首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
We investigated potential changes in the metazoan endoparasite fauna in the northern Wadden Sea during the past 4 decades by compiling published studies, reports and original data. During the time considered, the parasite fauna has remained basically the same. Only a few changes in parasite species presence occurred that resulted from changes in host distribution and abundance. The introduction of potential host species had little effect on the parasite community because no alien parasites were concomitantly introduced and the native parasites show low prevalence and intensity in these novel hosts. Eutrophication and effects of phased-out hunting may not have had clear bottom–up or top–down effects on the parasite community because of various confounding factors. Parasites depending on several host species may only be subject to strong population changes if all hosts are affected in a unidirectional way. This, however, is rather unlikely to happen in a coastal ecosystem subject to multiple pressures. Hence, parasites appear to be a relatively conservative component of the northern Wadden Sea.  相似文献   

2.
Competition between parasites within a host can influence the evolution of parasite virulence and host resistance, but few studies examine the effects of unrelated parasites with conflicting transmission strategies infecting the same host. Vertically transmitted (VT) parasites, transmitted from mother to offspring, are in conflict with virulent, horizontally transmitted (HT) parasites, because healthy hosts are necessary to maximize VT parasite fitness. Resolution of the conflict between these parasites should lead to the evolution of one of two strategies: avoidance, or sabotage of HT parasite virulence by the VT parasite. We investigated two co-infecting parasites in the amphipod host, Gammarus roeseli: VT microsporidia have little effect on host fitness, but acanthocephala modify host behaviour, increasing the probability that the amphipod is predated by the acanthocephalan's definitive host. We found evidence for sabotage: the behavioural manipulation induced by the Acanthocephala Polymorphus minutus was weaker in hosts also infected by the microsporidia Dictyocoela sp. (roeselum) compared to hosts infected by P. minutus alone. Such conflicts may explain a significant portion of the variation generally observed in behavioural measures, and since VT parasites are ubiquitous in invertebrates, often passing undetected, conflict via transmission may be of great importance in the study of host-parasite relationships.  相似文献   

3.
We followed adaptation of the chytrid parasite Zygorhizidium planktonicum during 200 generations of growth on its host, the freshwater diatom Asterionella formosa, in a serial passage experiment. Evolution of parasite fitness was assessed both on a homogenous and heterogeneous host population, consisting of respectively a single new and ten different new host strains. These 10 host strains were genetically different and also varied in their initial susceptibility to the parasite. Parasite fitness increased significantly and rapidly on the new, genetically homogenous host population, but remained unaltered during 200 generations of growth on the heterogeneous host population. Enhanced parasite fitness was the result of faster and more efficient transmission, resulting in higher values of R0 (number of secondary infections). Consequently, parasites that evolved within the uniclonal host population infected significantly more of these hosts than did their ancestors. We thus provide experimental evidence for the widely held view that host genetic diversity restricts evolution of parasites and moderates their harmful effects. Genetically uniform host populations are not only at increased risk from fungal epidemics because they all share the same susceptibility, but also because new parasite strains are able to adapt quickly to new host environments and to improve their fitness.  相似文献   

4.
5.
Optimal infection strategies: should macroparasites hedge their bets?   总被引:1,自引:0,他引:1  
A. Fenton  P. J. Hudson 《Oikos》2002,96(1):92-101
Despite considerable research into the mechanisms that lead to the persistence of parasites, the huge diversity of macroparasite transmission strategies observed both within and among species has yet to be explained. This may be because questions of parasite persistence are typically addressed at the population level, even though observed transmission rates are determined by infection events at the level of the individual parasite. To help overcome this disparity, a simple model is developed to explore the optimal infection strategy for a macroparasite under a range of selection pressures. The model calculates the fitness of the parasite by considering explicitly the probability of the individual infective stages surviving and infecting. The optimal strategy is highly sensitive to the rate of host availability and, considering the parasite's fitness, it is often preferable to have sub-maximal infectivity to maximise survival during periods of host absence. An important finding is that when parasites are faced with unpredictable conditions such as the time of host availability, the optimum strategy may be to produce offspring that differ in their infection strategies. By spreading the risk in this way, known as bet hedging, parasites can increase the chances that at least some of their offspring will infect successfully. This potential for variation in infection strategies has not been considered explicitly before and may have wide reaching implications for current epidemiology theory.  相似文献   

