首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene-inactivation studies point to the involvement of OxyB in catalyzing the first oxidative phenol coupling reaction during glycopeptide antibiotic biosynthesis. The oxyB gene has been cloned and sequenced from the vancomycin producer Amycolatopsis orientalis, and the hemoprotein has been produced in Escherichia coli, crystallized, and its structure determined to 1.7-A resolution. OxyB gave UV-visible spectra characteristic of a P450-like hemoprotein in the low spin ferric state. After reduction to the ferrous state by dithionite or by spinach ferredoxin and ferredoxin reductase, the CO-ligated form gave a 450-nm peak in a UV-difference spectrum. Addition of putative heptapeptide substrates to resting OxyB produced type I changes to the UV spectrum, but no turnover was observed in the presence of ferredoxin and ferredoxin reductase, showing that either the peptides or the reduction system, or both, are insufficient to support a full catalytic cycle. OxyB exhibits the typical P450-fold, with helix L containing the signature sequence FGHGXHXCLG and Cys(347) being the proximal axial thiolate ligand of the heme iron. The structural similarity of OxyB is highest to P450nor, P450terp, CYP119, and P450eryF. In OxyB, the F and G helices are rotated out of the active site compared with P450nor, resulting in a much more open active site, consistent with the larger size of the presumed heptapeptide substrate.  相似文献   

2.
Li Z  Rupasinghe SG  Schuler MA  Nair SK 《Proteins》2011,79(6):1728-1738
The lipoglycopeptide antibiotic teicoplanin has proven efficacy against gram‐positive pathogens. Teicoplanin is distinguished from the vancomycin‐type glycopeptide antibiotics, by the presence of an additional cross‐link between the aromatic amino acids 1 and 3 that is catalyzed by the cytochrome P450 monooxygenase Orf6* (CYP165D3). As a goal towards understanding the mechanism of this phenol‐coupling reaction, we have characterized recombinant Orf6* and determined its crystal structure to 2.2‐Å resolution. Although the structure of Orf6* reveals the core fold common to other P450 monooxygenases, there are subtle differences in the disposition of secondary structure elements near the active site cavity necessary to accommodate its complex heptapeptide substrate. Specifically, the orientation of the F and G helices in Orf6* results in a more closed active site than found in the vancomycin oxidative enzymes OxyB and OxyC. In addition, Met226 in the I helix replaces the more typical Gly/Ala residue that is positioned above the heme porphyrin ring, where it forms a hydrogen bond with a heme iron‐bound water molecule. Sequence comparisons with other phenol‐coupling P450 monooxygenases suggest that Met226 plays a role in determining the substrate regiospecificity of Orf6*. These features provide further insights into the mechanism of the cross‐linking mechanisms that occur during glycopeptide antibiotics biosynthesis. Proteins 2011; © 2011 Wiley‐Liss, Inc.  相似文献   

3.
Two novel P450 heme iron ligand sets were generated by directed mutagenesis of the flavocytochrome P450 BM3 heme domain. The A264H and A264K variants produce Cys-Fe-His and Cys-Fe-Lys axial ligand sets, which were validated structurally and characterized by spectroscopic analysis. EPR and magnetic circular dichroism (MCD) provided fingerprints defining these P450 ligand sets. Near IR MCD spectra identified ferric low spin charge-transfer bands diagnostic of the novel ligands. For the A264K mutant, this is the first report of a Cys-Fe-Lys near-IR MCD band. Crystal structure determination showed that substrate-free A264H and A264K proteins crystallize in distinct conformations, as observed previously in substrate-free and fatty acid-bound wild-type P450 forms, respectively. This, in turn, likely reflects the positioning of the I alpha helix section of the protein that is required for optimal configuration of the ligands to the heme iron. One of the monomers in the asymmetric unit of the A264H crystals was in a novel conformation with a more open substrate access route to the active site. The same species was isolated for the wildtype heme domain and represents a novel conformational state of BM3 (termed SF2). The "locking" of these distinct conformations is evident from the fact that the endogenous ligands cannot be displaced by substrate or exogenous ligands. The consequent reduction of heme domain conformational heterogeneity will be important in attempts to determine atomic structure of the full-length, multidomain flavocytochrome, and thus to understand in atomic detail interactions between its heme and reductase domains.  相似文献   

