首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mitogen-activated protein kinases (MAPKs) mediate many of the cellular effects of growth factors, cytokines and stress stimuli. Their activation requires the phosphorylation of a threonine and a tyrosine residue located in a Thr-X-Tyr motif (where X is any amino acid) [1]. This phosphorylation is catalysed by MAPK kinases (MKKs), which are all thought to be ‘dual specificity’ enzymes that phosphorylate both the threonine and the tyrosine residue of the Thr-X-Tyr motif [2]. Here, we report that the MAPK family member known as stress-activated protein kinase-1c (SAPK1c, also known as JNK1) [3] is activated synergistically in vitro by MKK4 ([4], [5] and [6]; also called SKK1 and JNKK1) and MKK7 ([7], [8] and [9]; also called SKK4 and JNKK2). We found that MKK4 had a preference for the tyrosine residue, and MKK7 for the threonine residue, within the Thr-X-Tyr motif. These observations suggest that the full activation of SAPK1c in vivo may sometimes require phosphorylation by two different MKKs, providing the potential for integrating the effects of different extracellular signals. They also raise the possibility that other MAPK family members may be activated by two or more MKKs and that some MKKs may have gone undetected because they phosphorylate the tyrosine residue only, and therefore do not induce any activation unless the threonine has first been phosphorylated by another MKK.  相似文献   

2.
3.
Stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) responds to a variety of stress stimuli and controls cell fates such as cell cycle entrance, apoptosis and senescence. Stimuli such as ultraviolet irradiation and chemical reagents that damage genomic DNA induce the activation of the SAPK/JNK signaling pathway. However, it is unclear how the signal arising in the nucleus owing to DNA damage is transmitted to SAPK/JNK in the cytoplasm. Here, we report that the nuclear components Daxx and Ras-association domain family 1C (RASSF1C) link DNA damage to SAPK/JNK activation in HeLa cells. In response to DNA damage, Daxx localized in promyelocytic leukaemia-nuclear bodies (PML-NBs) undergoes ubiquitination and degradation. RASSF1C, a tumor suppressor and newly identified binding partner of Daxx, is constitutively anchored by Daxx in PML-NBs but is released from the nucleus when Daxx is degraded. This released RASSF1C translocates to cytoplasmic microtubules and participates in the activation of SAPK/JNK. Our data define a novel mechanism by which the Daxx-RASSF1C complex in PML-NBs couples nuclear DNA damage to the cytoplasmic SAPK/JNK signaling pathway.  相似文献   

4.
Activation of β-adrenergic receptors (AR) in adipocytes triggers acute changes in metabolism that can alter patterns of gene expression. This work examined the mechanisms by which activation of hormone sensitive lipase (HSL) induces expression of inflammatory cytokines in adipocytes in vivo and model adipocytes in vitro. β3-AR activation in mice triggered expression of inflammatory genes CCL2, IL-6, and PAI-1, as well as endoplasmic reticulum (ER) stress markers GRP78 and CHOP. Pharmacological inhibition of HSL blocked induction of inflammatory genes, but not ER stress markers. Promoting intracellular accumulation of free fatty acids (FFAs) in 3T3-L1 adipocytes increased expression of inflammatory cytokines, whereas inhibiting ceramide synthesis partly blocked PAI-1 expression, but not IL-6. Induction of inflammatory markers in vivo and in vitro was preceded by phosphorylation of p38 and JNK, and inhibition of HSL prevented activation of these kinases. Experiments with pharmacological inhibitors of specific MAP kinases demonstrated the importance of p38 MAPK as a mediator of lipolysis-induced inflammation in vivo and in vitro. Together, these results demonstrate that FFAs liberated by HSL activate p38 and JNK, and p38 mediates pro-inflammatory cytokine expression in adipose tissue.  相似文献   

5.
6.
The mechanism underlying protease-activated receptor (PAR)-activation and subsequent interleukin (IL)-8 production in airway epithelial cells is not yet understood. In this study we investigated the role of mitogen-activated protein kinases (MAPKs) in A549 airway epithelial cells. We studied the consequence of activation of PARs with simultaneous exposure to LPS. Thrombin, PAR-2-activating peptide and LPS, were tested alone and in combination. They induced significant synthesis of IL-8. However, only activation of PAR triggered phosphorylation of ERK1/2 and JNK. The application of the inhibitors of these two MAPKs resulted in reduction of IL-8 production. Thus, activation of PARs but not stimulation with LPS leads to ERK1/2 and JNK-mediated production of IL-8.  相似文献   

