首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signaling   总被引:20,自引:0,他引:20  
Mao B  Niehrs C 《Gene》2003,302(1-2):179-183
Dickkopf1 (Dkk1) is a secreted antagonist of the Wnt/beta-catenin signaling pathway that acts by direct binding to and inhibiting the Wnt co-receptor LRP6. The related Dkk2, however, can function either as LRP6 agonist or antagonist, depending on the cellular context, suggesting that its activity is modulated by unknown co-factors. We have recently identified the transmembrane proteins Kremen1 and -2 as additional Dkk receptors, which bind to both Dkk1 and Dkk2 with high affinity. Here we show that Kremen2 (Krm2) regulates Dkk2 activity during Wnt signaling. In human 293 fibroblasts transfected dkk2 activates LRP6 signaling. However, co-transfection of krm2 blocks the ability of Dkk2 to activate LRP6 and enhances inhibition of Wnt/Frizzled signaling. Krm2 also co-operates with Dkk4 to inhibit Wnt signaling, but not with Dkk3, which has no effect on Wnt signaling. Likewise, in Xenopus embryos, Dkk2 and Krm2 co-operate in Wnt inhibition leading to anteriorized embryos. Finally, we show that interaction with Krm2 is mediated by the second cysteine-rich domain of Dkks. These results suggest that Krm2 can function as a switch that turns Dkk2 from an activator into an inhibitor of Wnt/lRP6 signaling.  相似文献   

2.
Dickkopf-1 (Dkk1) protein is a secreted inhibitor of canonical Wnt signaling and modulates that pathway during embryonic development. It is also implicated in several diseases and hence Dkk1 is a potential target for therapeutic intervention. In the present study 6His-tagged Dkk1 expression and secretion was assessed in five mammalian cell types. Only FreeStyle 293-F cells showed significant Dkk1 protein expression in culture medium. High and stable expression of the Dkk1 protein was obtained from a selected stable FreeStyle 293-F clone 3F8, that grows in suspension in serum-free medium. The 3F8 clone showed a high Dkk1 production level (10 mg/L) for up to 2 months of culture. A one step purification procedure resulting in large amounts of highly pure and active Dkk1 protein was developed. Purified Dkk1 binds its receptors LRP5 and LRP6, and is able to dose dependently inhibit canonical Wnt signaling. Recombinant Dkk1 is glycosylated, but this modification is not essential for its biological activity. In summary, an abundant source of pure and functionally active Dkk1 protein is developed that will support the identification of inhibitors such as neutralizing antibodies that could find therapeutic use.  相似文献   

3.
Wnt signaling plays an essential role in induction and development of the limb. Missing digits are one consequence of the reduced Wnt signaling in Wnt7a null mice, while extra digits result from excess Wnt signaling in mice null for the Wnt antagonist Dkk1. The extra digits and expanded apical ectodermal ridge (AER) of Dkk1-deficient mice closely resemble En1 null mice. To evaluate the in vivo interaction between En1 and the canonical Wnt signaling pathway, we generated double and triple mutants combining the hypomorphic doubleridge allele of Dkk1 with null alleles of En1 and Wnt7a. Reducing Dkk1 expression in Dkk1d/+Wnt7a-/- double mutants prevented digit loss, indicating that Wnt7a acts through the canonical pathway during limb development. Reducing Dkk1 levels in Dkk1d/dEn1-/- double mutants resulted in severe phenotypes not seen in either single mutant, including fused bones in the autopod, extensive defects of the zeugopod, and loss of the ischial bone. The subsequent elimination of Wnt7a in Dkk1d/dEn1-/-Wnt7a-/- triple mutants resulted in correction of most, but not all, of these defects. The failure of Wnt7a inactivation to completely correct the limb defects of Dkk1d/dEn1-/- double mutants indicates that Wnt7a is not the only gene regulated by En1 during development of the mouse limb.  相似文献   

