共查询到20条相似文献,搜索用时 0 毫秒
1.
In the tomato plant water flows through primary xylem in accordance with Poiseuille's law. This relation and the analogy between Poiseuille's and Ohm's law were employed to calculate rates of flow and differences in pressure within vascular bundles when transpiration rates from individual leaves were known. The resistance of vascular bundles to flow was calculated from a modification of Poiseuille's law and from measurements of vessels in all bundles. The rates of flow in all bundles were derived from a set of simultaneous linear equations of flow, written to correspond with the nature of the vascular network. Values of the difference in pressure associated with flow in bundles were derived from resistances and flow rates in individual bundles. These agreed substantially with values observed in a comparable plant. In large bundles, vessels occur in a frequency distribution that is approximately normal with respect either to the logarithms of their radii or to the fourth power of their radii. The largest vessels in a bundle transport most of the water when they are functioning. The tomato plant contains 2 types of vascular bundle. The large bundles of the stem form a network by joining above each node in combinations of 2 at a time. The small bundles of the stem and petiolar bundles are independent of other bundles from their origins at junctions to their termini. The small bundles offer high resistance to flow, whereas the resistance of large bundles is low. The average conductance of large bundles decreases from the base to the apex of the stem. That of small vascular bundles remains low and more or less constant throughout the plant. Only a small difference in pressure is required to maintain flow in large bundles. For lower leaves, the driving pressure required to move water to the base of a petiole is considerably less than that which moves water through petioles. The difference in pressure that maintains flow increases steadily for successively higher nodes. However, the pressure that drives flow to leaves is not always greater for higher leaves than for intermediate ones. For the plant examined, the highest leaves required a smaller amount of energy to move water from the ground than intermediate leaves did. This was also true of the power expended in moving water to individual leaves. In the large network bundles, significant cross transfer of flow occurs at junction points from one bundic to another. Because of the interconnections between large bundles. pressure and flow relations are apparently not greatly altered when localized dysfunction occurs in the vessels of large bundles. In small, independent bundles, a localized dysfunction in vessels produces a significant effect on pressure and flow relations. 相似文献
3.
Arabidopsis inflorescence stems develop a vascular pattern similar to that found in most dicots. The arrangement of vascular tissues within the bundle is collateral, and vascular bundles in the stele are arranged in a ring. Although auxin has been shown to be an inducer of vascular differentiation, little is known about the molecular mechanisms controlling vascular pattern formation. By screening ethyl methanesufonate-mutagenized populations of Arabidopsis, we have isolated an avb1 (amphivasal vascular bundle) mutant with a novel vascular pattern. Unlike the collateral vascular bundles seen in the wild-type stems, the vascular bundles in the avb1 stems were similar to amphivasal bundles, i.e. the xylem completely surrounded the phloem. Furthermore, branching vascular bundles in the avb1 stems abnormally penetrated into the pith, which resulted in a disruption in the ring-like arrangement of vascular bundles in the stele. The avb1 mutation did not affect leaf venation pattern and root vascular organization. Auxin polar transport assay indicated that the avb1 mutation did not disrupt the auxin polar transport activity in inflorescence stems. The avb1 mutation also exhibited pleiotropic phenotypes, including curled stems and extra cauline branches. Genetic analysis indicated that the avb1 mutation was monogenic and partially dominant. The avb1 locus was mapped to a region between markers mi69 and ASB2, which is covered by a yeast artificial chromosome clone, CIC9E2, on chromosome 5. Isolation of the avb1 mutant provides a novel means to study the evolutionary mechanisms controlling the arrangement of vascular tissues within the bundle, as well as the mechanisms controlling the arrangement of vascular bundles in the stele. 相似文献
4.
