首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The demyelination of peripheral nerves that results from exposure of developing rats to tellurium is due to inhibition of squalene epoxidase, a step in cholesterol biosynthesis. In sciatic nerve, cholesterol synthesis is greatly depressed, whereas in liver, some compensatory mechanism maintains normal levels of cholesterol synthesis. This tissue specificity was further explored by examining, in various tissues, gene expression and enzyme activity of 3-hydroxy-3-methylglutaryl-CoA reductase, the rate-limiting enzyme in cholesterol biosynthesis. Exposure to tellurium resulted in pronounced increases in both message levels and enzyme activity in liver, the expected result consequent to up-regulation of this enzyme in response to decreasing levels of intracellular sterols. In contrast to liver, levels of mRNA and enzyme activity in sciatic nerve were both decreased during the tellurium-induced demyelinating period. The temporal pattern of changes in 3-hydroxy-3-methylglutaryl-CoA reductase message levels in sciatic nerve seen following exposure to tellurium was similar to the down-regulation seen for mRNA specific for PNS myelin proteins. Possible mechanisms for differential control of cholesterol biosynthesis in sciatic nerve and liver are discussed.  相似文献   

2.
Exposure of weanling rats to a diet containing elemental tellurium results in a peripheral neuropathy characterized by segmental demyelination and minimal axonal degeneration. One of the earliest ultrastructural abnormalities in tellurium neuropathy is an increased number of cytoplasmic lipid droplets in myelinating Schwann cells. The pathogenesis of these lipid droplets was investigated using light and electron microscopic autoradiography. Nerve lipids were either "prelabeled" with [3H]acetate via in vivo intraneural injection 3 days before a 2-day exposure to tellurium, or "postlabeled" via in vivo intraneural injection or in vitro incubation with [3H]acetate following a 2-day exposure to tellurium. In the prelabeled nerves, myelin became heavily labeled, but the tellurium-induced cytoplasmic lipid droplets were rarely labeled. In the postlabeled nerves, the tellurium-induced cytoplasmic lipid droplets were the most heavily labeled structures within the nerve. These data indicate that the tellurium-induced lipid droplets in Schwann cells are derived from newly synthesized lipid rather than from the early breakdown and internalization of myelin lipids. The earliest biochemical abnormality observed in tellurium neuropathy is an inhibition of cholesterol synthesis at the squalene epoxidase step. This leads to an accumulation of squalene within the nerve. We conclude that the cytoplasmic lipid droplets in Schwann cells contain this accumulated lipid.  相似文献   

3.
Inclusion of 1.1% elemental tellurium in the diet of postweanling rats produces a peripheral neuropathy due to a highly synchronous primary demyelination of sciatic nerve; this demyelination is followed closely by remyelination. Sciatic nerves from animals fed tellurium for various times were removed and incubated ex vivo for 1 h with [14C]acetate, and radioactivity incorporated into individual lipid classes was determined. In nerves from rats exposed to tellurium, there was a profound and selective block in the conversion of radioactive acetate to cholesterol. Another radioactive precursor, [3H]water, gave similar results. We suggest that tellurium feeding inhibits squalene epoxidase activity and that the consequent lack of cholesterol destabilizes myelin, thereby causing destruction of the larger internodes. Ex vivo incubation experiments were also carried out with liver slices. As with nerve, tellurium feeding caused accumulation in squalene of label from radioactive acetate, whereas labeling of cholesterol was greatly inhibited. Unexpectedly, however, incorporation of label from [3H]water into both squalene and cholesterol was increased. Relevant is the demonstration that liver was the primary site of bulk accumulation of squalene, which accounted for 10% of liver dry weight at 5 days. Thus, accumulation of squalene (and other mechanisms, possibly including up-regulation of cholesterol biosynthetic pathways) drives squalene epoxidase activity at normal levels in liver even in the presence of inhibitors of this enzyme. This is reflected by continuing incorporation of [3H]water into cholesterol; incorporation of this precursor takes place at many of the postsqualene biosynthetic steps for sterol formation. [14C]Acetate entering the sterol pathway before squalene in liver is greatly diluted in specific activity when it reaches the large squalene pool, and thus increased squalene epoxidase activity does not transfer significant 14C label to sterols. In contrast to the situation with liver, synthesis of sterols is markedly depressed in sciatic nerve, and squalene does not accumulate to high levels.  相似文献   