6.
The intracellular stages of apicomplexan parasites are known to extensively modify their host cells to ensure their own survival. Recently, considerable progress has been made in understanding the molecular details of these parasite-dependent effects for Plasmodium-, Toxoplasma- and Theileria-infected cells. We have begun to understand how Plasmodium liver stage parasites protect their host hepatocytes from apoptosis during parasite development and how they induce an ordered cell death at the end of the liver stage. Toxoplasma parasites are also known to regulate host cell survival pathways and it has been convincingly demonstrated that they block host cell major histocompatibility complex (MHC)-dependent antigen presentation of parasite epitopes to avoid cell-mediated immune responses. Theileria parasites are the masters of host cell modulation because their presence immortalises the infected cell. It is now accepted that multiple pathways are activated to induce Theileria-dependent host cell transformation. Although it is now known that similar host cell pathways are affected by the different parasites, the outcome for the infected cell varies considerably. Improved imaging techniques and new methods to control expression of parasite and host cell proteins will help us to analyse the molecular details of parasite-dependent host cell modifications.  相似文献   

7.
Density-dependent effects on parasite fitness have been documented from adult helminths in their definitive hosts. There have, however, been no studies on the cost of sharing an intermediate host with other parasites in terms of reduced adult parasite fecundity. Even if larval parasites suffer a reduction in size, caused by crowding, virtually nothing is known about longer-lasting effects after transmission to the definitive host. This study is the first to use in vitro cultivation with feeding of adult trematodes to investigate how numbers of parasites in the intermediate host affect the size and fecundity of adult parasites. For this purpose, we examined two different infracommunities of parasites in crustacean hosts. Firstly, we used experimental infections of Maritrema novaezealandensis in the amphipod, Paracalliope novizealandiae, to investigate potential density-dependent effects in single-species infections. Secondly, we used the crab, Macrophthalmus hirtipes (Ocypodidae), naturally infected by the trematodes, M. novaezealandensis and Levinseniella sp., the acanthocephalan, Profilicollis spp., and an acuariid nematode. These four helminths all develop and grow in their crustacean host before transmission to their bird definitive host by predation. In experimental infections, we found an intensity-dependent establishment success, with a decrease in the success rate of cercariae developing into infective metacercariae with an increasing dose of cercariae applied to each amphipod. In natural infections, we found that M. novaezealandensis-metacercariae achieved a smaller volume, on average, when infrapopulations of this parasite were large. Small metacercariae produced small in vitro-adult worms, which in turn produced fewer eggs. Crowding effects in the intermediate host thus were expressed at the adult stage in spite of the worms being cultured in a nutrient-rich medium. Furthermore, excystment success and egg-production in M. novaezealandensis in naturally infected crabs were influenced by the number of co-occurring Profilicollis cystacanths, indicating interspecific interactions between the two species. Our results thus indicate that the infracommunity of larval helminths in their intermediate host is interactive and that any density-dependent effect in the intermediate host may have lasting effects on individual parasite fitness.  相似文献   

8.
Coevolution with parasites has been implicated as an important factor driving the evolution of host diversity. Studies to date have focussed on gross effects of parasites: how host diversity differs in the presence vs. absence of parasites. But parasite-imposed selection is likely to show rapid variation through time. It is unclear whether short-term fluctuations in the strength of parasite-imposed selection tend to affect host diversity, because increases in host diversity are likely to be constrained by both the supply of genetic variation and ecological processes. We followed replicate populations of coevolving, initially isogenic, bacteria and phages through time, measuring host diversity (with respect to bacterial colony morphologies), host density and rates of parasite evolution. Both host density and time-lagged rates of parasite evolution were good independent predictors of the magnitude of bacterial within- and between-population diversities. Rapid parasite evolution and low host density decreased host within-population diversity, but increased between-population diversity. This study demonstrates that short-term changes in the rate of parasite evolution can predictably drive patterns of host diversity.  相似文献   

9.
Past research on parasites and community ecology has focussed on two distinct levels of the overall community. First, it has been shown that parasites can have a role in structuring host communities. They can have differential effects on the different hosts that they exploit, they can directly debilitate a host that itself is a key structuring force in the community, or they can indirectly alter the phenotype of their host and change the importance of the host for the community. Second, certain parasite species can be important in shaping parasite communities. Dominant parasite species can directly compete with other parasite species inside the host and reduce their abundance to some extent, and parasites that alter host phenotype can indirectly make the host more or less suitable for other parasite species. The possibility that a parasite species simultaneously affects the structure of all levels of the overall community, i.e. the parasite community and the community of free-living animals, is never considered. Given the many direct and indirect ways in which a parasite species can modulate the abundance of other species, it is conceivable that some parasite species have functionally important roles in a community, and that their removal would change the relative composition of the whole community. An example from a soft-sediment intertidal community is used to illustrate how the subtle, indirect effects of a parasite species on non-host species can be very important to the structure of the overall community. Future community studies addressing the many potential influences of parasites will no doubt identify other functionally important parasite species that serve to maintain biodiversity.  相似文献   

