首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic nucleotide binding and activation properties of cAMP-dependent protein kinases from five independent mutants of S49 mouse lymphoma cells were studied. These mutants were all hemizygous for expression of mutant regulatory (R) subunits of the type I kinase with lesions that altered the electrostatic charge of R subunit: lesions in three of the mutants mapped to cAMP-binding site A, and those in two of the mutants mapped to cAMP-binding site B. A nucleotide mismatch assay using 32P-labeled cRNA and ribonuclease A confirmed and refined localization of the mutations to single amino acid residues implicated in cAMP binding. R subunits from all mutants retained the ability to bind cAMP, but binding behaved as if it were entirely to nonmutated sites: 1) relative affinities of 11 adenine-modified derivatives of cAMP for mutant enzymes were identical to their relative affinities for the site of wild-type kinase that corresponded to the nonmutated site of the mutant; 2) the potencies of these analogs as activators of mutant kinases were strictly correlated with their binding affinities (for wild-type enzyme activation potencies were correlated with mean affinities of the analogs for cAMP-binding sites A and B); 3) combinations of analogs with strong preferences for opposite cAMP-binding sites in wild-type kinase showed no synergism in activating mutant kinases; 4) dissociation of cAMP from mutant kinases was monophasic; and 5) high salt accelerated dissociation of cAMP from kinases with site B lesions but retarded dissociation from those with site A lesions.  相似文献   

2.
Two S49 mouse lymphoma cell variants hemizygous for expression of mutant regulatory (R) subunits of type I cyclic AMP-dependent protein kinase were used to investigate functional consequences of lesions in the putative cAMP-binding sites of R subunit. Kinase activation properties of wild-type and mutant enzymes were compared using cAMP and six site-selective analogs of cAMP. Kinases from both mutant sublines were relatively resistant to cyclic nucleotide-dependent activation, but they were fully activable by at least some effectors. Relative resistances of the mutant kinases varied from about 5-fold for analogs selective for their nonmutated sites to as much as 700-fold for analogs selective for their mutated sites; resistance to cAMP was intermediate. Apparent affinities of wild-type and mutant R subunits for [3H]cAMP were not appreciably different, but competition experiments with site-selective analogs of cAMP suggested that binding of cAMP to mutant R subunits was primarily to their nonmutated sites. Analyses of cooperativity in cyclic nucleotide-dependent activation of mutant kinases, synergism between site I- and site II-selective analogs in activating the mutant enzymes, and dissociation of bound cAMP from mutant R subunits provided additional evidence that the mutations in these strains selectively inactivated single classes of cAMP-binding sites: phenomena attributable in wild-type enzyme to intrachain interactions between sites I and II were always absent or severely diminished in experiments with the mutant enzymes. These results confirm that R subunit sequences implicated in cAMP binding by homology with other cyclic nucleotide-binding proteins actually correspond to functional cAMP-binding sites. Furthermore, occupation of either cAMP-binding site I or II is apparently sufficient for activation of cAMP-dependent protein kinase. The presence of four functional cAMP-binding sites in wild-type kinase enhances the cooperativity and sensitivity of cAMP-mediated activation.  相似文献   

3.
Kinase-negative mutants of S49 mouse lymphoma cells are pleiotropically negative for all known cAMP-mediated responses of S49 cells and yield cell extracts which are deficient in cAMP binding activity and devoid of cAMP-dependent protein kinase activity. In hybrids between kinase-negative and wild-type cells, the mutant phenotype is dominant: the tetraploid hybrids have reduced cAMP-binding activity and undetectable cAMP-dependent kinase activity. The mutant phenotype is attributable to neither a soluble inhibitor of kinase catalytic subunit, nor a defective kinase regulatory subunit acting as an inhibitor, nor a defective catalytic subunit which sequesters regulatory subunits in inactive complexes. We propose that these mutants carry trans-dominant lesions in a regulatory locus responsible for setting intracellular levels of kinase expression.  相似文献   