4.
Primary demyelination is an important component of a number of human diseases and toxic neuropathies. Animal models of primary demyelination are useful for isolating processes involved in myelin breakdown and remyelination because the complicating events associated with axonal degeneration and regeneration are not present. The tellurium neuropathy model has proven especially useful in this respect. Tellurium specifically blocks synthesis of cholesterol, a major component of PNS myelin. The resulting cholesterol deficit in myelin-producing Schwann cells rapidly leads to synchronous primary demyelination of the sciatic nerve, which is followed by rapid synchronous remyelination when tellurium exposure is discontinued. Known alterations in gene expression for myelin proteins and for other proteins involved in the sequence of events associated with demyelination and subsequent remyelination in the PNS are reviewed, and new data regarding gene expression changes during tellurium neuropathy are presented and discussed.  相似文献   

5.
Squalene monooxygenase is a flavin adenine dinucleotide-containing, microsomal enzyme that catalyzes the second step in the committed pathway for cholesterol biosynthesis. Feeding weanling rats a diet containing 1% elemental tellurium causes a transient, peripheral demyelination due to the disruption of cholesterol synthesis in Schwann cells secondary to inhibition of squalene monooxygenase. The tellurium species responsible for the inhibition is unknown, as is the mechanism of inhibition. To study the potential mechanisms of tellurium toxicity in humans, three likely in vivo metabolites of tellurium (tellurite, dimethyltellurium dichloride, and dimethyltelluride) were tested as inhibitors of purified human squalene monooxygenase. All three inhibitors reacted with the enzyme slowly and the resulting interaction was not freely reversible. The 50% inhibitory concentration for the methyltellurium compounds (approximately 100 nM) after a 30-min preincubation was 100-fold lower than that of tellurite, indicating a role for hydrophobicity in the enzyme-inhibitor interaction. The ability of glutathione and 2,3-dimercaptopropanol to prevent and reverse the inhibition indicated that the tellurium compounds were reacting with sulfhydryls on squalene monooxygenase, and the ability of phenylarsine oxide, which reacts specifically with vicinal sulfhydryls, to inhibit the enzyme indicated that these sulfhydryls are located proximal to one another on the enzyme. These results suggest that the unusual sensitivity of squalene monooxygenase to tellurium compounds is due to the binding of these compounds to vicinal cysteines, and that methylation of tellurium in vivo may enhance the toxicity of tellurium for this enzyme.  相似文献   

6.
Abstract— Brain, spinal cord and sciatic nerve from rats at different ages were incubated for 2 h in a medium containing [14C]acetate and [14C]leucine as the precursors for synthesis of lipids and proteins. Myelin was purified from the incubated tissues and the specific and total radioactivites of myelin lipids and protein were determined. The uptake of radioactive precursors decreased with increasing age up to 6 months of postnatal age, the decrease following the same pattern for the three types of myelin. After age 6 months the uptake of the protein and lipid precursors reached a plateau that persisted up to 18 months, the oldest postnatal age studied. The amount of myelin isolated and the total myelin lipids extracted from both the central and peripheral nervous systems increased continuously from age 25 days to 18 months after birth. Consequently we suggest that myelination is a process that continues during the whole life of the rat.
The metabolic activity of peripheral nerve myelin was higher than myelin from the CNS at all ages studied. Although myelination in the sciatic nerve begins before that in brain and spinal cord, the three types of myelin apparently reach maturity at the same age. Lecithin exhibited the highest metabolic activity of the individual myelin lipids at all ages in both the central and peripheral nervous system. The metabolic activity of cholesterol in myelin from the 25-day-old rats was similar to that of lecithin but decreased to very low levels in myelin from the 18-month-old rats.  相似文献   