Research on water exchange in frogs has historically assumed that blood osmotic potential drives water exchange between a frog and its environment, but here we show that the “seat patch” (the primary site of water exchange in many anurans), or other sites of cutaneous water uptake, act as an anatomic “compartment” with a water potential controlled separately from water potential of the blood, and the water potential of that compartment can be the driver of water exchange between the animal and its environment. We studied six frog species ( Xenopus laevis, Rana pipiens, R. catesbeiana, Bufo boreas, Pseudacris cadaverina, and P. regilla) differing in ecological relationships to environmental water. We inferred the water potentials of seat patches from water exchanges by frogs in sucrose solutions ranging in water potential from 0 to 1000‐kPa. Terrestrial and arboreal species had seat patch water potentials that were more negative than the water potentials of more aquatic species, and their seat patch water potentials were similar to the water potential of their blood, but the water potentials of venters of the more aquatic species were different from (and less negative than) the water potentials of their blood. These findings indicate that there are physiological mechanisms among frog species that can be used to control water potential at the sites of cutaneous water uptake, and that some frogs may be able to adjust the hydric conductance of their skin when they are absorbing water from very dilute solutions. Largely unexplored mechanisms involving aquaporins are likely responsible for adjustments in hydric conductance, which in turn, allow control of water potential at sites of cutaneous water uptake among species differing in ecological habit and the observed disequilibrium between sites of cutaneous water uptake and blood water potential in more aquatic species. 相似文献
6.
A crucial step in the biosynthesis of jasmonic acid (JA) is the formation of its correct stereoisomeric precursor, cis(+)12-oxophytodienoic acid (OPDA). This step is catalysed by allene oxide cyclase (AOC), which has been recently cloned from tomato. In stems, young leaves and young flowers, AOC mRNA accumulates to a low level, contrasting with a high accumulation in flower buds, flower stalks and roots. The high levels of AOC mRNA and AOC protein in distinct flower organs correlate with high AOC activity, and with elevated levels of JA, OPDA and JA isoleucine conjugate. These compounds accumulate in flowers to levels of about 20 nmol g-1 fresh weight, which is two orders of magnitude higher than in leaves. In pistils, the level of OPDA is much higher than that of JA, whereas in flower stalks, the level of JA exceeds that of OPDA. In other flower tissues, the ratios among JA, OPDA and JA isoleucine conjugate differ remarkably, suggesting a tissue-specific oxylipin signature. Immunocytochemical analysis revealed the specific occurrence of the AOC protein in ovules, the transmission tissue of the style and in vascular bundles of receptacles, flower stalks, stems, petioles and roots. Based on the tissue-specific AOC expression and formation of JA, OPDA and JA amino acid conjugates, a possible role for these compounds in flower development is discussed in terms of their effect on sink-source relationships and plant defence reactions. Furthermore, the AOC expression in vascular bundles might play a role in the systemin-mediated wound response of tomato. 相似文献
7.
Palms can grow at sites exposed to high winds experiencing large dynamic wind and gust loads. Their stems represent a system of stiff fibrous elements embedded in the soft parenchymatous tissue. The proper design of the interface of the stiffening elements and the parenchyma is crucial for the functioning of the stem. The strategy of the palm to compromise between stiff fibre caps and the soft parenchymatous tissue may serve as a model system for avoiding stress discontinuities in inhomogeneous and anisotropic fibre-reinforced composite materials. We investigated the mechanical, structural and biochemical properties of the fibre caps of the palm Washingtonia robusta at different levels of hierarchy with high spatial resolution. A gradual decrease in stiffness across the fibre cap towards the surrounding parenchymatous tissue was observed. Structural adaptations at the tissue level were found in terms of changes in cell cross sections and cell wall thickness. At the cell wall level, gradients across the fibre cap were found in the degree of orientation of the microfibrils and in the lignin level and composition. The impact of these structural variations in the local material stiffness distribution is discussed. 相似文献
9.
Vascular bundles were isolated from grapefruit ( Citrus paradisi Macf.) during periods of rapid sucrose translocation into fruit. Invertase and sucrose synthase activities were assayed in these strands and compared with immediately adjacent tissues (inner most peel and segment epidermis) and phloem-free juice sacs during four growing seasons. Although sucrose synthase was present in sink cells, the significantly greater activity in vascular strands (per unit fresh weight and protein) indicated that the role of this enzyme in translocation may include a vascular function in addition to its proposed involvement in metabolism of importing cells. 相似文献
10.
The classification of bamboos is often difficult, because they do not bloom regularly
and variation of their vegetative organs occurs easily. This paper deals mainly with
the dissection of the culms at the base, middle, and top of 31 species from 10 genera
of caespitose bamboos cultivated in South China. Proceeding from the exterior to the
interior, observations were made on the sections of the parts mentioned above, and according to differences noted in structure, size, shape, and arrangement of the vascular
bundles, a division into 4 vascular bundle types was arrived at and a key for 31 species
complied in an attempt to base the classification of bamboos on the structure of the
vascular bundles. 相似文献
11.