4.
The multidomain fatty-acid hydroxylase flavocytochrome P450 BM3 has been studied as a paradigm model for eukaryotic microsomal P450 enzymes because of its homology to eukaryotic family 4 P450 enzymes and its use of a eukaryotic-like diflavin reductase redox partner. High-resolution crystal structures have led to the proposal that substrate-induced conformational changes lead to removal of water as the sixth ligand to the heme iron. Concomitant changes in the heme iron spin state and heme iron reduction potential help to trigger electron transfer from the reductase and to initiate catalysis. Surprisingly, the crystal structure of the substrate-free A264E heme domain mutant reveals the enzyme to be in the conformation observed for substrate-bound wild-type P450, but with the iron in the low-spin state. This provides strong evidence that the spin-state shift observed upon substrate binding in wild-type P450 BM3 not only is caused indirectly by structural changes in the protein, but is a direct consequence of the presence of the substrate itself, similar to what has been observed for P450cam. The crystal structure of the palmitoleate-bound A264E mutant reveals that substrate binding promotes heme ligation by Glu(264), with little other difference from the palmitoleate-bound wild-type structure observable. Despite having a protein-derived sixth heme ligand in the substrate-bound form, the A264E mutant is catalytically active, providing further indication for structural rearrangement of the active site upon reduction of the heme iron, including displacement of the glutamate ligand to allow binding of dioxygen.  相似文献   

5.
For the characterization of the substrate binding site optical and EPR measurements with spin labelled substrates on solubilized and pure cytochrome P-450 were performed. Analogously to the unlabelled derivatives spin labelled n-alkylamines and isocyanides with different chain lengths are type II substrates. The Ks-values evaluated from optical (P-450 = 1.98 . 10(-6) M) and ESR (P-450 = 1.98 . 10(-4) M) measurements are very similar indicating no concentration dependences. Contrary to the unlabelled n-alkylamines the spin labelled compounds show an affinity almost independent of the chain lengths. The SL-substrates with a short distance between the functional group and the NO-group bound to P-450 induce pronounced changes of the ligand field of the heme iron and a large broadening of the signal of the immobilized nitroxide indicating intensive interactions between the unpaired electron of the nitroxide group and the paramagnetic heme iron. Elongation of the alkyl chains results in spectra of the Fe3+ complexes with only slight modification and a remained unbroadened signal of the immobilized nitroxide. The binding of the substrate through their functional groups together with a 1:1 stoichiometry of the P-450 SL-IC-complex give evidence for the same binding site in the near vicinity of the heme iron.  相似文献   

6.
Resonance Raman spectra are reported for both the heme domain and holoenzyme of cytochrome P450BM3 in the resting state and for the ferric NO, ferrous CO, and ferrous NO adducts in the absence and presence of the substrate, palmitate. Comparison of the spectrum of the palmitate-bound form of the heme domain with that of the holoenzyme indicates that the presence of the flavin reductase domain alters the structure of the heme domain in such a way that water accessibility to the distal pocket is greater for the holoenzyme, a result that is consistent with analogous studies of cytochrome P450cam. The data for the exogenous ligand adducts are compared to those previously reported for corresponding derivatives of cytochrome P450cam and document significant and important differences for the two proteins. Specifically, while the binding of substrate induces relatively dramatic changes in the nu(Fe-XY) modes of the ferrous CO, ferric NO, and ferrous NO derivatives of cytochrome P450cam, no significant changes are observed for the corresponding derivatives of cytochrome P450BM3 upon binding of palmitate. In fact, the spectral data for substrate-free cytochrome P450BM3 provide evidence for distortion of the Fe-XY fragment, even in the absence of substrate. This apparent distortion, which is nonexistent in the case of substrate-free cytochrome P450cam, is most reasonably attributed to interaction of the Fe-XY fragment with the F87 phenylalanine side chain. This residue is known to lie very close to the heme iron in the substrate-free derivative of cytochrome P450BM3 and has been suggested to prevent hydroxylation of the terminal, omega, position of long-chain fatty acids.  相似文献   