4.
Mutations in regulatory (R) subunit of cAMP-dependent protein kinase were analyzed from cAMP-resistant mutants of S49 mouse lymphoma cells by direct sequencing of amplified regions of mutant R subunit cDNAs. Eight distinct single base-change lesions were identified in 24 independent mutants that were hemizygous for expression of mutant R subunits with altered protein charge. CG----TA transitions predominated, but AT----GC transitions and GC----TA transversions were also observed. Four of five spontaneous mutants had identical C----T transitions at CG causing substitution of Trp for Arg-334. Sites mutated in isolates obtained after mutagenesis with ethyl methanesulfonate or N-methyl-N'-nitro-N-nitrosoguanidine were more varied. Six of the lesions (two in binding site A and four in site B) were at amino acid residues that are highly conserved among cAMP-binding sites of R subunits and the Escherichia coli catabolite activator protein. These mutations all either prevented or strongly hindered binding of cyclic nucleotides to the mutated site. One of the remaining lesions (at Arg-242) also prevented cyclic nucleotide binding to the mutated binding site; the other (at Gly-170) had only minimal effects on binding of cyclic nucleotides but, nevertheless, increased the apparent constant for cAMP-dependent kinase activation. These results are discussed with reference to a model for the cAMP-binding sites of R subunit based on the crystal structure of the E. coli catabolite activator protein.  相似文献   

5.
Intact S49 mouse lymphoma cells were used as a model system to study the effects of cyclic AMP (cAMP) and its analogs on the phosphorylation of regulatory (R) subunit of type I cAMP-dependent protein kinase. Phosphorylation of R subunit was negligible in mutants deficient in adenylate cyclase; low levels of cAMP analogs, however, stimulated R subunit phosphorylation in these cells to rates comparable to those in wild-type cells. In both wild-type and adenylate cyclase-deficient cells, R subunit phosphorylation was inhibited by a variety of N6-substituted derivatives of cAMP; C-8-substituted derivatives were generally poor inhibitors. Two derivatives that were inactive as kinase activators (N6-carbamoylmethyl-5'-AMP and 2'-deoxy-N6-monobutyryl-cAMP) were also ineffective as inhibitors of R subunit phosphorylation. Preferential inhibition by N6-modified cAMP analogs could not be ascribed simply to selectivity for the more aminoterminal (site I) of the two cAMP-binding sites in R subunit: Analog concentrations required for inhibition of R subunit phosphorylation were always higher than those required for activation of endogenous kinase; 8-piperidino-cAMP, a C-8-substituted derivative that is selective for cAMP-binding site I, was relatively ineffective as in inhibitor; and, although thresholds for activation of endogenous kinase by site I-selective analogs could be reduced markedly by coincubation with low levels of site II-selective analogs, no such synergism was observed for the inhibitory effect. The uncoupling of cyclic nucleotide effects on R subunit phosphorylation from activation of endogenous protein kinase suggests that, in intact cells, activation of cAMP-dependent protein kinase requires more than one and fewer than four molecules of cyclic nucleotide.  相似文献   

6.
cAMP-dependent protein kinase (cAPK) contains a regulatory (R) subunit dimer bound to two catalytic (C) subunits. Each R monomer contains two cAMP-binding domains, designated A and B. The sequential binding of two cAMPs releases active C. We describe here the properties of RIIbeta and two mutant RIIbeta subunits, engineered by converting a conserved Arg to Lys in each cAMP-binding domain thereby yielding a protein that contains one intact, high affinity cAMP-binding site and one defective site. Structure and function were characterized by circular dichroism, steady-state fluorescence, surface plasmon resonance and holoenzyme activation assays. The Ka for RIIbeta is 610 nM, which is 10-fold greater than its Kd(cAMP) and significantly higher than for RIalpha and RIIalpha. The Arg mutant proteins demonstrate that the conserved Arg is important for both cAMP binding and organization of each domain and that binding to domain A is required for activation. The Ka of the A domain mutant protein is 21-fold greater than that of wild-type and the Kd(cAMP) is increased 7-fold, confirming that cAMP must bind to the mutated site to initiate activation. The domain B mutant Ka is 2-fold less than its Kd(cAMP), demonstrating that, unlike RIalpha, cAMP can access the A site even when the B site is empty. Removal of the B domain yields a Ka identical to the Kd(cAMP) of full-length RIIbeta, indicating that the B domain inhibits holoenzyme activation for RIIbeta. In RIalpha, removal of the B domain generates a protein that is more difficult to activate than the wild-type protein.  相似文献   