4.
Lrp4 is a multifunctional member of the low density lipoprotein-receptor gene family and a modulator of extracellular cell signaling pathways in development. For example, Lrp4 binds Wise, a secreted Wnt modulator and BMP antagonist. Lrp4 shares structural elements within the extracellular ligand binding domain with Lrp5 and Lrp6, two established Wnt co-receptors with important roles in osteogenesis. Sclerostin is a potent osteocyte secreted inhibitor of bone formation that directly binds Lrp5 and Lrp6 and modulates both BMP and Wnt signaling. The anti-osteogenic effect of sclerostin is thought to be mediated mainly by inhibition of Wnt signaling through Lrp5/6 within osteoblasts. Dickkopf1 (Dkk1) is another potent soluble Wnt inhibitor that binds to Lrp5 and Lrp6, can displace Lrp5-bound sclerostin and is itself regulated by BMPs. In a recent genome-wide association study of bone mineral density a significant modifier locus was detected near the SOST gene at 17q21, which encodes sclerostin. In addition, nonsynonymous SNPs in the LRP4 gene were suggestively associated with bone mineral density. Here we show that Lrp4 is expressed in bone and cultured osteoblasts and binds Dkk1 and sclerostin in vitro. MicroCT analysis of Lrp4 deficient mutant mice revealed shortened total femur length, reduced cortical femoral perimeter, and reduced total femur bone mineral content (BMC) and bone mineral density (BMD). Lumbar spine trabecular bone volume per total volume (BV/TV) was significantly reduced in the mutants and the serum and urinary bone turnover markers alkaline phosphatase, osteocalcin and desoxypyridinoline were increased. We conclude that Lrp4 is a novel osteoblast expressed Dkk1 and sclerostin receptor with a physiological role in the regulation of bone growth and turnover, which is likely mediated through its function as an integrator of Wnt and BMP signaling pathways.  相似文献   

5.
To dissect the molecular mechanism of head specification in the basal chordate amphioxus, we investigated the function of Dkk3, a secreted protein in the Dickkopf family, which is expressed anteriorly in early embryos. Amphioxus Dkk3 has three domains characteristic of Dkk3 proteins—an N‐terminal serine rich domain and two C‐terminal cysteine‐rich domains (CRDs). In addition, amphioxus Dkk3 has a TGFβ‐receptor 2 domain, which is not present in Dkk3 proteins of other species. As vertebrate Dkk3 proteins have been reported to regulate either Nodal signaling or Wnt/β‐catenin signaling but not both in the same species, we tested the effects of Dkk3 on signaling by these two pathways in amphioxus embryos. Loss of function experiments with an anti‐sense morpholino oligonucleotide (MO) against amphioxus Dkk3 resulted in larvae with truncated heads and concomitant loss of expression of anterior gene markers. The resemblance of the headless phenotype to that from upregulation of Wnt/β‐catenin signaling with BIO, a GSK3β inhibitor, suggested that Dkk3 might inhibit Wnt/β‐catenin signaling. In addition, the Dkk3 MO rescued dorsal structures in amphioxus embryos treated with SB505124, an inhibitor of Nodal signaling, indicating that amphioxus Dkk3 can also inhibit Nodal signaling. In vitro assays in Xenopus animal caps showed that Nodal inhibition is largely due to domains other than the TGFβ domain. We conclude that amphioxus Dkk3 regulates head formation by modulating both Wnt/β‐catenin and Nodal signaling, and that these functions may have been partitioned among various vertebrate lineages during evolution of Dkk3 proteins.  相似文献   

6.
7.
Abstract The Dickkopf (Dkk) family is composed of four main members (Dkk1–4), which typically regulate Wnt/β-catenin signaling. An exception is Dkk3, which does not affect Wnt/β-catenin signaling and whose function is poorly characterized. Here, we describe the Xenopus dkk3 homolog and characterize its expression and function during embryogenesis. Dkk3 is maternally expressed and zygotically in the cement gland, head mesenchyme, and heart. We show that depletion of Dkk3 in Xenopus embryos by Morpholino antisense oligonucleotides induces axial defects as a result of Spemann organizer and mesoderm inhibition. Dkk3 depletion leads to down-regulation of Activin/Nodal signaling by reducing levels of Smad4 protein. Dkk3 overexpression can rescue phenotypic effects resulting from overexpression of the Smad4 ubiquitin ligase Ectodermin. Furthermore, depletion of Dkk3 up-regulates FGF signaling, while Dkk3 overexpression reduces it. These results indicate that Dkk3 modulates FGF and Activin/Nodal signaling to regulate mesoderm induction during early Xenopus development.  相似文献   

8.
An XWnt8-Fz5 fusion protein synergizes with LRP6 to potently activate beta-catenin-dependent signaling. Here, we generated a fusion in which XWnt8 was fused to the N-terminus of LRP6 and show it synergizes with both Fz4 and Fz5 to potently transactivate beta-catenin-dependent Wnt signaling. Based on this, we hypothesized that the main function of Wnt is to nucleate the formation of a physical complex between LRP6 and a Frizzled. Dkk1, but not the related Dkk3, binds LRP6 and inhibits canonical Wnt signaling by blocking the interaction of Wnt and LRP6. Therefore, we reasoned that a covalent fusion of Dkk1 to Fz5 (Dkk1-Fz5) would mimic Wnt ligand by nucleating the formation of a complex containing Fz5 and LRP6, while Dkk3 (Dkk3-Fz5) would not. We found that Dkk1-Fz5, but not Dkk3-Fz5, potently synergized with LRP6 to activate signaling in a dishevelled-dependent manner.  相似文献   

