首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
O W Odom  B B Craig  B A Hardesty 《Biopolymers》1978,17(12):2909-2931
The Y-base of yeast tRNAPhe was replaced by the fluorophores 1-aminoanthracene or proflavine to yield derivatives which are active in all of the reactions of peptide elongation on reticulocyte ribosomes. The relatively long lifetime, higher quantum yield, and environmental sensitivity of 1-aminoanthracene make it a particulary useful adjunct to the Y-base in studying conformational changes in the anticodon region. The absorption and emission spectra of 1-aminoanthracene in tRNA in solutions in which it is active in peptide synthesis indicate that the probe is in a hydrophobic environment, apparently provided by stacking with the adjacent bases in the anticodon loop. The proflavine derivative, tRNA, was employed in iodide quenching, D2O enhancement, and fluorescence depolarization experiments. The results indicate that the fluorophore in partially but not completely protected from the solvent. Anisotropy studies indicate that in solutions approximating those which support peptide synthesis on ribosomes, the probes have significant but restricted flexibility within the anticodon loop. Considered with nmr data and Y-base fluorescence from crystals of tRNA, the results indicate that the solution and crystal structures of tRNAPhe are very similar. In turn, fluorescene from modified tRNAPhe bound to ribosomes is similar to that observed in solution. It is of special significance for future experiments involving nonradiative energy transfer that these probles adjacent to the anticodon retain independent flexibility when bound to ribosomes with poly(U). The tRNAPhe itself appears to be held rigidly on the ribosomes. It is concluded that within the limits dictated by the position and sensitivity of the probes used in this study, the mechanism of tRNAPhe binding to ribosomes and the movement of tRNA and mRNA during the translocation steps of peptide synthesis can be interpreted in terms of the well-defined crystal structure of tRNAPhe.  相似文献   

2.
The interactions of yeast tRNATyr, spin-labelled at position i6A-37 next to the anticodon, with EF-Tu . GTP and with Escherichia coli tRNAVal (which has a complementary anticodon) have been studied. The immobilization of the spin label upon ternary complex formation shows a conformational change of the anticodon region, although this part of tRNATyr is not in direct contact with the protein, as indicated by RNase T1 digestion. Upon anticodon-anticodon interaction, no conformational change of the anticodon loop of tRNATyr was observed.  相似文献   

3.
Twenty-two anticodon arm analogues were prepared by joining different tetra, penta, and hexaribonucleotides to a nine nucleotide fragment of yeast tRNAPhe with T4 RNA ligase. The oligomer with the same sequence as the anticodon arm of tRNAPhe bind poly U programmed 30S ribosomes with affinity similar to intact tRNAPhe. Analogues with an additional nucleotide in the loop bind ribosomes with a weaker affinity whereas analogues with one less nucleotide in the loop do not bind ribosomes at all. Reasonably tight binding of anticodon arms with different nucleotides on the 5' side of the anticodon suggest that positions 32 and 33 in the tRNAPhe sequence are not essential for ribosome binding. However, differences in the binding constants for anticodon arms containing modified uridine residues in the "constant uridine" position suggest that both of the internal "U turn" hydrogen bonds predicted by the X-ray crystal structure are necessary for maximal ribosome binding.  相似文献   

4.
Binding of yeast tRNAPhe anticodon arm to Escherichia coli 30 S ribosomes   总被引:7,自引:0,他引:7  
A 15-nucleotide fragment of RNA having the sequence of the anticodon arm of yeast tRNAPhe was constructed using T4 RNA ligase. The stoichiometry and binding constant of this oligomer to poly(U)-programmed 30 S ribosomes was found to be identical to that of deacylated tRNAPhe. The anticodon arm and tRNAPhe also compete for the same binding site on the ribosome. These data indicate that the interaction of tRNAPhe with poly(U)-programmed 30 S ribosomes is primarily a result of contacts in the anticodon arm region and not with other parts of the transfer RNA. Since similar oligomers which cannot form a stable helical stem do not bind ribosomes, a clear requirement for the entire anticodon arm structure is demonstrated.  相似文献   