10.
The identification of protozoan and metazoan parasites is traditionally carried out using a series of classical keys based upon the morphology of the whole organism. However, in stained tissue sections prepared for light microscopy, taxonomic features will be missing, thus making parasite identification difficult. This work highlights the characteristic features of representative parasites in tissue sections to aid identification. The parasite examples discussed are derived from species affecting finfish, and predominantly include parasites associated with disease or those commonly observed as incidental findings in disease diagnostic cases. Emphasis is on protozoan and small metazoan parasites (such as Myxosporidia) because these are the organisms most likely to be missed or mis-diagnosed during gross examination. Figures are presented in colour to assist biologists and veterinarians who are required to assess host/parasite interactions by light microscopy.  相似文献   

11.
Intraspecific competition between co-infecting parasites can influence the amount of virulence, or damage, they do to their host. Kin selection theory dictates that infections with related parasite individuals should have lower virulence than infections with unrelated individuals, because they benefit from inclusive fitness and increased host longevity. These predictions have been tested in a variety of microparasite systems, and in larval stage macroparasites within intermediate hosts, but the influence of adult macroparasite relatedness on virulence has not been investigated in definitive hosts. This study used the human parasite Schistosoma mansoni to determine whether definitive hosts infected with related parasites experience lower virulence than hosts infected with unrelated parasites, and to compare the results from intermediate host studies in this system. The presence of unrelated parasites in an infection decreased parasite infectivity, the ability of a parasite to infect a definitive host, and total worm establishment in hosts, impacting the less virulent parasite strain more severely. Unrelated parasite co-infections had similar virulence to the more virulent of the two parasite strains. We combine these findings with complementary studies of the intermediate snail host and describe trade-offs in virulence and selection within the life cycle. Damage to the host by the dominant strain was muted by the presence of a competitor in the intermediate host, but was largely unaffected in the definitive host. Our results in this host–parasite system suggest that unrelated infections may select for higher virulence in definitive hosts while selecting for lower virulence in intermediate hosts.  相似文献   

12.
Empirical support for optimal virulence in a castrating parasite   总被引:3,自引:0,他引:3       下载免费PDF全文
The trade-off hypothesis for the evolution of virulence predicts that parasite transmission stage production and host exploitation are balanced such that lifetime transmission success (LTS) is maximised. However, the experimental evidence for this prediction is weak, mainly because LTS, which indicates parasite fitness, has been difficult to measure. For castrating parasites, this simple model has been modified to take into account that parasites convert host reproductive resources into transmission stages. Parasites that kill the host too early will hardly benefit from these resources, while postponing the killing of the host results in diminished returns. As predicted from optimality models, a parasite inducing castration should therefore castrate early, but show intermediate levels of virulence, where virulence is measured as time to host killing. We studied virulence in an experimental system where a bacterial parasite castrates its host and produces spores that are not released until after host death. This permits estimating the LTS of the parasite, which can then be related to its virulence. We exposed replicate individual Daphnia magna (Crustacea) of one host clone to the same amount of bacterial spores and followed individuals until their death. We found that the parasite shows strong variation in the time to kill its host and that transmission stage production peaks at an intermediate level of virulence. A further experiment tested for the genetic basis of variation in virulence by comparing survival curves of daphniids infected with parasite spores obtained from early killing versus late killing infections. Hosts infected with early killer spores had a significantly higher death rate as compared to those infected with late killers, indicating that variation in time to death was at least in part caused by genetic differences among parasites. We speculate that the clear peak in lifetime reproductive success at intermediate killing times may be caused by the exceptionally strong physiological trade-off between host and parasite reproduction. This is the first experimental study to demonstrate that the production of propagules is highest at intermediate levels of virulence and that parasite genetic variability is available to drive the evolution of virulence in this system.  相似文献   