7.
High-resolution resonance Raman spectra of the ferric, ferrous, and carbonmonoxy (CO)-bound forms of wild-type Escherichia coli-expressed Pseudomonas putida cytochrome P450cam and its P420 form are reported. The ferric and ferrous species of P450 and P420 have been studied in both the presence and absence of excess camphor substrate. In ferric, camphor-bound, P450 (mos), the E. coli-expressed P450 is found to be spectroscopically indistinguishable from the native material. Although substrate binding to P450 is known to displace water molecules from the heme pocket, altering the coordination and spin state of the heme iron, the presence of camphor substrate in P420 samples is found to have essentially no effect on the Raman spectra of the heme in either the oxidized or reduced state. A detailed study of the Raman and absorption spectra of P450 and P420 reveals that the P420 heme is in equilibrium between a high-spin, five-coordinate (HS,5C) form and low-spin six-coordinate (LS,6C) form in both the ferric and ferrous oxidation states. In the ferric P420 state, H2O evidently remains as a heme ligand, while alterations of the protein tertiary structure lead to a significant reduction in affinity for Cys(357) thiolate binding to the heme iron. Ferrous P420 also consists of an equilibrium between HS,5C and LS,6C states, with the spectroscopic evidence indicating that H2O and histidine are the most likely axial ligands. The spectral characteristics of the CO complex of P420 are found to be almost identical to those of a low pH of Mb. Moreover, we find that the 10-ns transient Raman spectrum of the photolyzed P420 CO complex possesses a band at 220 cm-1, which is strong evidence in favor of histidine ligation in the CO-bound state. The equilibrium structure of ferrous P420 does not show this band, indicating that Fe-His bond formation is favored when the iron becomes more acidic upon CO binding. Raman spectra of stationary samples of the CO complex of P450 reveal VFe-CO peaks corresponding to both substrate-bound and substrate-free species and demonstrate that substrate dissociation is coupled to CO photolysis. Analysis of the relative band intensities as a function of photolysis indicates that the CO photolysis and rebinding rates are faster than camphor rebinding and that CO binds to the heme faster when camphor is not in the distal pocket.  相似文献   

8.
Expression of high quantities of alfalfa hydroperoxide lyase in Escherichia coli made it possible to study its active site and structure in more detail. Circular dichroism (CD) spectra showed that hydroperoxide lyase consists for about 75% of alpha-helices. Electron paramagnetic resonance (EPR) spectra confirmed its classification as a cytochrome P450 enzyme. The positive influence of detergents on the enzyme activity is paralleled by a spin state transition of the heme Fe(III) from low to high spin. EPR and CD spectra showed that detergents induce a subtle conformational change, which might result in improved substrate binding. Because hydroperoxide lyase is thought to be a membrane bound protein and detergents mimic a membrane environment, the more active, high spin form likely represents the in vivo conformation. Furthermore, the spin state appeared to be temperature-dependent, with the low spin state favored at low temperature. Point mutants of the highly conserved cysteine in domain D indicated that this residue might be involved in heme binding.  相似文献   

9.
The cytochromes P450 are capable of oxidizing a variety of xenobiotics. Binding of a small molecule heteroactivator to a P450 can alter the coupling of substrate oxidation during P450 catalysis, but the degree to which coupling or shunting via one of the three catalytic cycle branch points is linked to the heteroactivator-modified position of bound substrate is unknown. Using reconstituted CYP2C9, stoichiometric measurements were gathered with three substrates and two classes of heteroactivators to further understand the mechanisms involved in heteroactivation. Heteroactivation of P450 metabolism appeared to involve, but not require, changes in coupling and that increased uncoupling to a specific byproduct like H(2)O(2) does not necessarily correlate to the degree of coupling. In addition, spectroscopy demonstrated that every heteroactivator tested influenced the spin equilibrium of the heme iron even in the presence of saturating substrate suggesting that both substrate proximity and the ability to desolvate the heme can be involved in heteroactivation.  相似文献   