5.
6.
D Ringer  S Chládek 《Biochemistry》1976,15(13):2759-2765
The mechanism of enzymatic binding of AAtRNA to the acceptor site Escherichia coli ribosomes has been studied using the following aminoacyl oligonucleotides as models of the 3' terminus of AA-tRNA: C-A-Phe, C-A-(2'-Phe)H, and C-A(2'H)Phe. T-psi-C-Gp was used as a model of loop IV of tRNA. The EF-T dependent binding of Phe-tRNA to ribosomes (in the presence of either GTP or GMPPCP) and the GTPase activity associated with EF-T dependent binding of the Phe-tRNA were inhibited by C-A-Phe,C-A(2'Phe)H, and C-A(2'H)Phe. These aminoacyl oligonucleotides inhibit both the formation of ternary complex EF-Tu-GTP-AA-tRNA and the interaction of this complex with the ribosomal A site. The uncoupled EF-Tu dependent GTPase (in the absence of AA-tRNA) was also inhibited by C-A-Phe, C-A(2'Phe)H, and C-A(2'H)Phe, while nonenzymatic binding of Phe-tRNA to the ribosomal A site was inhibited by C-A-Phe and C-A(2'-Phe)H, but not by C-A(2'H)Phe. The tetranucleotide T-psi-C-Gp inhibited both enzyme binding of Phe-tRNA and EF-T dependent GTP hydrolysis. However, inhibition of the latter reaction occured at a lower concentration of T-psi-C-Gp suggesting a specific role of T-psi-C-Gp loop of AA-tRNA in the GTPase reaction. The role of the 2' and 3' isomers of AA-tRNA during enzymatic binding to ribosomes is discussed and it is suggested that 2' leads to 3' transacylation in AA-tRNA is a step which follows GTP hydrolysis but precedes peptide bond formation.  相似文献   

7.
Specific substitution into the anticodon loop of yeast tyrosine transfer RNA   总被引:11,自引:0,他引:11  
L A Bare  O C Uhlenbeck 《Biochemistry》1986,25(19):5825-5830
The aminoacylation kinetics of 19 different variants of yeast tRNATyr with nucleotide substitutions in positions 33-35 were determined. Substitution of the conserved uridine-33 does not alter the rate of aminoacylation. However, substitution of the anticodon position 34 or position 35 reduces Km from 2- to 10-fold and Vmax as much as 2-fold, depending on the nucleotide inserted. The ochre and amber suppressor tRNAsTyr both showed about a 7-fold reduction in Vmax/Km. Data from tRNATyr with different modified nucleotides at position 35 suggest that specific hydrogen bonds form between the synthetase and both the N1 and N3 hydrogens of psi-35. The effect of simultaneous substitutions at positions 34 and 35 can be predicted reasonably well by combining the effects of single substitutions. These data suggest that yeast tyrosyl-tRNA synthetase interacts with positions 34 and 35 of the anticodon of tRNATyr and opens the possibility that nonsense suppressor efficiency may be mediated by the level of aminoacylation.  相似文献   

8.
Phe-tRNA from yeast has a highly modified nucleoside, called Y, adjacent to the 3′ side of its anticodon, that can be removed or replaced with proflavine. In a protein-synthesizing system from rabbit reticulocytes, poly (U)-directed binding and polyphenylalanine synthesis are low with these modified Phe-tRNA species relative to the corresponding values with unmodified Phe-tRNA. However, polymerization can be increased with relatively large amounts of elongation factor I. The modified Phe-tRNA species bound to the ribosomes with poly(U) either in the presence or absence of elongation factor I and GTP is immediately reactive in the peptidyl transferase reaction measured by the formation of diphenylalanine or phenylalanyl-puromycin. It appears to have been bound directly into the donor ribosomal site by either the nonenzymatic mechanism involving Mg2+ or by the enzymatic mechanism involving EF-I and GTP.  相似文献   