7.
We examined changes in biosynthetic capacity of sciatic nerve during the early stages of Wallerian degeneration, utilizing a model that permits exclusion of nonresident cells from degenerating nerve. Sciatic nerve segments were placed in either 5-microns pore (allowing infiltration of nonresident cells) or 0.22-microns pore (excluding nonresident cells) Millipore diffusion chambers and then implanted in the peritoneal cavity of the same 32-34-day-old rat. At times up to 7 days postsurgery, nerve segments from the chambers, as well as control segments from the contralateral sciatic nerve, were removed and their capacity to incorporate radioactive precursors into lipids and proteins assayed in vitro. In nerve segments from both the 0.22- and 5-microns pore chambers, incorporation of [14C]acetate into total lipids was decreased relative to control by 50% at 12 h postsurgery and by 85% at day 3. This decreased incorporation of [14C]acetate reflects primarily decreased de novo synthesis of cholesterol and of fatty acyl residues incorporated into glycerolipids and sphingolipids. There was a preferentially decreased synthesis of cerebrosides and cholesterol (components enriched in myelin) relative to other lipids, while cholesterol esters and free fatty acids (products of membrane degradation) accounted for a greater proportion of the greatly reduced levels of total lipid label. In contrast to [14C]acetate, incorporation of [3H]glycerol into lipids was increased up to fourfold, relative to control, 1 day after nerve transection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Abstract: A peripheral neuropathy characterized by a transient demyelinating/remyelinating sequence results when young rats are fed a tellurium-containing diet. The neuropathy occurs secondary to a systemic block in cholesterol synthesis. Squalene accumulation suggested the lesion was at the level of squalene epoxidase, a microsomal monooxygenase that uses NADPH cytochrome P450 reductase to receive its necessary reducing equivalents from NADPH. We have now demonstrated directly specificity for squalene epoxidase; our in vitro studies show that squalene epoxidase is inhibited 50% in the presence of 5 µ M tellurite, the presumptive in vivo active metabolite. Under these conditions, the activities of other monooxygenases, aniline hydroxylase and benzo( a )pyrene hydroxylase, were inhibited less than 5%. We also present data suggesting that tellurite inhibits squalene epoxidation by interacting with highly susceptible -SH groups present on this monooxygenase. In vivo studies of specificity were based on the compensatory response to feeding of tellurium. Following tellurium intoxication, there was up-regulation of squalene epoxidase activity both in liver (11-fold) and sciatic nerve (fivefold). This induction was a specific response, as demonstrated in liver by the lack of up-regulation following exposure to the nonspecific microsomal enzyme inducer, phenobarbital. As a control, we also measured the microsomal monooxygenase activities of aniline hydroxylase and benzo( a )pyrene hydroxylase. Although they were induced following phenobarbital exposure, activities of these monooxygenases were not affected following tellurium intoxication, providing further evidence of specificity of tellurium intoxication for squalene epoxidase.  相似文献   

9.
Role of Organotellurium Species in Tellurium Neuropathy   总被引:3,自引:0,他引:3  
Exposure of weanling rats to a diet containing 1% elemental tellurium causes segmental demyelination of peripheral nerve, and an inhibition of squalene epoxidase. This inhibition is thought to be the mechanism of action leading to demyelination. Tellurite appears to be the active inhibitory species in a cell-free system but the active species in vivo is unknown. We examined potassium tellurite (K2TeO3) and three organotellurium compounds for their ability to inhibit squalene epoxidase in Schwann cell cultures and to induce demyelination in weanling rats. K2TeO3 had no effect on squalene epoxidase activity in cultured Schwann cells and caused no demyelination in vivo. All three organotellurium compounds caused inhibition of squalene epoxidase in vitro and caused demyelination in vivo. (CH3)2TeCl2 was the most potent of these compounds and its neuropathy most resembled that caused by elemental tellurium. These data are consistent with the hypothesis that tellurium-induced demyelination is a result of squalene epoxidase inhibition and suggest that a dimethyltelluronium compound may be the neurotoxic species presented to Schwann cells in vivo.  相似文献   