10.
Cytochrome P450 (P450) 3A4, the major catalyst involved in human drug oxidation, displays substrate- and reaction-dependent homotropic and heterotropic cooperative behavior. Although several models have been proposed, these mainly rely on steady-state kinetics and do not provide information on the contribution of the individual steps of P450 catalytic cycle to the observed cooperativity. In this work, we focused on the kinetics of substrate binding, and the fluorescent properties of bromocriptine and alpha-naphthoflavone allowed analysis of an initial ligand-P450 3A4 interaction that does not cause a perturbation of the heme spectrum. The binding stoichiometry for bromocriptine was determined to be unity using isothermal titration calorimetry and equilibrium dialysis methods, suggesting that the ligand bound to the peripheral site during the initial encounter dissociates subsequently. A three-step substrate binding model is proposed, based on absorbance and fluorescence stopped-flow kinetic data and equilibrium binding data obtained with bromocriptine, and evaluated using kinetic modeling. The results are consistent with the substrate molecule binding at a site peripheral to the active site and subsequently moving toward the active site to bind to the heme and resulting in a low to high spin iron shift. The last step is attributed to a conformational change in the enzyme active site. The later steps of binding were shown to have rate constants comparable with the subsequent steps of the catalytic cycle. The P450 3A4 binding process is more complex than a two-state system, and the overlap of rates of some of the events with subsequent steps is proposed to underlie the observed cooperativity.  相似文献   

11.
Cytochrome P450 MoxA (P450moxA) from a rare actinomycete Nonomuraea recticatena belongs to the CYP105 family and exhibits remarkably broad substrate specificity. Here, we demonstrate that P450moxA acts on several luciferin derivatives, which were originally identified as substrates of the human microsomal P450s. We also describe the crystal structure of P450moxA in substrate-free form. Structural comparison with various bacterial and human microsomal P450s reveals that the P450moxA structure is most closely related to that of the fungal nitric oxide reductase P450nor (CYP55A1). Final refined model of P450moxA comprises almost all the residues, including the "BC-loop" and "FG-loop" regions pivotal for substrate recognition, and the current structure thus defines a well-ordered substrate-binding pocket. Clear electron density map reveals that the MES molecule is bound to the substrate-binding site, and the sixth coordination position of the heme iron is not occupied by a water molecule, probably due to the presence of MES molecule in the vicinity of the heme. The unexpected binding of the MES molecule might reflect the ability of P450moxA to accommodate a broad range of structurally diverse compounds.  相似文献   

12.
It was shown that ferrocytochrome P450 forms a nonequilibrium state if ferrocytochrome P450 and its complexes are reduced in freezed water-glycerol solutions by thermolysed electrons, arising during gamma-radiolysis of the matrix at 77 degrees K. Unlike the equilibrium form of ferrocytochrome P450 with the heme iron at the high-spin state the reduced nonequilibrium form of the protein contains the heme iron at a low-spin state. The absorption spectrum of ferrocytochrome P450 in the nonequilibrium state is characterized by alpha and beta-bands at 562 and 534 nm, respectively, whereas the magnetic circular dichroism spectra exhibit type A effect at 562 nm. Upon temperature increasing the nonequilibrium state is relaxed to the equilibrium one. Type 1 substrates had practically no influence on the spectral characteristic of the nonequilibrium form of ferrocytochrome P450. Binding of type 2 substrates results in an essential decrease of the intensity ratio of the alpha- and beta-bands (A alpha/A beta) and is accompanied by a red-shift of the alpha-band and corresponding magnetic circular dichroism effect. It was shown that mercaptoethanol complex of hemoglobin, formed by reduction at 77 degrees K is spectrally similar to the nonequilibrium ferrocytochrome P450 complex with type 2 substrates. From analysis of experimental data one can conclude that (i) the ligand environment of heme iron in oxidased and reduced cytochrome P450 are different; (ii) the sixth axial ligand of the heme iron in the oxidised protein is probably a water molecule (OH-) attached by a hydrogen bond to the neighbouring histidine. It is assumed that a similar nonequilibrium form of cytochrome P450 can be formed in physiological conditions.  相似文献   