7.
cAMP sites of the cAMP-dependent protein kinase from the fungus Mucor rouxii have been characterized through the study of the effects of cAMP and of cAMP analogs on the phosphotransferase activity and through binding kinetics. The tetrameric holoenzyme, which contains two regulatory (R) and two catalytic (C) subunits, exhibited positive cooperativity in activation by cAMP, suggesting multiple cAMP-binding sites. Several other results indicated that the Mucor kinase contained two different cooperative cAMP-binding sites on each R subunit, with properties similar to those of the mammalian cAMP-dependent protein kinase. Under optimum binding conditions, the [3H]cAMP dissociation behavior indicated equal amounts of two components which had dissociation rate constants of 0.09 min-1 (site 1) and 0.90 min-1 (site 2) at 30 degrees C. Two cAMP-binding sites could also be distinguished by C-8 cAMP analogs (site-1-selective) and C-6 cAMP analogs (site-2-selective); combinations of site-1- and site-2-selective analogs were synergistic in protein kinase activation. The two different cooperative binding sites were probably located on the same R subunit, since the proteolytically derived dimeric form of the enzyme, which contained one R and one C component, retained the salient properties of the untreated tetrameric enzyme. Unlike any of the mammalian cyclic-nucleotide-dependent isozymes described thus far, the Mucor kinase was much more potently activated by C-6 cAMP analogs than by C-8 cAMP analogs. In the ternary complex formed by the native Mucor tetramer and cAMP, only the two sites 1 contained bound cAMP, a feature which has also not yet been demonstrated for the mammalian cAMP-dependent protein kinase.  相似文献   

8.
The mouse wild type and four mutant regulatory type I (RI) subunits were expressed in Escherichia coli and subjected to kinetic analyses. The defective RI subunits had point mutations in either cAMP-binding site A (G200/E), site B (G324/D, R332/H), or in both binding sites. In addition, a truncated form of RI which lacked the entire cAMP-binding site B was generated. All of the mutant RI subunits which bound [3H]cAMP demonstrated more rapid rates of cAMP dissociation compared to the wild type RI subunit. Dissociation profiles showed only a single dissociation component, suggesting that a single nonmutated binding site was functional. The mutant RI subunits associated with purified native catalytic subunit to form chromatographically separable holoenzyme complexes in which catalytic activity was suppressed. Each of these holoenzymes could be activated but showed varying degrees of cAMP responsiveness with apparent Ka values ranging from 40 nM to greater than 5 microM. The extent to which the mutated cAMP-binding sites were defective was also shown by the resistance of the respective holoenzymes to activation by cAMP analogs selective for the mutated binding sites. Kinetic results support the conclusions that 1) Gly-200 of cAMP-binding site A and Gly-324 or Arg-332 of site B are essential to normal conformation and function, 2) activation of type I cAMP-dependent protein kinase requires that only one of the cAMP-binding sites be functional, 3) mutational inactivation of site B (slow exchange) has a much more drastic effect than that of site A on increasing the Ka of the holoenzyme for cAMP, as well as in altering the rate of cAMP dissociation from the remaining site of the free RI subunit. The strong dependence of one cAMP-binding site on the integrity of the other site suggests a tight association between the two sites.  相似文献   