9.
Dickkopf1 (Dkk1) is a secreted protein that acts as a Wnt inhibitor and, together with BMP inhibitors, is able to induce the formation of ectopic heads in Xenopus. Here, we show that Dkk1 null mutant embryos lack head structures anterior of the midbrain. Analysis of chimeric embryos implicates the requirement of Dkk1 in anterior axial mesendoderm but not in anterior visceral endoderm for head induction. In addition, mutant embryos show duplications and fusions of limb digits. Characterization of the limb phenotype strongly suggests a role for Dkk1 both in cell proliferation and in programmed cell death. Our data provide direct genetic evidence for the requirement of secreted Wnt antagonists during embryonic patterning and implicate Dkk1 as an essential inducer during anterior specification as well as a regulator during distal limb patterning.  相似文献   

10.
Wnt信号通路在脊椎动物的胚胎发育过程中发挥重要作用. Dkk1(Dickkopf1)是Dkk基因家族的成员之一,通过编码一种分泌型的糖蛋白与Wnt信号蛋白竞争细胞表面受体,来维持Wnt信号通路的稳态,从而调控胚胎器官的正常发育. 同时,在人类成体中,Dkk1基因活性的改变与肿瘤、代谢性骨病和骨关节炎等疾病的发生密切相关. 本文对Dkk1在头部、肢、眼和牙齿等器官的胚胎发育过程中的相关分子调控机制以及Dkk1与肿瘤发生的关系进行综述.  相似文献   

11.
Wnt signaling has been demonstrated to have extensive roles during embryogenesis. The Wnt family is highly conserved. In mice, there are 19 Wnt genes. Dickkopf (Dkk), through its interactions with Wnt co-receptors, low-density lipoprotein receptor-related protein (LRP), Frizzled and Kremen, can act as a negative regulator to block the Wnt-signaling pathway. There are four Dkk genes in the human genome, and three in that of the mouse. Dkk1 is involved in a variety of craniofacial developmental processes and behaves as a strong head inducer and limb regulator. Dkk1 mutant mice are embryonic-lethal. Here, we investigated the effects of Dkk1 on the differentiation of murine ESCs in both the ESC and embryoid body (EB) states. The results demonstrate that Dkk1 overexpression can initiate the differentiation program of ESCs toward neuroectoderm. We believe this finding can augment our understanding of mouse ESC differentiation.  相似文献   

12.

Background

The low density lipoprotein receptor-related protein-6 (LRP6) is an essential co-receptor for canonical Wnt signaling. Dickkopf 1 (Dkk1), a major secreted Wnt signaling antagonist, binds to LRP6 with high affinity and prevents the Frizzled-Wnt-LRP6 complex formation in response to Wnts. Previous studies have demonstrated that Dkk1 promotes LRP6 internalization and degradation when it forms a ternary complex with the cell surface receptor Kremen.

Methodology/Principal Findings

In the present study, we found that transfected Dkk1 induces LRP6 accumulation while inhibiting Wnt/LRP6 signaling. Treatment with Dkk1-conditioned medium or recombinant Dkk1 protein stabilized LRP6 with a prolonged half-life and induces LRP6 accumulation both at the cell surface and in endosomes. We also demonstrated that Kremen2 co-expression abrogated the effect of Dkk1 on LRP6 accumulation, indicating that the effect of Kremen2 is dominant over Dkk1 regulation of LRP6. Furthermore, we found that Wnt3A treatment induces LRP6 down-regulation, an effect paralleled with a Wnt/LRP6 signaling decay, and that Dkk1 treatment blocked Wnt3A-induced LRP6 down-regulation. Finally, we found that LRP6 turnover was blocked by an inhibitor of caveolae-mediated endocytosis.