13.
Cytochrome P450 (P450) from Rhodococcus rhodochrous have been characterized through circular dichroism and nuclear magnetic resonance (NMR) spectroscopy, both in the substrate-free and substrate-bound forms. The data are compared with those of P450cam and indicate a close similarity of the structure of the active site in the two proteins. The substrate-free species contains low-spin iron(III), while the 2-ethoxyphenol bound species contains high-spin iron(III). The substrate is in slow exchange on the NMR time scale. The binding of CN- has been investigated and the final adduct characterized through NMR spectra. Nuclear relaxation times of the isotropically shifted signals turn out to be shorter than in other heme proteins, both in the high- and in the low-spin species. This is the result of longer electron relaxation times in P450s than in peroxidases and metmyoglobin. This property, as well as the electron paramagnetic resonance (EPR) spectrum of the substrate-free form, are discussed in terms of the presence of the cysteine as the fifth ligand of the iron ion instead of a histidine as it occurs in peroxidases and myoglobin.  相似文献   

14.
Compartmentation of ATP within renal proximal tubular cells   总被引:2,自引:0,他引:2  
Temperature-dependent spin changes of the heme iron atom on cytochrome P-450scc were studied by optical absorption and circular dichroism measurements. The optical absorption and circular dichroism spectra of cholesterol-free cytochrome P-450scc did not change between 10 and 26 degrees C. In contrast, the absorbance at 390 nm and the ellipticity at 330 nm of cholesterol-bound cytochrome P-450scc decreased upon temperature elevation, and the absorbance at 424 nm correspondingly increased. These spectral changes were reversible in respect of temperature. The far-ultraviolet circular dichroism spectra of both cholesterol-bound and -free cytochrome P-450scc were not affected by temperature. In addition, bound cholesterol molecule is not released from the cytochrome molecule by increasing temperature. From these results, we propose that temperature modulates specific interactions between the heme protein and bound cholesterol rather than the gross secondary structural changes of the protein.  相似文献   

15.
Electron paramagnetic resonance (EPR) and optical spectra are used as probes of the heme and its ligands in ferric and ferrous leghemoglobin. The proximal ligand to the heme iron atom of ferric soybean leghemoglobin is identified as imidazole by comparison of the EPR of leghemoglobin hydroxide, azide, and cyanide with the corresponding derivatives of human hemoglobin. Optical spectra show that ferric soybean leghemoglobin near room temperature is almost entirely in the high spin state. At 77 K the optical spectrum is that of a low spin compound, while at 1.6 K the EPR is that of a low spin form resembling bis-imidazole heme. Acetate binds to ferric leghemoglobin to form a high spin complex as judged from the optical spectrum. The EPR of this complex is that of high spin ferric heme in a nearly axial environment. The complexes of ferrous leghemoglobin with substituted pyridines exhibit optical absorption maxima near 685 nm, whose absorption maxima and extinctions are strongly dependent on the nature of the substitutents of the pyridine ring; electron withdrawing groups on the pyridine ring shift the absorption maxima to lower energy. A crystal field analysis of the EPR of nicotinate derivatives of ferric leghemoblobin demonstrates that the pyridine nitrogen is also bound to the heme iron in the ferric state. These findings lead us to picture leghemoglobin as a somewhat flexible molecule in which the transition region between the E and F helices may act as a hinge, opening a small amount at higher temperature to a stable configuration in which the protein is high spin and can accommodate exogenous ligand molecules and closing at low temperature to a second stable configuration in which the protein is low spin and in which close approach of the E helix permits the distal histidine to become the principal sixth ligand.  相似文献   