13.
The pattern of parasite species diversification and specialization, appreciated by host range, is investigated in fish parasites. We test whether host range is linked with phylogeny at a high taxonomic level, and if there is a relationship between host range and host species diversification. For this purpose we used two sets of data, one on macro-parasites of marine fishes of the Mediterranean Sea and the other on macro-parasites of marine and freshwater fishes of Canada. Similar patterns of host range among parasitic groups were found. Our findings suggest that habitat (marine vs freshwater) and geographic localization (Canada vs Mediterranean region) play little role in determining the observed patterns of host range. We highlight the potential influence of phylogeny (high-taxonomic level) on the level host range in parasites. We find that parasites with free-swimming larval stages and with direct life cycles have a narrower range of host species than do parasites with indirect life cycle, even if we cannot control for phylogenetic effects because of the lack of variation of life cycles within each parasitic group. Finally, a positive relationship was found between the number of known hosts and parasite species diversity in the case of Mediterranean parasite species. The relationship between host range and species diversification should be related to the mechanism of cospeciation.  相似文献   

14.
The evolutionary diversification of living organisms is a central research theme in evolutionary ecology, and yet it remains difficult to infer the action of evolutionary processes from patterns in the distribution of rates of diversification among related taxa. Using data from helminth parasite communities in 76 species of birds and 114 species of mammals, the influence of four factors that may either be associated with or modulate rates of parasite speciation were examined in a comparative analysis. Two measures of the relative number of congeneric parasite species per host species were used as indices of parasite diversification, and related to host body mass, host density, latitude, and whether the host is aquatic or terrestrial. The occurrence of congeneric parasites was not distributed randomly with respect to these factors. Aquatic bird species tended to harbour more congeneric parasites than terrestrial birds. Large-bodied mammal species, or those living at low latitudes, harboured more congeneric parasites than small-bodied mammals, or than those from higher latitudes. Host density had no apparent association with either measures of parasite diversification. These patterns, however, reflect only the present-day distribution of parasite diversification among host taxa, and not the evolutionary processes responsible for diversification, because the apparent effects of the factors investigated disappeared once corrections were made for host phylogeny. This indicates that features other than host body size, host density, latitude, and whether the habitat is terrestrial or aquatic, have been the key driving forces in the diversification of parasitic helminth lineages. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Chemical contamination and disease outbreaks have increased in many ecosystems. However, connecting pollution to disease spread remains difficult, in part, because contaminants can simultaneously exert direct and multi-generational effects on several host and parasite traits. To address these challenges, we parametrized a model using a zooplankton-fungus-copper system. In individual-level assays, we considered three sublethal contamination scenarios: no contamination, single-generation contamination (hosts and parasites exposed only during the assays) and multi-generational contamination (hosts and parasites exposed for several generations prior to and during the assays). Contamination boosted transmission by increasing contact of hosts with parasites. However, it diminished parasite reproduction by reducing the size and lifespan of infected hosts. Multi-generational contamination further reduced parasite reproduction. The parametrized model predicted that a single generation of contamination would enhance disease spread (via enhanced transmission), whereas multi-generational contamination would inhibit epidemics relative to unpolluted conditions (through greatly depressed parasite reproduction). In a population-level experiment, multi-generational contamination reduced the size of experimental epidemics but did not affect Daphnia populations without disease. This result highlights the importance of multi-generational effects for disease dynamics. Such integration of models with experiments can provide predictive power for disease problems in contaminated environments.  相似文献   

16.
In contrast to the extensively studied sexually transmitted diseases (STDs) of humans, little is known of the ecology or evolutionary biology of sexually transmitted parasites in natural systems. This study of a sexually transmitted parasite on an insect host augments our understanding of both the parasite's population dynamics and virulence effects. The impact of overwintering was assessed on the prevalence of the parasitic mite Coccipolipus hippodamiae on the two-spot ladybird, Adalia bipunctata. First, the effect of infection on host survival was examined during the stressful overwintering period. Box experiments in the field revealed that the infected ladybirds, especially males, are less likely to survive overwintering. The study provides the first evidence that the parasite harms males and suggests revisions of theories on the adaptive virulence of sexually transmitted parasites. It also indicates the importance of using a range of experimental conditions because virulence can be dependent on host condition and sex. Box experiments were also used to examine whether transmission of the parasite occurs within overwintering aggregations. These revealed that substantial transmission does not occur in aggregations and that transmission is predominantly sexual. Overall, the virulence effects and the lack of transmission mean that the overwintering period acts to diminish parasite prevalence and will retard the spring epidemic associated with host reproductive activity.  相似文献   