Illustrations of seedling development and the adult plant of Cladium jamaicense Crantz are given. The course of vascular bundles in the leaf is described in detail. The structure of seedling and adult leaves are compared. Development of leaf primordia and initiation of vascular bundles are followed. Changes in the anatomy within one leaf and differences between foliage leaves and scales are related to their development. The adaxial vascular bundles that are inversely orientated are initiated within a procambial complex in close association with the largest abaxial bundles. Normally orientated adaxial bundles have an origin independent of other bundles. A hypothesis is presented which accounts for the differentiation of inverted bundles in morphogenetic terms. No developmental evidence was found to support the phylogenetic derivation of the leaf of Cladium by adaxial folding and fusion of laminar halves with their own adaxial surfaces. 相似文献
13.
Plants make full use of light signals to determine the timing of flowering. In Arabidopsis thaliana, a blue/UV-A photoreceptor, CRYPTOCHROME 2 (cry2), and a red/far-red photoreceptor, PHYTOCHROME B (phyB), are two major photoreceptors that control flowering. The light stimuli for the regulation of flowering are perceived by leaves. We have recently shown that phyB expression in mesophyll but not in vascular bundles suppresses the expression of a key flowering regulator, FLOWERING LOCUS T (FT), in vascular bundles. In this study, we asked where in the leaf cry2 perceives light stimuli to regulate flowering. To answer this question, we established transgenic Arabidopsis lines in which the cry2-green fluorescent protein (GFP) fusion was expressed under the control of organ/tissue-specific promoters in a cry2-deficient mutant background. Analysis of these lines revealed that expression of cry2-GFP in vascular bundles, but not in epidermis or mesophyll, rescued the late flowering phenotype. We further confirmed that cry2-GFP expressed in vascular bundles increased FT expression only in vascular bundles. Hence, in striking contrast with phyB, cry2 most likely regulates FT expression in a cell-autonomous manner. 相似文献
14.
A positive linear relationship between the net CO 2 exchange rate ( P
N) and the leaf stomatal conductance (g s) under an optimal temperature, and even more distinct one after a short-term chilling (CH, 15-17 h, 2 °C in darkness), that
was found in two tomato cultivars (sensitive to a low temperature cv. Robin and tolerant cv. New Yorker) suggested a partial
stomatal limitation of photosynthesis. The CH treatment of cv. Robin resulted in an intercellular CO 2 concentration ( C
i) increase because of which a negative correlation between C
i and P
N was observed. In cv. New Yorker a positive correlation was observed. Detrimental effect of the low temperature in cv. Robin
was more evident in plants with a relatively small root system (SR), but drought-hardening positively affected the response
to CH only in the plants with bigger roots (BR). On the contrary, in cv. New Yorker the favourable effect of such pre-treatment
was more evident in SR than in BR plants.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
15.
A positive linear relationship between the net CO 2 exchange rate ( P N) and the leaf stomatal conductance (g s) under an optimal temperature, and even more distinct one after a short-term chilling (CH, 15-17 h, 2 °C in darkness), that was found in two tomato cultivars (sensitive to a low temperature cv. Robin and tolerant cv. New Yorker) suggested a partial stomatal limitation of photosynthesis. The CH treatment of cv. Robin resulted in an intercellular CO 2 concentration ( C i) increase because of which a negative correlation between C i and P N was observed. In cv. New Yorker a positive correlation was observed. Detrimental effect of the low temperature in cv. Robin was more evident in plants with a relatively small root system (SR), but drought-hardening positively affected the response to CH only in the plants with bigger roots (BR). On the contrary, in cv. New Yorker the favourable effect of such pre-treatment was more evident in SR than in BR plants. 相似文献
16.