10.
Cholesterol Synthesis and Nerve Regeneration   总被引:1,自引:1,他引:0  
Abstract: In this report, we examine the requirement of cholesterol biosynthesis and its axonal transport for goldfish optic nerve regeneration. Cholesterol, labeled by intraocular injection of [3H]mevalonolactone. exhibited a delayed appearance in the optic tectum. Squalene and other minor components were labeled but not transported. Following optic nerve crush, the amount of labeled cholesterol transport was elevated, while retinal labeling was not altered relative to control fish. A requirement for cholesterol biosynthesis is inferred from the inhibition of neurite outgrowth in retinal explants caused by the cholesterol synthesis inhibitor, 20, 25-diazacholes-terol. The inhibition of growth could be overcome by addition of mevalonolactone, but not cholesterol, to the medium. Intraperitoneal administration of 200 nmol of dia-zacholesterol resulted in 92-98% inhibition of retinal cholesterol synthesis and accumulation of labeled des-mosterol and other lipids in fish retina and brain which persisted for 2 weeks. Diazacholesterol-treated fish showed no reduction in the amount of lipid-soluble radioactivity transported following intraocular injection of [3H]mevalonolactone, but there were alterations in the chromatographic pattern of the transported labeled lipids. In contrast to its effects on neurite outgrowth in vitro , diazacholesterol did not inhibit optic nerve regeneration in vivo , as measured both by arrival of labeled rapidly transported protein at the tectum and by time required for the return of visual function.  相似文献   

11.
The cDNA for human squalene monooxygenase, a key enzyme in the committed pathway for cholesterol biosynthesis, was amplified from a human liver cDNA library and cloned, and the protein was expressed in Escherichia coli and purified. Kinetic analysis of the purified enzyme revealed an apparent K(m) for squalene of 7.7 microM and an apparent k(cat) of 1.1 min(-1). For FAD the apparent K(m) is 0.3 microM, consistent with a loosely bound flavin. The apparent K(m) for NADPH-cytochrome P450 reductase, the requisite electron transfer partner, is 14 nM. The amount of reductase needed for maximal activity is about threefold less than the amount of squalene monooxygenase present in the assay; thus, electron transfer to the monooxygenase is not likely to be rate limiting. Previous reports have implicated inhibition of this enzyme as the cause of a peripheral demyelination seen in weanling rats fed a diet containing tellurium. As no data were available for humans, the ability of a number of tellurium and related elemental compounds to inhibit the recombinant human enzyme was examined. Tellurite, tellurium dioxide, selenite, and selenium dioxide were inhibitory; the tellurium compounds were more potent than the selenium compounds, as indicated by their IC(50) values (17 and 37 microM, respectively). Kinetic analysis of the inhibition by tellurite suggests multiple sites of interaction with the enzyme in a noncompetitive manner with respect to squalene.  相似文献   