9.
Our previous data indicated that a Myxococcus xanthus sensor-type adenylyl cyclase (CyaA) functions in signal transduction during osmotic stress. However, the cAMP-mediated signal transduction pathway in this bacterium was unknown. Here, we isolated a clone from a M. xanthus genomic DNA library using oligonucleotide probes designed based on the conserved cAMP-binding domains of the cAMP-dependent protein kinase (PKA) regulatory subunits. The clone contained two open-reading frames (ORFs), cbpA and cbpB, encoding hydrophilic proteins with one and two cAMP-binding domains, respectively. The CbpB exhibited partial primary structural similarity to PKA regulatory subunits. cbpA and cbpB mutants, generated by gene disruption, showed normal growth, development and spore germination. However, the cbpB mutant cultured under high- or low-temperature conditions exhibited a marked reduction in growth. cbpB mutant cells were also more sensitive to osmotic stress than wild-type cells. The cbpA mutant possessed normal resistance to such stress. The phenotype of cbpB mutant was similar to those of PKA regulatory subunit mutants of some eukaryotic microorganisms.  相似文献   

10.
The S49 mouse lymphoma mutant cell line Kin- is resistant to the cytotoxic effects of elevated cAMP levels, has no detectable cAMP-dependent protein kinase activity, and has depressed levels of cAMP-binding regulatory subunits. We demonstrate that although the Kin- cell line lacks detectable catalytic subunit protein, these cells express wild-type levels of mRNA for both C alpha and C beta catalytic subunit isoforms. Translation of C alpha mRNA appears to be normal in the Kin- cell, based on the observation that C alpha mRNA associates with large polyribosomes in both wild-type and Kin- cells. We cloned the C alpha cDNA from Kin- cells and show that its transient expression in another cell type leads to activation of a cAMP-sensitive luciferase reporter gene, suggesting that functional C alpha protein is made. In addition to having catalytic activity, the C alpha subunit from Kin- cells is inhibited in the presence of mouse RI alpha regulatory subunit, indicating that formation of the holoenzyme complex is normal. We suggest that the mutation responsible for the Kin- phenotype is in a cellular component that directly or indirectly causes Kin- catalytic subunit protein to be degraded rapidly.  相似文献   

11.
Kinase-negative mutants of S49 mouse lymphoma cells, which lack detectable catalytic (C) subunit of cyclic AMP-dependent protein kinase, nevertheless contain cytoplasmic mRNAs for the two major forms of C subunit, C alpha and C beta. Investigation of the metabolism of C subunits in wild-type and mutant cells was undertaken to identify the step(s) at which C subunit expression was defective in kinase-negative cells. [35S]methionine-labeled C subunits from cytosolic fractions of wild-type S49 cells or C subunit-overexpressing cell lines were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after purification by either affinity chromatography using a peptide inhibitor of C subunit as the ligand or immunoadsorption with an anti-C subunit antiserum. Immunoadsorption revealed electrophoretic forms of C alpha and C beta subunits that migrated faster than those detected in affinity-purified samples; this unexpected heterogeneity suggested that functional activation of C subunit may require posttranslational modification. Immunoadsorption of cytosolic fractions from wild-type cells labeled for various times with [35S]methionine revealed an additional posttranslational maturation step. The bulk of immunoadsorbable C subunit label in cells pulse-labeled for 5 min or less was in an insoluble fraction from which it could be solubilized with a detergent-containing buffer; solubilization of the newly synthesized material proceeded over an incubation period of about 10 min. The primary defect in kinase-negative cells appeared to be in this solubilization step, since about equal C subunit radioactivity was found in detergent extracts of wild-type and kinase-negative cells but very little was found in mutant cytosols. I speculate that an accessory factor required for proper folding of newly synthesized C subunit in defective in the kinase-negative cells.  相似文献   

