done with biotinylated tyramide. Second, streptavidin-alkaline phosphatase was followed by the ELF substrate, producing a bright green fluorescent reaction product. FISH signal for ObRb was undetectable when TSA or ELF methods were used alone, but intense ELF FISH signal was visible in hypothalamic neurons when the ELF protocol was preceded by TSA. The TSA-ELF was combined with FISH for pro-opiomelanocortin (POMC) and neuropeptide Y (NPY) mRNAs by hybridizing brain sections in a cocktail containing digoxigenin-labeled riboprobes to NPY or POMC mRNA and biotin-labeled riboprobes to ObRb mRNA. Dioxigenin-labeled NPY or POMC mRNA hybrids were subsequently detected first with IgG-Cy3. Then biotin-labeled leptin receptor hybrids were detected with the TSA-ELF method. Combining the ELF and TSA amplification techniques enabled FISH detection of scarce leptin receptor mRNAs and permitted the identification of leptin receptor mRNA in cells that also express NPY and POMC gene products.  相似文献   

11.
Leptin is produced by adipose tissue, and its concentration in plasma is related to the amount of fat in the body. The leptin receptor (OBR) is a member of the class I cytokine receptor family and several different isoforms, produced by alternative mRNA splicing are found in many tissues, including the hypothalamus. The two predominant isoforms includes a long form (OBR) with an intracellular domain of 303 amino acids and a shorter form (OBR) with an intracellular domain of 34 amino acids. Since OBR, is mainly expressed in the hypotalamus, it has been suggested to be the main signalling form. The peripheral production of leptin by adipocyte tissue and its effects as a signal of satiety in the central nervous system imply that leptin gains access to regions of the brain regulating in energy balance by crossing the blood-brain barrier. In an attempt to characterize the intracellular transport of leptin, we have followed binding internalization and degradation of leptin in HEK293 cells. We have also monitored the intracellular transport pathway of fluorescent conjugated leptin in HEK293 cells. Phenylarsine oxide, a general inhibitor of endocytosis, as well as incubation at mild hypertonic conditions, prevented the uptake of leptin, confirming a receptor-mediated internalization process. When internalized, 125I-leptin was rapidly accumulated inside the cells and reached a maximum after 10 min. After 70 minutes about 40-50% of total counts in each time point were found in the medium as TCA-soluble material. Leptin sorting, at the level of early endosomes, did not seem to involve recycling endosomes, since FITC-leptin was sorted from Cy3-transferrin containing compartments at 37 degrees C. At 45 minutes of continuos internalization, FITC-leptin appeared mainly accumulated in late endocytic structures colocalizing with internalized rhodamine coupled epidermial growth factor (EGF) and the lysosomal marker protein lamp-1. The transport of leptin was also shown to engage a monensin and bafilomycin sensitive degradation process in lysosomes. Together, our results provide novel data concerning the uptake, intracellular localization and transport of leptin.  相似文献   

12.
Binding of tissue inhibitor of metalloproteinase-2 (TIMP-2) to pro-MMP-2 and mature membrane type-1 MMP (MT1-MMP) on the cell surface is required for activation of MMP-2. It has been reported that following binding to cell surface receptors, TIMP-2 undergoes endocytosis and extensive degradation in lysosomes. The purpose of this study was to reexamine the fate of TIMP-2 following binding to transfected HT1080 cell surface MT1-MMP at 4 degrees C. Following 37 degrees C incubation, 125I-TIMP-2 release, endocytosis, and degradation were characterized under varying conditions. More than 85% of the total 125I-TIMP-2 bound to cells was released as intact functional molecules; <15% was degraded. Transfection of HT1080 cells with dominant negative mutant dynamin cDNA resulted in delayed endocytosis and release of 125I-TIMP-2 from cells. Pharmacologic agents that induce clustering of cell surface receptors (concanavalin A) and interfere with endosomal/lysosomal function (bafilomycin A(1)) resulted in enhanced binding of 125I-TIMP-2 to cell surface receptors. Abrogation of activation of proMT1-MMP with a furin inhibitor prevented binding and endocytosis of 125I-TIMP-2. Biotinylation of cell surface MT1-MMP followed by Western blotting confirmed the presence of mature MT1-MMP on the cell surface and degraded MT1-MMP in the intracellular compartment. In conclusion, these studies demonstrate that TIMP-2 is released from cells primarily as an intact functional molecule following binding to MT1-MMP on the cell surface.  相似文献   