16.
In order to explore fully how ligand- and temperature-induced alterations in the spin states of heme iron are related to protein readjustments, the spin label 4-isothiocyanate (I) was covalently attached at beta-93 cysteines and at NH2-terminal valines of various heme-iron ligand forms of human hemoglobin. It was found that the mobility of NH2-terminally bound spin labels depends on the magnetic moment of the heme iron. There is a an approximately linear relationship between the magnetic moment of the heme iron and the mobility of NH2-terminally bound spin labels. In accordance with our previous results, the temperature dependence of ESR spectra of spin-labeled hemoglobin suggests the temperature-induced protein conformational change in those heme-iron ligand forms that are characterized by the equilibrium of the spin states of the heme iron. The conformational change was sensed at both spin-label-binding sites: at beta-93 cysteines and at NH2-terminal valines.  相似文献   

17.
The interaction of nitric oxide with cytochrome P450 BM3 from Bacillus megaterium has been analyzed by spectroscopic techniques and enzyme assays. Nitric oxide ligates tightly to the ferric heme iron, inducing large changes in each of the main visible bands of the heme and inhibiting the fatty acid hydroxylase function of the protein. However, the ferrous adduct is unstable under aerobic conditions, and activity recovers rapidly after addition of NADPH to the flavocytochrome due to reduction of the heme via the reductase domain and displacement of the ligand. The visible spectral properties revert to that of the oxidized resting form. Aerobic reduction of the nitrosyl complex of the BM3 holoenzyme or heme domain by sodium dithionite also displaces the ligand. A single electron reduction destabilizes the ferric-nitrosyl complex such that nitric oxide is released directly, as shown by the trapping of released nitric oxide. Aerobically and in the absence of exogenous reductant, nitric oxide dissociates completely from the P450 over periods of several minutes. However, recovery of the nativelike visible spectrum is accompanied by alterations in the catalytic activity of the enzyme and changes in the resonance Raman spectrum. Specifically, resonance Raman spectroscopy identifies the presence of internally located nitrated tyrosine residue(s) following treatment with nitric oxide. Analysis of a Y51F mutant indicates that this is the major nitration target under these conditions. While wild-type P450 BM3 does not form an aerobically stable ferrous-nitrosyl complex, a site-directed mutant of P450 BM3 (F393H) does form an isolatable ferrous-nitrosyl complex, providing strong evidence for the role of this residue in controlling the electronic properties of the heme iron. We report here the spectroscopic characterization of the ferric- and ferrous-nitrosyl complexes of P450 BM3 and describe the use of resonance Raman spectroscopy to identify nitrated tyrosine residue(s) in the enzyme. Nitration of tyrosine in P450 BM3 may exemplify a typical mechanism by which the ubiquitous messenger molecule nitric oxide exerts a regulatory function over the cytochromes P450.  相似文献   

18.
Secondary amine mono-oxygenase from Pseudomonas aminovorans catalyzes the NAD(P)H- and dioxygen-dependent N-dealkylation of secondary amines to yield a primary amine and an aldehyde. Heme iron, flavin, and non-heme iron prosthetic groups are known to be present in the oligomeric enzyme. The N-dealkylation reaction is also catalyzed by the only other heme-containing mono-oxygenase, cytochrome P-450. In order to identify the heme iron axial ligands of secondary amine mono-oxygenase so as to better define the structural requirements for oxygen activation by heme enzymes, we have investigated the spectroscopic properties of the enzyme. The application of three different spectroscopic techniques, UV-visible absorption, magnetic circular dichroism and electron paramagnetic resonance, to study eight separate enzyme derivatives has provided extensive and convincing evidence for the presence of a proximal histidine ligand. This conclusion is based primarily on comparisons of the spectral properties of the enzyme with those of parallel derivatives of myoglobin (histidine proximal ligand) and P-450 (cysteinate proximal ligand). Spectral studies of ferric secondary amine mono-oxygenase as a function of pH have led to the proposal that the distal ligand is water. Deprotonation of the distal water ligand occurs upon either raising the pH to 9.0 or substrate (dimethylamine) binding. In contrast, the deoxyferrous enzyme appears to have a weakly bound nitrogen donor distal ligand. Initial spectroscopic studies of the iron-sulfur units in the enzyme are interpreted in terms of a pair of Fe2S2 clusters. Secondary amine mono-oxygenase is unique in its ability to function as cytochrome P-450 in activating molecular oxygen but to do so with a myoglobin-like active site. As such, it provides an important system with which to probe structure-function relations in heme-containing oxygenases.  相似文献   