The main objective of this study was to evaluate the role of intervessel contacts in determining the patterns of hydraulic integration both within and between xylem sectors. The degree of intervessel contacts and the lateral exchange capability within and between sectors were examined and correlated in different xeric shrubs. A dye injection method was used to detect the connections between vessels; an apoplastic dye was sucked through a known number of vessels and its distribution in the xylem network was followed. Hydraulic techniques were used to measure axial and tangential conductivity both within and between xylem sectors. The intra- and inter-sector integration indexes were then determined as the ratio of tangential to axial conductance. Species differed significantly in the degree of intervessel contacts, intra- and inter-sector integration index. In all cases, hydraulic integration was observed to be higher within sector than between sectors. From the correlation analyses, the intervessel contacts showed a very weak relationship with inter-sector integration index and a strong positive relationship with intra-sector integration index. Results suggested that (1) the factors affecting patterns of lateral flow within xylem sectors might be relatively different from those between sectors. (2) The degree of intervessel contacts was a major determinant of hydraulic integration within the same xylem sector. (3) Intervessel connectivity alone was a poor predictor of hydraulic integration between different sectors, implying a significant contribution of other anatomical, physiological and environmental factors in determining the patterns of integrated–sectored transport within woody stems. 相似文献
17.
Flowers developing on tomato ( Lycopersicon esculentum ) plants homozygous for the lateral suppressor ( ls ) mutation lack petals. Scanning electron micrographs revealed that in ls plants no second whorl organs were initiated. The initiation of first, third, and fourth whorl organs were unaffected by this mutation. To investigate interactions between the cells in different layers of the floral meristem during organ initiation, a periclinal chimera between wild-type and ls tomato was generated. Flowers of the chimera having ls cells in the outer meristem layer (L1) and wild-type cells in internal layers (L2 and L3) developed normally, including the initiation of organ primordia that differentiated as petals in normal positions within the second whorl. L1 of the chimera developed in a non-autonomous manner during petal development. Thus, wild-type cells occupying the internal meristem layers provided developmental cues necessary for initiation of petal primordia at appropriate positions on the floral meristem. L1 cells carrying the lateral suppressor mutation were fully capable of responding to this information and differentiated appropriately. 相似文献
18.
The patterns of initiation and early development of the minor and major veins in the flat portion of the leaf blade of maize ( Zea mays L.) follow similar patterns. The veins and their associated bundle sheath cells commonly arise from cell assemblages derived from a single cell lineage, or longitudinal file of cells, rather than from two “half vein units” derived from different cell lineages. In addition, apparently, none of the vascular cells derived from the procambium is directly related ontogenetically to a bundle sheath cell. In veins derived from larger cell assemblages, the lateral bundle sheath cells are more closely related ontogenetically to the mesophyll cells, which are derived from the ground meristem, than to the vascular cells, which are derived from procambium. The bundle sheath cells, accordingly, are interpreted as being ground meristem in origin. 相似文献
19.
Indirect evidence suggests that vascular coatings formed by plants in response to stress consist of suberin-like substances containing lipid and phenolic compounds. To provide more direct chemical evidence that coatings are suberin, we used a natural pathogen, Verticillium albo-atrum, or a stress-responsive hormone, abscisic acid, to induce coating in two isolines of tomato ( Lycopersicon esculentum L. cultivar Craigella) that are resistant or susceptible to the pathogen. Using treated petioles that had been monitored cytologically, chemical depolymerization followed by combined gas-liquid chromatography-mass spectrometry analysis of alkane-α,ω-diol levels confirmed the presence of suberin after induction of coating and showed quantitative differences between the isolines that correlated with cytological measurements of the coating response. Northern analysis of suberization-associated anionic peroxidase mRNA showed corresponding increases, and tissue blot analysis further indicated that induction of the mRNA was localized in the responding vascular bundles, as determined by suberin histochemistry. Taken together, these results provide chemical evidence that the coatings are mainly suberin. 相似文献
20.
A new distilbene compound, 4',4'-dichloromercuric-2,2,2',2'-bistilbene tetrasulfonic acid (DCMBT), has been synthesized for use in studies of anion and water transport in the human red cell. DCMBT combines features of both the specific stilbene anion transport inhibitor, DIDS, and the mercurial water transport inhibitor, pCMBS. This new compound inhibits anion transport almost completely with a Ki of 15 microM. DCMBT also inhibits water transport by about 15-20% with a Ki of about 8 microM. Treatment of red cells with DIDS inhibits the effect of DCMBT on water transport, suggesting that anion transport and water transport are mediated by the same protein. 相似文献
|