13.
The cDNAs encoding the normal human insulin receptor (HIRc) and a receptor that had lysine residue 1018 replaced by alanine (A/K1018) were used to transfect Rat 1 fibroblasts. Lysine 1018 is a critical residue in the ATP binding site of the tyrosine kinase domain in the receptor beta-subunit. Untransfected Rat 1 cells express 1700 endogenous insulin receptors. Expressed HIRc receptors had levels of insulin-stimulable autophosphorylation in vitro comparable to normal receptors, whereas A/K1018 receptors had less than 1% of that activity. Stimulation by insulin of HIRc receptors in situ in intact cells led to phosphorylation of beta-subunit tyrosine residues and activation of tyrosine kinase activity that could be preserved and assayed in vitro after receptor purification. In contrast, A/K1018 receptors showed no such activation, either of autophosphorylation or of kinase activity toward histone. Cells expressing HIRc receptors display enhanced sensitivity to insulin of 2-deoxyglucose transport and glycogen synthase activity. This increased sensitivity was proportional to insulin receptor number at low but not at high levels of receptor expression. A/K1018 receptors were unable to mediate these biologic effects and actually inhibited insulin's ability to stimulate glucose transport and glycogen synthase through the endogenous Rat 1 receptors. Expressed HIRc receptors mediated insulin internalization and degradation, whereas A/K1018 receptors mediated little, if any. Endocytotic uptake of the expressed A/K1018 insulin receptors was also markedly depressed compared to normal receptors. Unlike HIRc receptors, A/K1018 receptors also fail to undergo down-regulation after long (24 h) exposures to high (170 nM) concentrations of insulin. We conclude the following. 1) Normal human insulin receptors expressed in Rat 1 fibroblasts display active tyrosine-specific kinase, normal intracellular itinerary after endocytosis, and normal coupling to insulin's biologic effects. 2) A receptor mutated to alter the ATP binding site in the tyrosine kinase domain had little if any tyrosine kinase activity. 3) This loss of kinase activity was accompanied by a nearly complete lack of both endocytosis and biologic activity.  相似文献   

14.
Pan W  Tu H  Kastin AJ 《Peptides》2006,27(4):911-916
Endogenous compounds, including ingestive peptides, can interact with the blood-brain barrier (BBB) in different ways. Here we used in vivo and in vitro techniques to examine the BBB permeation of the newly described satiety peptide obestatin. The fate of obestatin in blood and at the BBB was contrasted with that of adiponectin. By the sensitive multiple time-regression method, obestatin appeared to have an extremely fast influx rate to the brain whereas adiponectin did not cross the BBB. HPLC analysis, however, showed the obestatin result to be spurious, reflecting rapid degradation. Absence of BBB permeation by obestatin and adiponectin was in contrast to the saturable transport of human ghrelin reported previously. As a positive control, ghrelin showed saturable binding and endocytosis in RBE4 cerebral microvessel endothelial cells. By comparison, obestatin lacked specific binding and endocytosis, and the small amount internalized showed rapid intracellular degradation before the radioactivity was released by exocytosis. The differential interactions of obestatin, adiponectin, and ghrelin with the BBB illustrate their distinctive physiological interactions with the CNS.  相似文献   