Conclusions/Significance

Our results reveal a novel role for Dkk1 in preventing Wnt ligand-induced LRP6 down-regulation and contribute significantly to our understanding of Dkk1 function in Wnt/LRP6 signaling.  相似文献   

13.
Although mutations in the insulin receptor have been causally implicated with leprechaunsim, the full pathophysiology of the syndrome cannot be accounted for by malfunction of this gene alone. We sought to characterize a connection between Wnt-mediated cell signaling and the production of reactive oxygen species (ROS) which revealed a novel mechanistic basis for understanding the pathogenesis of leprechaunism. To identify candidate genes involved in this process, a PCR-based subtractive hybridization was performed. Candidate genes were examined for interaction with the Wnt signaling pathway and ROS generation. We found that Dickkopf 1 (Dkk1), a Wnt inhibitor, is overexpressed in skin fibroblast cells derived from three leprechaunism patients and that the cells showed an impaired response to Wnt2 in terms of β-catenin-Tcf activation. Knockdown of Dkk1 in the patient cell lines rescued Wnt2-mediated Tcf activation. Concerted action of Wnt2 and knockdown of Dkk1 resulted in enhanced Nox4 expression and PDGF-induced ROS generation compared to parental patient cells. Furthermore, we found that NFATc2 was activated in response to Wnt2 stimulation and directly activates Nox4 expression. These data show a crosstalk between Wnt and ROS pathways which in turn provides new mechanistic insights at the molecular level into the pathogenesis of leprechaunism.  相似文献   

14.
The secreted Dickkopf-1 (Dkk1) protein mediates numerous cell fate decisions and morphogenetic processes. Its carboxyl terminal cysteine-rich region (termed C1) binds LRP5/6 and inhibits canonical Wnt signaling. Paradoxically, the isolated C1 domain of Dkk1 as well as Wnt antagonists that act by sequestering Wnts, such as Frz-B, WIF-1 and Crescent, are poor mimics of the inductive and patterning activities of Dkk1 critical for heart and axial development. To understand the basis for the unique properties of Dkk1, we investigated the function of its amino terminal cysteine-rich region (N1). N1 does not bind LRP or Kremen nor inhibit Wnt signaling and has had no known function. We show that it can synergize with BMP antagonism to induce prechordal and axial mesoderm when expressed as an independent protein in Xenopus embryos. Moreover, we show that it can function in trans to complement the activity of C1 protein to mediate two embryologic functions of Dkk1: induction of chordal and prechordal mesoderm and specification of heart tissue from non-cardiogenic mesoderm. Remarkably, N1 also synergizes with WIF-1 and Crescent, indicating that N1 signals independently of C1 and its interactions with LRP. Since cleavage of Dkk1 is not detected, these results define N1 as a novel signaling domain within the intact protein that is responsible for the potent effects of Dkk1 on the induction and patterning of the body axis and heart. We conclude that this new activity is also likely to synergize with canonical Wnt inhibitory in the numerous developmental and disease processes that involve Dkk1.  相似文献   

15.
The anterior visceral endoderm (AVE) plays an important role in anterior-posterior axis formation in the mouse. The AVE functions in part by expressing secreted factors that antagonize growth factor signaling in the proximal epiblast. Here we report that the Secreted frizzled-related protein 5 (Sfrp5) gene, which encodes a secreted factor that can antagonize Wnt signaling, is expressed in the AVE and foregut endoderm during early mouse development. At embryonic day (E) 5.5, Sfrp5 is expressed in the visceral endoderm at the distal tip region of the embryo and at E6.5 in the AVE opposite the primitive streak. In Lim1 embryos, which lack anterior neural tissue and sometimes form a secondary body axis, Sfrp5-expressing cells fail to move towards the anterior and remain at the distal tip of E6.5 embryos. When compared with Dkk1, which encodes another secreted Wnt antagonist molecule present in the visceral endoderm, Sfrp5 and Dkk1 expression overlap but Sfrp5 is expressed more broadly in the AVE. Between E7.5 and 8, Sfrp5 is expressed in the foregut endoderm underlying the cardiac mesoderm. At E8.5, Sfrp5 is expressed in the ventral foregut endoderm that gives rise to the liver. Additional domains of Sfrp5 expression occur in the dorsal neural tube and in the forebrain anterior to the optic placode. These findings identify a gene encoding a secreted Wnt antagonist that is expressed in the extraembryonic visceral endoderm and anterior definitive endoderm during axis formation and organogenesis in the mouse.  相似文献   