7.
Activation of the stress-activated protein kinase (SAPK/JNK) by genotoxic agents is necessary for induction of apoptosis. We report here that ionizing radiation ionizing radiation exposure induces translocation of SAPK to mitochondria and association of SAPK with the anti-apoptotic Bcl-x(L) protein. SAPK phosphorylates Bcl-x(L) on threonine 47 (Thr-47) and threonine 115 (Thr-115) in vitro and in vivo. In contrast to wild-type Bcl-x(L), a mutant Bcl-x(L) with the two threonines substituted by alanines (Ala-47, Ala-115) is a more potent inhibitor of ionizing radiation-induced apoptosis. These findings indicate that translocation of SAPK to mitochondria is functionally important for interactions with Bcl-x(L) in the apoptotic response to genotoxic stress.  相似文献   

8.
The cellular response to genotoxic stress includes activation of protein kinase Cdelta (PKCdelta). The functional role of PKCdelta in the DNA damage response is unknown. The present studies demonstrate that PKCdelta is required in part for induction of the stress-activated protein kinase (SAPK/JNK) in cells treated with 1-beta-d-arabinofuranosylcytosine (araC) and other genotoxic agents. DNA damage-induced SAPK activation was attenuated by (i) treatment with rottlerin, (ii) expression of a kinase-inactive PKCdelta(K-R) mutant, and (iii) down-regulation of PKCdelta by small interfering RNA (siRNA). Coexpression studies demonstrate that PKCdelta activates SAPK by an MKK7-dependent, SEK1-independent mechanism. Previous work has shown that the nuclear Lyn tyrosine kinase activates the MEKK1 --> MKK7 --> SAPK pathway but not through a direct interaction with MEKK1. The present results extend those observations by demonstrating that Lyn activates PKCdelta, and in turn, MEKK1 is activated by a PKCdelta-dependent mechanism. These findings indicate that PKCdelta functions in the activation of SAPK through a Lyn --> PKCdelta --> MEKK1 --> MKK7 --> SAPK signaling cascade in response to DNA damage.  相似文献   

9.
We previously reported that herpes simplex virus type 1 (HSV-1) can activate the stress-activated protein kinases (SAPKs) p38 and JNK. In the present study, we undertook a comprehensive and comparative analysis of the requirements for viral protein synthesis in the activation of JNK and p38. Infection with the UL36 mutant tsB7 or with UV-irradiated virus indicated that both JNK and p38 activation required viral gene expression. Cycloheximide reversal or phosphonoacetic acid treatment of wild-type virus-infected cells as well as infection with the ICP4 mutant vi13 indicated that only the immediate-early class of viral proteins were required for SAPK activation. Infection with ICP4, ICP27, or ICP0 mutant viruses indicated that only ICP27 was necessary. Additionally, we determined that in the context of virus infection ICP27 was sufficient for SAPK activation and activation of the p38 targets Mnk1 and MK2 by infecting with mutants deleted for various combinations of immediate-early proteins. Specifically, the d100 (0-/4-) and d103 (4-/22-/47-) mutants activated p38 and JNK, while the d106 (4-/22-/27-/47-) and d107 (4-/27-) mutants did not. Finally, infections with a series of ICP27 mutants demonstrated that the functional domain of ICP27 required for activation was located in the region encompassing amino acids 20 to 65 near the N terminus of the protein and that the C-terminal transactivation activity of ICP27 was not necessary.  相似文献   

10.
Presenilin 1 (PS1) plays a pivotal role in Notch signaling and the intracellular metabolism of the amyloid beta-protein. To understand intracellular signaling events downstream of PS1, we investigated in this study the action of PS1 on mitogen-activated protein kinase pathways. Overexpressed PS1 suppressed the stress-induced stimulation of stress-activated protein kinase (SAPK)/c-Jun NH(2)-terminal kinase (JNK) in human embryonic kidney 293 cells. Interestingly, two functionally inactive PS1 mutants, PS1(D257A) and PS1(D385A), failed to inhibit UV-stimulated SAPK/JNK. Furthermore, H(2)O(2-) or UV-stimulated SAPK activity was higher in mouse embryonic fibroblast (MEF) cells from PS1-null mice than in MEF cells from PS(+/+) mice. MEF(PS1(-/-)) cells were more sensitive to the H(2)O(2)-induced apoptosis than MEF(PS1(+/+)) cells. Ectopic expression of PS1 in MEF(PS1(-/-)) cells suppressed H(2)O(2)-stimulated SAPK/JNK activity and apoptotic cell death. Together, our data suggest that PS1 inhibits the stress-activated signaling by suppressing the SAPK/JNK pathway.  相似文献   