9.
10.
The determination of the structural and functional contributions of natural modified nucleosides to tRNA has been limited by lack of an approach that can systematically incorporate the modified units. We have produced a number of oligonucleotide analogs, of the anticodon of yeast tRNA(Phe) by, combining standard automated synthesis for the major nucleosides with specialty chemistries for the modified nucleosides. In this study, both naturally occurring and unnatural modified nucleotides were placed in native contexts. Each oligonucleotide was purified and the nucleoside composition determined to validate the chemistry. The RNAs were denatured and analyzed to determine the van't Hoff thermodynamic parameters. Here, we report the individual thermodynamic contributions for Cm, Gm, m1G, m5C, psi. In addition m5m6U, m1psi, and m3psi, were introduced to gain additional understanding of the physicochemical contribution of psi and m5C at an atomic level. These oligonucleotides demonstrate that modifications have measurable thermodynamic contributions and that loop modifications have global contributions.  相似文献   

11.
12.
K Yoon  D H Turner  I Tinoco  Jr  F Haar    F Cramer 《Nucleic acids research》1976,3(9):2233-2241
The kinetics of U-U-C-A binding to the dodecanucleotide (A-Cm-U-Gm-A-A-Y-A-psi-m5C-U-Gp) isolated from the anticodon region of yeast tRNA-Phe are similar to the kinetics of binding of U-U-C-A to intact tRNA-Phe. A large enhancement in binding constant over that predicted for U-U-C-A-U-G-A-A is observed for both the complexes of dodecanucleotide and tRNA-Phe with U-U-C-A. This strongly suggests that both the anticodon loop in tRNA-Phe and the dodecanucleotide can form four base pairs with U-U-C-A. Furthermore, the enhanced stability cannot be attributed to a special conformation of the anticodon loop, but instead the anticodon loop is probably flexible. A likely explanation for the increased binding is the effect of non-base-paired ends. This increased thermodynamic stability comes from a larger entropy gain rather than a larger enthalpy decrease.  相似文献   

13.
14.
The equilibrium binding of a highly fluorescent derivative of yeast tRNAPhe to Escherichia coli 70 S ribosomes was studied fluorimetrically at 7 °C in 25 mm-magnesium. Under these conditions 70 S ribosomes bind two deacylated tRNAs stoichiometrically. An analysis of the binding data using a model in which occupancy of the weaker site requires prior occupancy of the stronger site leads to apparent association constants of (1.00 ± 0.05) × 109m?1 and (3.4 ± 0.2) × 107m?1. The use of an independent site model does not change these values appreciably. The observed binding constants do not depend upon the presence or absence of the messenger RNA, poly(U). However, spectroscopic evidence strongly suggests that the anticodons of both bound tRNAs are in contact with the message. This evidence further suggests that in the presence of poly(U) the environment of the hypermodified base adjacent to the anticodon is substantially different in the two sites. This may reflect a difference in the conformation of the anticodon loops or an interaction between the hypermodified base of the weak site tRNA and the anticodon loop of the strong site tRNA.  相似文献   

15.
Magnesium and manganese ions bind strongly to the unusual transfer RNA anticodon loop nucleotides, N-[(9-beta-D-ribofuranosyl-9H-purin-6-yl)carbamoyl]-L-threonine 5'-monophosphate (pt6A) and uridine-5-oxyacetic acid 5'-monophosphate (pV). Potentiometric measurements have shown that the delta G for metal ion-pt6A complex formation is 2-3-times more exothermic than for AMP. Electron-nuclear longitudinal dipolar relaxation data yielded manganese-ligand atom distances which permit a three-dimensional construct of the complex in which metal is coordinated to the phosphate, carboxylate of the threonine side-chain (with the nucleotide in the anti glycosidic conformation) and N7 of the adenine ring. Similarly, manganese binds strongly to pV, involving phosphate and carboxylate functions. It is possible that a facet of the functional role of these unusual residues is to chelate magnesium ions and in so doing permit optimum anticodon loop conformational stability and stability of tRNA-mRNA-ribosome complexes.  相似文献   