12.
13.
We studied markers of myelin content and of the rate of myelination in brains of mice between 8 and 20 weeks of age. During the 12-week time-course, control animals showed slight increases in the content of oligodendroglial-specific cerebroside, as well as cholesterol (enriched in, but not specific to, myelin). In contrast, synthesis of these lipids, as assayed by in vivo incorporation of (3)H(2)O, was substantial, indicating turnover of 0.4% and 0.7% of total brain cerebroside and cholesterol, respectively, each day. We also studied mice exposed to a diet containing 0.2% of the copper chelator, cuprizone. After 6 weeks 20%, and by 12 weeks, over 30% of brain cerebroside was gone. Demyelination was accompanied by down-regulation of mRNA expression for enzymes controlling myelin lipid synthesis (ceramide galactosyl transferase for cerebroside; hydroxymethylglutaryl-CoA reductase for cholesterol), and for myelin basic protein. Synthesis of myelin lipids was also greatly depressed. The 20% cerebroside deficit consequent to 6 weeks of cuprizone exposure was restored 6 weeks after return to a control diet. During remyelination, expression of myelin-related mRNA species, as well as cerebroside and cholesterol synthesis were restored to normal. However, in contrast to the steady state metabolic turnover in the control situation, all the cerebroside and cholesterol made were accumulated. To the extent that accumulating cerebroside is targeted for eventual inclusion in myelin (discussed) the rate of its synthesis is proportional to remyelination. With our assay, in vivo rates of cerebroside synthesis can be determined for a time window of the order of hours. This offers greater temporal resolution and accuracy relative to classical methods assaying accumulation of myelin components at time intervals of several days. We propose this experimental design, and the reproducible cuprizone model, as appropriate for studies of how to promote remyelination.  相似文献   

14.
15.
Abstract: Following a nerve crush, cholesterol from degenerating myelin is retained within the nerve and reutilized for new myelin synthesis during nerve regeneration, apparently via a lipoprotein-mediated process. Because at least some serum components have access to the endoneurium of injured nerve, it has been suggested that serum lipoproteins are also significant contributors of cholesterol to Schwann cells during nerve regeneration. To test this hypothesis, serum cholesterol levels were reduced by >90% with 4-aminopyrazolopyrimidine, followed by measurement of the activity of the key regulatory enzyme in cholesterol synthesis, 3-hydroxy-3-methylglutaryl-CoA reductase. Treatment with 4-aminopyrazolopyrimidine caused a sevenfold increase in 3-hydroxy-3-methylglutaryl-CoA reductase activity in kidney but had no effect on the activity of this enzyme in either intact or regenerating sciatic nerve. These data indicate that serum-derived cholesterol is neither necessary for nor contributes significantly to myelin synthesis in regenerating nerve.  相似文献   

16.
Abstract: Following nerve crush, cholesterol from degenerating myelin is conserved and reutilized for new myelin synthesis during nerve regeneration. The possibility that other myelin lipids are salvaged and reutilized has not been investigated previously. We examined the fate of myelin phospholipids and their fatty acyl moieties following nerve crush by electron microscopic autoradiography of myelin lipids prelabeled with [3H]oleate or [2-3H]-glycerol. Both precursors were incorporated predominantly (>90%) into phospholipids; >85% of the [3H]oleate was incorporated as oleate, with the remainder in longer-chain fatty acids. Before nerve crush, both labels were restricted to myelin sheaths. Following nerve crush and subsequent regeneration, over half the label from [3H]oleate, but little from [2-3H]glycerol, remained in nerve. The oleate label was present as fatty acyl moieties in phospholipids and was localized to newly formed myelin sheaths. Among the extracellular soluble lipids within the degenerating nerve, the bulk of the labeled phospholipids floated at the same density as lipoprotein particles. These data indicate that myelin phospholipids are completely hydrolyzed during nerve degeneration, that at least half the resultant free fatty acids are salvaged and reutilized for new myelin synthesis, and that these salvaged fatty acids are transported by a lipoprotein-mediated mechanism similar to that functioning in cholesterol reutilization.  相似文献   