15.
We studied the effects of photoperiod on metabolic profiles, adiposity, and gene expression of hypothalamic appetite-regulating peptides in gonad-intact and castrated Soay rams. Groups of five to six animals were studied 6, 18, or 30 wk after switching from long photoperiod (LP: 16 h of light) to short photoperiod (SP: 8 h of light). Reproductive and metabolic indexes were measured in blood plasma. Expression of neuropeptide Y (NPY), proopiomelanocortin (POMC), and leptin receptor (ObRb) in the arcuate nucleus was measured using in situ hybridization. Testosterone levels of intact animals were low under LP, increased to a peak at 16 wk under SP, and then declined. Voluntary food intake (VFI) was high under LP in both intact and castrated animals, decreased to a nadir at 12-16 wk under SP, and then recovered, but only in intact rams as the reproductive axis became photorefractory to SP. NPY gene expression varied positively and POMC expression varied negatively with the cycle in VFI, with differences between intact and castrate rams in the refractory phase. ObRb expression decreased under SP, unrelated to changes in VFI. Visceral fat weight also varied between the intact and castrated animals across the cycle. We conclude that 1) photoperiodic changes in VFI reflect changes in NPY and POMC gene expression, 2) changes in ObRb gene expression are not necessarily determinants of changes in VFI, 3) gonadal status affects the pattern of VFI that changes with photoperiod, and 4) in the absence of gonadal factors, animals can eat less but gain adiposity.  相似文献   

16.
Trans-differentiation of quiescent hepatic stellate cells (Q-HSCs), which exhibit epithelial and adipocytic features, into myofibroblastic-HSC (MF-HSCs) is a key event in liver fibrosis. Culture models demonstrated that Hedgehog (Hh) pathway activation is required for transition of epithelioid/adipocytic Q-HSCs into MF-HSCs. Hh signaling inhibits adiposity and promotes epithelial-to-mesenchymal transitions (EMTs). Leptin (anti-adipogenic, pro-EMT factor) promotes HSC trans-differentiation and liver fibrosis, suggesting that the pathways may interact to modulate cell fate. This study aimed to determine whether leptin activates Hh signaling and whether this is required for the fibrogenic effects of leptin. Cultures of primary HSCs from lean and fa/fa rats with an inherited ObRb defect were examined. Inhibitors of PI3K/Akt, JAK/STAT, and Hh signaling were used to delineate how ObRb activation influenced Hh signaling and HSC trans-differentiation. Fibrogenesis was compared in wild type and db/db mice (impaired ObRb function) to assess the profibrotic role of leptin. The results demonstrate that leptin-ObR interactions activate Hh signaling with the latter necessary to promote trans-differentiation. Leptin-related increases in Hh signaling required ObR induction of PI3K/Akt, which was sufficient for leptin to repress the epithelioid/adipocytic program. Leptin-mediated induction of JAK/STAT was required for mesenchymal gene expression. Leptin-ObRb interactions were not necessary for HSC trans-differentiation to occur in vitro or in vivo but are important because liver fibrogenesis was attenuated in db/db mice. These findings reveal that leptin activates Hh signaling to alter gene expression programs that control cell fate and have important implications for liver fibrosis and other leptin-regulated processes involving EMTs, including development, obesity, and cancer metastasis.  相似文献   

17.
The receptors for human interferon-gamma (IFN-gamma) on peripheral blood monocytes and various cells of nonhematopoietic origin were thoroughly characterized and compared. The receptors of all cell types exhibited a similar affinity for IFN-gamma (Kd approximately 1 x 10(-10) M), and in all cases receptor-mediated endocytosis and ligand degradation were demonstrated. However, the receptors differed in their molecular weights (95,000 in HeLa cells and 140,000 in monocytes, assuming a 1:1 ligand to receptor ratio) as concluded from experiments of cross-linking to 125I-IFN-gamma. Lower molecular weight species were obtained as well, particularly in monocytes. Such species could represent either degradation products or subunit structures. The monocyte and HeLa receptor responded differently to an excess of ligand. A significant receptor down-regulation was observed when monocytes were incubated with an excess of 125I-IFN-gamma, whereas no such down-regulation was observed in HeLa cells or in normal fibroblasts. This differential response was observed both in the presence or in the absence of a protein synthesis inhibitor. The receptor on monocytes was found to be acid-labile whereas that on HeLa cells was resistant to acid treatment. These and additional experiments indicate that the monocyte receptor is inactivated following internalization, whereas the HeLa receptor retains its structure and recycles back to the cell surface. The difference in the properties and fate of these two receptor subtypes is probably related to the differential functions of IFN-gamma in various cell types.  相似文献   