16.
Three analogs of yeast alanyl tRNA with anticodon loops of different sizes, tRNA75 (no G35 and 5'-terminal phosphate), tRNA77 (one more C between G35 and C36, no 5'-terminal phosphate), and ptRNA79 (with Cm1I psi between G35 and C36), were synthesized. In comparison with the reconstituted natural yeast tRNA, the charging activities of the three analogs were 90% (tRNA75), 94.7% (tRNA77), and 104% (ptRNA79). These results supported the conclusion (Yang De-ping and Wang De-bao (T. P. Wang) (1983) Acta Biochim. Biophys. Sin. 15, 83-90) that the anticodon loop of yeast alanyl tRNA was not involved in the interaction between alanyl-tRNA synthetase from rat liver and yeast alanyl tRNA. In contrast, in the rabbit reticulocyte lysate system, the incorporation of alanine in the charged analogs was 0% (tRNA75 and ptRNA79) and 100% (tRNA77). There were significant differences between the incorporation activities of analogs and those of the reconstituted molecule. The reason for these differences is discussed.  相似文献   

17.
18.
Conformational and dynamic properties of the anticodon loop of yeast tRNAPhe were investigated by analyzing the time resolved fluorescence of wybutine serving as a local structural probe adjacent to the anticodon GmAA on its 3 side. The influence of Mg2+, important for stabilizing the tertiary structure of tRNA, and of the complementary anticodon s2UUC of E. coli tRNA 2 Glu were investigated.Fluorescence lifetimes and anisotropies were measured with ps time resolution using time correlated single photon counting and a mode locked synchronously pumped and frequency doubled dye laser as excitation source. From the analysis of lifetimes () and rotational relaxation times ( R ) we conclude that wybutine occurs in various structural states: (i) one stacked conformation where the base has no free mobility and the only rotational motion reflects the mobility of the whole tRNA molecule (=6 ns, R =19 ns), (ii) an unstacked conformation where the base can freely rotate (=100 ps, R = 370 ps) and (iii) an intermediary state (=2 ns, R = 1.6 ns).Under biological conditions, i. e. in the presence of Mg2+ and neutral salts, wybutine is found in a stacked and immobile state which is consistent with the crystallographic picture. In the presence of the complementary codon however, as exemplified by the E. coli-tRNA 2 Glu anticodon, our analysis indicates that the codon-anticodon complex exists in an equilibrium of structural states with different rotational mobility of wybutine. The conformation with wybutine freely mobile is the predominant one and suggests that this conformation of the codon-anticodon structure differs from the canonical 3–5 stack.  相似文献   

19.
Contacts between the tRNA-like domain in brome mosaic virus RNA and yeast tyrosyl-tRNA synthetase have been determined by footprinting with enzymatic probes. Regions in which the synthetase caused protections indicative of direct interaction coincide with loci identified by mutational studies as being important for efficient tyrosylation [Dreher, T. W. & Hall, T. C. (1988) J. Mol. Biol. 201, 41-55]. Additional extensive contacts were found upstream of the core of the tRNA-like structure. In parallel, the contacts of yeast tRNATyr with its cognate synthetase were determined by the same methodology and comparison of protected nucleotides in the two RNAs has permitted the assignment of structural analogies between domains in the viral tRNA-like structure and tRNATyr. Amino acid acceptor stems are similarly recognized by yeast tyrosyl-tRNA synthetase in the two RNAs, indicating that the pseudoknotted fold in the viral RNA does not perturb the interaction with the synthetase. A further important analogy appears between the anticodon/D arm of the L-conformation of tRNAs and a complex branched arm of the viral tRNA-like structure. However, no apparent anticodon triplet exists in the viral RNA. These results suggest that the major determinants for tyrosylation of yeast tRNATyr lie outside the anticodon stem and loop, possibly in the amino acid acceptor stem.  相似文献   

20.
The genome of Saccharomyces cerevisiae encodes three close homologues of the Escherichia coli 2'-O-rRNA methyltransferase FtsJ/RrmJ, designated Trm7p, Spb1p and Mrm2p. We present evidence that Trm7p methylates the 2'-O-ribose of nucleotides at positions 32 and 34 of the tRNA anticodon loop, both in vivo and in vitro. In a trm7Delta strain, which is viable but grows slowly, translation is impaired, thus indicating that these tRNA modifications could be important for translation efficiency. We discuss the emergence of a family of three 2'-O-RNA methyltransferases in Eukaryota and one in Prokaryota from a common ancestor. We propose that each eukaryotic enzyme is located in a different cell compartment, in which it would methylate a different RNA that can adopt a very similar secondary structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号