11.
12.
Catechin, one of the major flavonoids presented in plants such as tea, reportedly suppresses bone resorption. We previously reported that prostaglandin F(2alpha) (PGF(2alpha)) stimulates the synthesis of vascular endothelial growth factor (VEGF) via p44/p42 mitogen-activated protein (MAP) kinase in osteoblast-like MC3T3-E1 cells. To clarify the mechanism of catechin effect on osteoblasts, we investigated the effect of (--)-epigallocatechin gallate (EGCG), one of the major green tea flavonoids, on the VEGF synthesis by PGF(2alpha) in MC3T3-E1 cells. The PGF(2alpha)-induced VEGF synthesis was significantly enhanced by EGCG. The amplifying effect of EGCG was dose dependent between 10 and 100 microM. EGCG did not affect the PGF(2alpha)-induced phosphorylation of p44/p42 MAP kinase. SB203580, a specific inhibitor of p38 MAP kinase, and SP600125, a specific inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), reduced the PGF(2alpha)-induced VEGF synthesis. EGCG markedly enhanced the phosphorylation of SAPK/JNK induced by PGF(2alpha) without affecting the PGF(2alpha)-induced phosphorylation of p38 MAP kinase. SP600125 markedly reduced the amplification by EGCG of the SAPK/JNK phosphorylation. In addition, the PGF(2alpha)-induced phosphorylation of c-Jun was amplified by EGCG. These results strongly suggest that EGCG upregulate PGF(2alpha)-stimulated VEGF synthesis resulting from amplifying activation of SAPK/JNK in osteoblasts.  相似文献   

13.
14.
The impact of DNA damage-induced replication blockage for early activation of stress kinases [stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK)] is largely unknown. Here, we show that induction of dual phosphorylation of SAPK/JNK by the DNA polymerase inhibitor aphidicolin was not ameliorated by additional exposure to ultraviolet (UV) light, indicating that overlapping mechanisms participate in signaling to SAPK/JNK triggered by both agents. UV-induced DNA replication blockage, cyclobutane pyrimidine dimer formation and DNA strand break induction coincided with SAPK/JNK phosphorylation at early (≤ 30 min) but not late (≥ 2 h) time points after exposure. Genotoxin-stimulated SAPK/JNK activation was attenuated in nonproliferating cells, indicating that S phase-dependent mechanisms are involved in signaling to SAPK/JNK. Correspondingly, UV-induced phosphorylation of SAPK/JNK was higher in S-phase cells as compared with G1-phase cells. Activation of SAPK/JNK by genotoxins was below detection limit in nonproliferating human peripheral blood lymphocytes, whereas peripheral blood lymphocytes stimulated to proliferation displayed clear SAPK/JNK activation. UV-induced phosphorylation of SAPK/JNK was attenuated in XPC-defective cells, ameliorated in BRCA2 mutated cells and not changed in cells lacking ATM, DNA-PK, CSB, XPA, p53, ERCC1 or PARP as compared with the corresponding wild types. Based on these data, we suggest that DNA replication blockage caused by genotoxin-induced DNA damage contributes to early activation of SAPK/JNK.  相似文献   

15.
Mammalian cells primarily rejoin DNA double-strand breaks (DSBs) by the non-homologous end-joining (NHEJ) pathway. The joining of the broken DNA ends appears directly without template and accuracy is ensured by the NHEJ factors that are under ATM/ATR regulated checkpoint control. In the current study we report the engineering of a mono-specific DNA damaging agent. This was used to study the molecular requirements for the repair of the least complex DSB in vivo. Single-chain PvuII restriction enzymes fused to protein delivery sequences transduce cells efficiently and induce blunt end DSBs in vivo. We demonstrate that beside XRCC4/LigaseIV and KU, the DNA-PK catalytic subunit (DNA-PKcs) is also essential for the joining of this low complex DSB in vivo. The appearance of blunt end 3′-hydroxyl and 5′-phosphate DNA DSBs induces a significantly higher frequency of anaphase bridges in cells that do not contain functional DNA-PKcs, suggesting an absolute requirement for DNA-PKcs in the control of chromosomal stability during end joining. Moreover, these minimal blunt end DSBs are sufficient to induce a p53 and ATM/ATR checkpoint function.  相似文献   

16.
Amplified in breast cancer 1 (AIB1) is a member of the p160 family of nuclear receptor coactivator protein. Recent studies have reported that high-level AIB1 production is involved in the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway for progression to malignant carcinoma in a steroid-independent manner. Here we demonstrate that, in AIB1-knockout DT40 chicken B-lymphocytes, loss of AIB1 results in induction of phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun, in addition to the inhibition of DNA replication. In contrast, high-level AIB1 production prevents proapoptotic activation of the JNK/c-Jun signal transduction pathway and induces DNA replication through phosphorylation of the Akt/p65 NF-kappaB subunit RelA under cellular stresses such as UV irradiation or serum deprivation. Moreover, we have found that AIB1 is essential for the phosphorylation of histone H3 at serine 10, which is associated with the signal transduction to chromatin, leading to the transient expression of immediate-early genes in response to UV stimulation. Our results therefore suggest that AIB1 directly links to cell cycle control mechanisms in concern with the balance between apoptosis and proliferation.  相似文献   