17.
Parasite aggregation is viewed as a natural law in parasite-host ecology but is a paradox insofar as parasites should follow the Poisson distribution if hosts are encountered randomly. Much research has focused on whether parasite aggregation in or on hosts is explained by aggregation of infective parasite stages in the environment, or by heterogeneity within host samples in terms of host responses to infection (e.g., through representation of different age classes of hosts). In this paper, we argue that the typically aggregated distributions of parasites may be explained simply. We propose that aggregated distributions can be derived from parasites encountering hosts randomly, but subsequently by parasites being 'lost' from hosts based on condition-linked escape or immunity of hosts. Host condition should be a normally distributed trait even among otherwise homogeneous sets of hosts. Our model shows that mean host condition and variation in host condition have different effects on the different metrics of parasite aggregation. Our model further predicts that as host condition increases, parasites become more aggregated but numbers of attending parasites are reduced overall and this is important for parasite population dynamics. The effects of deviation from random encounter are discussed with respect to the relationship between host condition and final parasite numbers.  相似文献   

18.
Over 100 species of red algae have been described as parasites on other red algae, but the majority show some degree of pigmentation. This raises the question of their parasitic status, especially their abilities to photosynthesize and their dependence on their host for fixed carbon. Are they considered parasites only based on morphological characters, for example, reduced size and secondary pit connection to the host? Translocation of nutrients from host to parasite have been shown for very few red algal parasites, and these were mostly unpigmented. This study investigated three pigmented red algal parasites (Rhodophyllis parasitica, Vertebrata aterrimophila and Pterocladiophila hemisphaerica) from New Zealand. We quantified their chlorophyll a content and also measured their PSII capacity using PAM fluorometry. All three parasites contained chlorophyll a. The parasites Rhodophyllis parasitica and Vertebrata aterrimophila were not able to photosynthesize and must therefore be fully nutritional dependent on their host. The parasite Pterocladiophila hemisphaerica was able to photosynthesize independently, but based on molecular characteristics we suggest that it relies on the host plastid to do photosynthesis. Our results support the parasitic status of all three species and highlights the necessity of more studies investigating the differences in host dependency in red algal parasites.  相似文献   

19.
The many ways parasites can impact their host species have been the focus of intense study using a range of approaches. A particularly promising but under-used method in this context is experimental evolution, because it allows targeted manipulation of known populations exposed to contrasting conditions. The strong potential of applying this method to the study of insect hosts and their associated parasites is demonstrated by the few available long-term experiments where insects have been exposed to parasites. In this review, we summarize these studies, which have delivered valuable insights into the evolution of resistance in response to parasite pressure, the underlying mechanisms, as well as correlated genetic responses. We further assess findings from relevant artificial selection studies in the interrelated contexts of immunity, life history, and reproduction. In addition, we discuss a number of well-studied Tribolium castaneum-Nosema whitei coevolution experiments in more detail and provide suggestions for research. Specifically, we suggest that future experiments should also be performed using nonmodel hosts and should incorporate contrasting experimental conditions, such as population sizes or envi- ronments. Finally, we expect that adding a third partner, for example, a second parasite or symbiont, to a host-parasite system could strongly impact (co)evolutionary dynamics.  相似文献   

20.
RH strain Toxoplasma gondii tachyzoites that had naturally lysed their host cells were allowed to infect new host cells for a limited amount of time; subsequent parasite cell divisions were observed closely. On the basis of 4 independent trials, the estimated time to first cell division was 9.8 hr postinfection (PI) and was quite variable (95% confidence interval [CI]: 3.1-16.5 hr PI). The estimated time to second cell division was 14.9 hr PI and was less variable (95% CI: 12.1-17.7 hr PI). Few parasites divided before 6 hr PI in these 4 trials. When tachyzoites were derived by forced lysis (scraping an infected host cell culture and passing it through 27-gauge needles), the first parasite cell division occurred much more rapidly than had been observed in any of the trials with parasites derived by natural lysis. When parasites derived by forced lysis were held away from host cells for 3 hr PI, the first cell division was delayed in a manner similar to that seen in parasites derived by natural lysis. No differences were observed in the timing of the second cell division of parasites derived by forced lysis whether or not they had been held away from cells. These studies demonstrate that the conditions to which tachyzoites are exposed during transit from one host cell to another can affect the kinetics of parasite cell division in the new host cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号