18.
We investigated the effect of daidzein feeding and estradiol treatment on food intake in cholecystokinin-1 receptor (CCK1R) deficiency, leptin receptor (ObRb) deficiency rats and their wild-type rats. These rats underwent an ovariectomy or a sham operation. For the 5 week experiment, each rat was divided in three groups: control, daidzein (150 mg/kg diet), and estradiol (4.2 μg/rat/day) groups. In both CCK1R+ and CCK1R? rats, daidzein feeding and estradiol treatment significantly decreased food intake. Daidzein feeding significantly reduced food intake in ovariectomized ObRb? rats, although not in ObRb+ rats. Estradiol treatment significantly lowered food intake in ovariectomized ObRb+ and ObRb? rats. In the ovariectomized rats, estradiol treatment significantly increases uterine weight, while daidzein feeding did not change it, suggesting that daidzein might have no or weak estrogenic effect in our experiment. These results suggest that CCK1R and ObRb signalings were not essential for the daidzein- and estradiol-induced anorectic action.  相似文献   

19.
Obesity is associated with marked increases in plasma leptin concentration, and hyperleptinemia is an independent risk factor for coronary artery disease. As a result, the purpose of this investigation was to test the following hypotheses: 1) leptin receptors are expressed in coronary endothelial cells; and 2) hyperleptinemia induces coronary endothelial dysfunction. RT-PCR analysis revealed that the leptin receptor gene is expressed in canine coronary arteries and human coronary endothelium. Furthermore, immunocytochemistry demonstrated that the long-form leptin receptor protein (ObRb) is present in human coronary endothelium. The functional effects of leptin were determined using pressurized coronary arterioles (<130 microm) isolated from Wistar rats, Zucker rats, and mongrel dogs. Leptin induced pharmacological vasodilation that was abolished by denudation and the nitric oxide synthase inhibitor N(omega)-nitro-l-arginine methyl ester and was absent in obese Zucker rats. Intracoronary leptin dose-response experiments were conducted in anesthetized dogs. Normal and obese concentrations of leptin (0.1-3.0 microg/min ic) did not significantly change coronary blood flow or myocardial oxygen consumption; however, obese concentrations of leptin significantly attenuated the dilation to graded intracoronary doses of acetylcholine (0.3-30.0 microg/min). Additional experiments were performed in canine coronary rings, and relaxation to acetylcholine (6.25 nmol/l-6.25 micromol/l) was significantly attenuated by obese concentrations of leptin (625 pmol/l) but not by physiological concentrations of leptin (250 pmol/l). The major findings of this investigation were as follows: 1) the ObRb is present in coronary arteries and coupled to pharmacological, nitric oxide-dependent vasodilation; and 2) hyperleptinemia produces significant coronary endothelial dysfunction.  相似文献   

20.
Incubation of cells with labelled hormone in the presence of the lysosomotropic agent chloroquine produces an enhanced intracellular accumulation of hormone and receptor. Using a pulse-chase paradigm in which cell surface receptors were labelled with 125I-EGF at 4 degrees C, it was found that when 100 microM chloroquine was present in the 37 degrees C chase medium intact hormone was accumulated in the medium. Without chloroquine, low molecular weight (mw) degradation products were found in the medium. The processes of receptor-mediated endocytosis and subcellular distribution of 125I-EGF-receptor complexes were unchanged by chloroquine. The source of the intact hormone accumulating in the medium was therefore an intracellular compartment(s). The 125I-EGF released from the cells could rebind to surface receptors and be re-internalized; rebinding was inhibited by unlabelled EGF or Concanavalin A in the incubation medium. The concentration of unlabelled EGF required to inhibit rebinding was more than three orders of magnitude greater than the amount of 125I-EGF whose rebinding was inhibited. Thus, the 125I-EGF released from intracellular sites was rebound preferentially over exogenous EGF. The possible pathways for secretion of intact 125I-EGF and mechanisms of its preferential rebinding are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号