16.
17.
Cementum has been empirically regarded as an antiresorptive barrier against tooth roots. However, little is known about the factors of homeostasis and resistant mechanisms of tooth roots against resorption. Here, we investigated cementum factors and their interaction against resorption using transgenic mice exhibiting external cervical root resorption (ECRR). Ectopically thickened cervical cementum caused by functional inactivation of ectonucleotide pyrophosphotase/phosphodiesterase 1 (Enpp1) was susceptible to ECRR with aging. In addition, the inactivation of the suppressor of fused (Sufu), a Hedgehog signaling inhibitor, in cementoblasts led to ECRR. Interestingly, concurrent inactivation of Sufu and Enpp1 in cementoblasts remarkably exacerbated ECRR with higher Rankl expression. Cellular and molecular analyses using cementoblasts and bone marrow-derived macrophages indicated that Dickkopf-related protein 1 (Dkk1) induced by the inactivation of Sufu in cementoblasts has roles in the acceleration of ECRR triggered by Enpp1 inactivation. Using compound mutant mice for concurrent Wntless and Enpp1 inactivation, this synergistic cooperation of Dkk1 and Npp1 for resorption found in double mutant Sufu and Enpp1 mice was confirmed by the reproduction of amplified ECRR. On the basis of these findings, we conclude that proper Npp1 function and sustained Wnt activity in the cervical cementum are essential for the homeostasis of tooth roots against resorption in a physiological state.  相似文献   

18.
WNT/beta-catenin signaling has an established role in nephron formation during kidney development. Yet, the role of beta-catenin during ureteric morphogenesis in vivo is undefined. We generated a murine genetic model of beta-catenin deficiency targeted to the ureteric bud cell lineage. Newborn mutant mice demonstrated bilateral renal aplasia or renal dysplasia. Analysis of the embryologic events leading to this phenotype revealed that abnormal ureteric branching at E12.5 precedes histologic abnormalities at E13.5. Microarray analysis of E12.5 kidney tissue identified decreased Emx2 and Lim1 expression among a small subset of renal patterning genes disrupted at the stage of abnormal branching. These alterations are followed by decreased expression of genes downstream of Emx2, including Lim1, Pax2, and the ureteric tip markers, c-ret and Wnt 11. Together, these data demonstrate that beta-catenin performs essential functions during renal branching morphogenesis via control of a hierarchy of genes that control ureteric branching.  相似文献   

19.
It is known the interactions between the neural plate and epidermis generate neural crest (NC), but it is unknown why the NC develops only at the lateral border of the neural plate and not in the anterior fold. Using grafting experiments we show that there is a previously unidentified mechanism that precludes NC from the anterior region. We identify prechordal mesoderm as the tissue that inhibits NC in the anterior territory and show that the Wnt/beta-catenin antagonist Dkk1, secreted by this tissue, is sufficient to mimic this NC inhibition. We show that Dkk1 is required for preventing the formation of NC in the anterior neural folds as loss-of-function experiments using a Dkk1 blocking antibody in Xenopus as well as the analysis of Dkk1-null mouse embryos transform the anterior neural fold into NC. This can be mimicked by Wnt/beta-catenin signaling activation without affecting the anterior posterior patterning of the neural plate, or placodal specification. Finally, we show that the NC cells induced at the anterior neural fold are able to migrate and differentiate as normal NC. These results demonstrate that anterior regions of the embryo lack NC because of a mechanism, conserved from fish to mammals, that suppresses Wnt/beta-catenin signaling via Dkk1.  相似文献   

20.
Wnt signalling regulates several aspects of kidney development such as nephrogenesis, ureteric bud branching and organisation of the collecting duct cells. We addressed the potential involvement of Dickkopf-1 (Dkk1), a secreted Wnt pathway antagonist. Dkk1 is expressed in the developing mouse kidney by pretubular cell aggregates and the nephrons derived from them. Besides the mesenchyme cells, the epithelial ureteric bud and more mature ureteric bud derivatives in the medulla and the papilla tip express the Dkk1 gene. To reveal the potential roles of Dkk1, we generated a floxed allele and used three Cre lines to inactivate Dkk1 function in the developing kidney. Interestingly, Dkk1 deficiency induced by Pax8Cre in the kidneys led in newborn mice to an overgrown papilla that was generated by stimulated proliferation of the collecting duct and loop of Henle cells, implying a role for Dkk1 in the collecting duct and/or loop of Henle development. Since Pax8Cre-induced Dkk1 deficiency reduced marker gene expression, Scnn1b in the collecting duct and Slc12a1 in the loop of Henle, these results together with the extended papilla phenotype are likely reasons for the decreased amount of ions and urine produced by Dkk1-deficient kidneys in the adult. Recombinant Dkk1 protein in cultured cells inhibited Wnt-7b-induced canonical Wnt signalling, which is critical for collecting duct and loop of Henle development. Moreover, Dkk1 deficiency led to an increase in the expression of canonical Wnt signalling of target Lef-1 gene expression in the stromal cells of the developing papilla. Based on the results, we propose that Dkk1 controls the degree of Wnt-7b signalling in the papilla to coordinate kidney organogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号