19.
A conserved glutamate covalently attaches the heme to the protein backbone of eukaryotic CYP4 P450 enzymes. In the related Bacillus megaterium P450 BM3, the corresponding residue is Ala264. The A264E mutant was generated and characterized by kinetic and spectroscopic methods. A264E has an altered absorption spectrum compared with the wild-type enzyme (Soret maximum at approximately 420.5 nm). Fatty acid substrates produced an inhibitor-like spectral change, with the Soret band shifting to 426 nm. Optical titrations with long-chain fatty acids indicated higher affinity for A264E over the wild-type enzyme. The heme iron midpoint reduction potential in substrate-free A264E is more positive than that in wild-type P450 BM3 and was not changed upon substrate binding. EPR, resonance Raman, and magnetic CD spectroscopies indicated that A264E remains in the low-spin state upon substrate binding, unlike wild-type P450 BM3. EPR spectroscopy showed two major species in substrate-free A264E. The first has normal Cys-aqua iron ligation. The second resembles formate-ligated P450cam. Saturation with fatty acid increased the population of the latter species, suggesting that substrate forces on the glutamate to promote a Cys-Glu ligand set, present in lower amounts in the substrate-free enzyme. A novel charge-transfer transition in the near-infrared magnetic CD spectrum provides a spectroscopic signature characteristic of the new A264E heme iron ligation state. A264E retains oxygenase activity, despite glutamate coordination of the iron, indicating that structural rearrangements occur following heme iron reduction to allow dioxygen binding. Glutamate coordination of the heme iron is confirmed by structural studies of the A264E mutant (Joyce, M. G., Girvan, H. M., Munro, A. W., and Leys, D. (2004) J. Biol. Chem. 279, 23287-23293).  相似文献   

20.
The heme-regulated eukaryotic initiation factor-2alpha (eIF2alpha) kinase (HRI) regulates the initiation of protein synthesis in reticulocytes. The binding of NO to the N-terminal heme-binding domain (NTD) of HRI positively modulates its kinase activity. By utilizing UV-visible absorption, resonance Raman, EPR and CD spectroscopies, two histidine residues have been identified that are crucial for the binding of heme to the NTD. The UV-visible absorption and resonance Raman spectra of all the histidine to alanine mutants constructed were similar to those of the unmutated NTD. However, the change in the CD spectra of the NTD construct containing mutation of His78 to Ala (H78A) indicated loss of the specific binding of heme. The EPR spectrum for the ferric H78A mutant was also substantially perturbed. Thus, His78 is one of the axial ligands for the NTD of HRI. Significant changes in the EPR spectrum of the H123A mutant were also observed, and heme readily dissociated from both the H123A and the H78A NTD mutants, suggesting that His123 was also an axial heme ligand. However, the CD spectrum for the Soret region of the H123A mutant indicated that this mutant still bound heme specifically. Thus, while both His78 and His123 are crucial for stable heme binding, the effects of their mutations on the structure of the NTD differed. His78 appears to play the primary role in the specific binding of heme to the NTD, acting analogously to the "proximal histidine" ligand of globins, while His123 appears to act as the "distal" heme ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号