17.
18.
Mechanical force is known to modulate the activity of the Jun N-terminal kinase (JNK) signaling cascade. However, the effect of mechanical stresses on JNK signaling activation has previously only been analyzed by in vitro detection methods. It still remains unknown how living cells activate the JNK signaling cascade in response to mechanical stress and what its functions are in stretched cells.We assessed in real-time the activity of the JNK pathway in Drosophila cells by Fluorescence Lifetime Imaging Microscopy (FLIM), using an intramolecular phosphorylation-dependent dJun-FRET (Fluorescence Resonance Energy Transfer) biosensor. We found that quantitative FRET-FLIM analysis and confocal microscopy revealed sustained dJun-FRET biosensor activation and stable morphology changes in response to mechanical stretch for Drosophila S2R+ cells. Further, these cells plated on different substrates showed distinct levels of JNK activity that associate with differences in cell morphology, integrin expression and focal adhesion organization.These data imply that alterations in the cytoskeleton and matrix attachments may act as regulators of JNK signaling, and that JNK activity might feed back to modulate the cytoskeleton and cell adhesion. We found that this dynamic system is highly plastic; at rest, integrins at focal adhesions and talin are key factors suppressing JNK activity, while multidirectional static stretch leads to integrin-dependent, and probably talin-independent, Jun sensor activation. Further, our data suggest that JNK activity has to coordinate with other signaling elements for the regulation of the cytoskeleton and cell shape remodeling associated with stretch.  相似文献   

19.
Following dexamethasone (DEX), cardiac energy generation is mainly through utilization of fatty acids (FA), with DEX animals demonstrating an increase in coronary lipoprotein lipase (LPL), an enzyme that hydrolyzes lipoproteins to FA. We examined the mechanisms by which DEX augments cardiac LPL. DEX was injected in rats, and hearts were removed, or isolated cardiomyocytes were incubated with DEX (0-8 h), for measurement of LPL activity and Western blotting. Acute DEX induced whole body insulin resistance, likely an outcome of a decrease in insulin signaling in skeletal muscle, but not cardiac tissue. The increase in luminal LPL activity after DEX was preceded by rapid nongenomic alterations, which included phosphorylation of AMPK and p38 MAPK, that led to phosphorylation of heat shock protein (HSP)25 and actin cytoskeleton rearrangement, facilitating LPL translocation to the myocyte cell surface. Unlike its effects in vivo, although DEX activated AMPK and p38 MAPK in cardiomyocytes, there was no phosphorylation of HSP25, nor was there any evidence of F-actin polymerization or an augmentation of LPL activity up to 8 h after DEX. Combining DEX with insulin appreciably enhanced cardiomyocyte LPL activity, which closely mirrored a robust elevation in phosphorylation of HSP25 and F-actin polymerization. Silencing of p38 MAPK, inhibition of PI 3-kinase, or preincubation with cytochalasin D prevented the increases in LPL activity. Our data suggest that, following DEX, it is a novel, rapid, nongenomic phosphorylation of stress kinases that, together with insulin, facilitates LPL translocation to the myocyte cell surface.  相似文献   

20.
Kim WH  Lee JW  Gao B  Jung MH 《Cellular signalling》2005,17(12):1516-1532
IFN-γ and TNF-α are major proinflammatory cytokines implicated in islet β-cell destruction, which results in type-1 diabetes; however, the underlying mechanism is not clear. Using pancreatic β-cell line MIN6N8 cells, co-treatment with TNF-α and IFN-γ, but neither cytokine alone, synergistically induced apoptosis, correlated with the activation of the JNK/SAPK, which resulted in the production of reactive oxidative species (ROS) and loss of mitochondrial transmembrane potential (ΔΨm). Additionally, cells transfected with wild-type JNK1 became more susceptible to apoptosis induced by TNF-α/IFN-γ through ROS production and loss of Δψm, while cascading apoptotic events were prevented in dominant-negative JNK1-transfected or JNK inhibitor SP600125-treated cells. As the antioxidant, N-acetyl-cysteine, failed to completely suppress apoptosis induced by TNF-α/IFN-γ, an additional pathway was considered to be involved. The level of p53 was significantly increased through synergistic activation of JNK by TNF-α/IFN-γ. Furthermore, the synergistic effect of TNF-α/IFN-γ on apoptosis and ROS production was further potentiated by the overexpression of wild-type p53, but not with mutant p53. This synergistic activation of JNK/SAPK by TNF-α/IFN-γ was also induced in insulin-expressing pancreatic islet cells, and increased ROS production and p53 level, which was significantly inhibited by SP600125. Collectively, these data demonstrate that TNF-α/IFN-γ synergistically activates JNK/SAPK, playing an important role in promoting apoptosis of pancreatic β-cell via activation of p53 pathway together with ROS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号