17.
18.
Lipid composition of the nervous system in Refsum's disease   总被引:3,自引:0,他引:3  
The compositions of the major lipids and their constituent fatty acids and fatty aldehydes from cerebral gray matter, white matter, and myelin, spinal cord myelin, and sciatic nerve were determined in a 57 yr old woman who died of Refsum's disease. There were deficiencies of ethanolamine glycerophosphatides (EGP) in gray matter and frontal lobe myelin, and a lipid with the chromatographic properties of lyso-EGP accumulated in all tissues. The proportions of the remaining lipids were nearly normal in the central nervous system tissues. In the sciatic nerve the proportions of sphingolipids were small; this observation is consistent with the severe demyelination noted on pathologic examination. Cholesteryl esters were not detected in any tissue. Phytanate (3,7,11,15-tetramethylhexadecanoate) was present in the glycerophosphatides from each tissue. Higher proportions of phytanate were found in choline glycerophosphatides (CGP) than in EGP or in serine glycerophosphatides (SGP). Hydrolysis with phospholipase established that phytanate was confined to the 1-position of CGP. More phytanate was found in CGP from myelin than from gray or white matter. Fourfold higher proportions of phytanate were found in CGP from sciatic nerve than in CGP from the central nervous system: in sciatic nerve, 24% of the fatty acids of CGP consisted of phytanate. The proportions and compositions of sphingolipid hydroxy fatty acids and odd-numbered fatty acids were normal in each tissue. These findings argue against a defect in sphingolipid alpha-hydroxy acid metabolism in Refsum's disease. The results are consistent with the view that the accumulation of phytanate is responsible for the demyelination.  相似文献   

19.
Abstract: Ubiquinone synthesis has been studied in cultured C-6 glial and neuroblastoma cells by utilizing an inhibitor, 3-β-(2-diethylaminoethoxy) androst-5-en-17-one hydrochloride (U18666A), of cholesterol biosynthesis. Exposure of C-6 glial cells to nanomolar quantities of U18666A caused a marked inhibition of total sterol synthesis from [14C]acetate or [3H]mevalonate within minutes. A 95% inhibition was apparent after a 3-h exposure to 200 ng/ml of U18666A. These observations, together with studies of the incorporation of radioactivity from the two precursors into cholesterol, desmosterol, lanosterol, and squalene, indicated that although the most sensitive site to inhibition by U18666A is desmosterol reduction to cholesterol, a major site of inhibition is demonstrable at a more proximal site, perhaps squalene synthetase. As a consequence of the latter inhibition, exposure of C-6 glial cells to U18666A caused a marked stimulation of incorporation of [14C]acetate or [3H]mevalonate into ubiquinone. Over a wide range of U18666A concentrations, the increase in ubiquinone synthesis was accompanied by an approximately similar decrease in total sterol synthesis. Whereas in the absence of U18666A only approximately 7% of the radioactivity incorporated from [3H]mevalonate into isoprenoid compounds was found in ubiquinone, in the presence of the drug approximately 90% of incorporated radioactivity was found in ubiquinone. The reciprocal effects of U18666A on ubiquinone and sterol syntheses were apparent also in the neuronal cells. The data thus demonstrate a tight relationship between ubiquinone and sterol biosyntheses in cultured cells of neural origin. In such cells ubiquinone synthesis is exquisitely sensitive to the availability of isoprenoid precursors derived from the cholesterol biosynthetic pathway.  相似文献   

20.
Abstract: The discovery of apolipoprotein E synthesis and secretion by injured peripheral nerve led to the hypothesis that endoneurial apolipoprotein E serves to salvage degenerating myelin cholesterol. This salvaged cholesterol could then be reutilized by Schwann cells during remyelination via uptake through low-density lipoprotein receptors. As a test of this hypothesis, we measured the rate of cholesterol synthesis in rat sciatic nerve endoneurium during development and at various times following a crush injury at 50 days of age. In control nerves [14C]acetate incorporation into cholesterol and 3-hydroxy-3-methylglutaryl-CoA reductase activity were closely linked throughout development, indicating that reductase activity in nerve, as in other tissues, is a good indicator of cholesterol's synthetic rate. In the crushed nerves cholesterol synthesis fell to nearly zero during the first week after the crush. There was a partial recovery during the second to fourth weeks, but unlike that of other lipids, cholesterol synthesis remained well below control nerve values throughout most of the 15-week post-crush period examined. Thus, cholesterol synthesis is at very low levels during the myelination of regenerating axons. These results are consistent with a receptor-mediated down-regulation of cholesterol synthesis by lipoproteins, and would be expected if Schwann cells were utilizing an external source of cholesterol as postulated above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号