12.
Lau FW  Chen X  Bowie JU 《Biochemistry》1999,38(17):5521-5527
We show that residues from different subunits participate in forming the active site of the trimeric membrane protein diacylglycerol kinase (DGK) from Escherichia coli. Five likely active-site mutants were identified: A14Q, N72S, E76L, K94L, and D95N. All five of these mutants possessed significantly impaired catalytic function, without evidence of gross structural alterations as judged by their similar near-UV and far-UV circular dichroism spectra. We found that mixtures of either A14Q or E76L with N72S or K94L possessed much greater activity than the mutant proteins by themselves, suggesting that Ala14 and Glu76 may be on one half-site while Asn72 and Lys94 are on another half-site. Consistent with the shared site model, we also found that (1) peak activity of A14Q and N72S subunit mixtures occur at equimolar concentrations; (2) the maximum activity of the A14Q and N72S mixture was 20% of the wild-type enzyme, in good agreement with the theoretical maximum of 25%; (3) the activity of mutant subunits could not be recovered by mixing with the wild-type subunits; (4) a double mutant, A14Q/N72S, bearing mutations in both putative half-sites was found to inactivate wild-type subunits; (5) the concentration dependence of inactivation by the A14Q/N72S mutant could be well described by a shared site model for a trimeric protein. Unexpectedly, we found that the single mutant D95N behaved in a manner similar to the double mutant, A14Q/N72S, inactivating wild-type subunits. We propose that Asp95 plays a role in more than one active site.  相似文献   

13.
E R Liman  J Tytgat  P Hess 《Neuron》1992,9(5):861-871
The subunit stoichiometry of the mammalian K+ channel KV1.1 (RCK1) was examined by linking together the coding sequences of 2-5 K+ channel subunits in a single open reading frame and tagging the expression of individual subunits with a mutation (Y379K or Y379R) that altered the sensitivity of the channel to block by external tetraethylammonium ion. Two lines of evidence argue that these constructs lead to K+ channel expression only through the formation of functional tetramers. First, currents expressed by tetrameric constructs containing a single mutant subunit have a sensitivity to tetraethylammonium that is well fitted by a single site binding isotherm. Second, a mutant subunit (Y379K) that expresses only as part of a heteromultimer contributes to the expression of functional channels when coexpressed with a trimeric construct but not a tetrameric construct.  相似文献   

14.
The Y1 adrenocortical tumor cell mutants, Kin-7 and Kin-8, harbor point mutations in the regulatory subunit (RI) of the type 1 cAMP-dependent protein kinase (cAMPdPK) that render the enzyme resistant to activation by cAMP. These mutants also are resistant to many of the regulatory effects of ACTH and cAMP. In order to examine the causal relationships between the mutations in cAMPdPK and the resistance to ACTH and cAMP, the Kin mutants were transfected with expression vectors encoding wild type subunits of cAMPdPK in order to restore cAMP-responsive protein kinase activity. The transformants then were screened for the concomitant recovery of cellular responsiveness to ACTH and cAMP. In the mutant Kin-7, cAMP-responsive protein kinase activity was recovered after transfection with an expression vector encoding wild type mouse RI. Protein kinase activity in the mutant Kin-8 remained largely cAMP-resistant after transfection with the RI expression vector but could be rendered cAMP-responsive by transfection with an expression vector encoding the wild type catalytic subunit. The recovery of cAMP-responsive protein kinase activity was accompanied by the recovery of steroidogenic and morphological responses to ACTH and cAMP, suggesting that the cAMP-dependent signaling cascade plays an obligatory role in these actions of ACTH. The growth-regulatory effects of cAMP were not reversed with the recovery of cAMP-responsive protein kinase activity, suggesting that cAMP-resistant growth regulation results from second-site, adaptive mutations either in the original Kin mutant population or in the transformants. Studies on the conversion of 22(R)-hydroxycholesterol into steroid products in parent and mutant cells indicate that the Kin mutations reduce the steroidogenic capacity of the cell as well as inhibit the hormone- and cyclic nucleotide-dependent mobilization of substrate cholesterol.  相似文献   

15.
Cànaves JM  Leon DA  Taylor SS 《Biochemistry》2000,39(49):15022-15031
The regulatory (R) subunit of cAMP-dependent protein kinase (cAPK) is a multidomain protein with two tandem cAMP-binding domains, A and B. The importance of cAMP binding on the stability of the R subunit was probed by intrinsic fluorescence and circular dichroism (CD) in the presence and absence of urea. Several mutants were characterized. The site-specific mutants R(R209K) and R(R333K) had defects in cAMP-binding sites A and B, respectively. R(M329W) had an additional tryptophan in domain B. Delta(260-379)R lacked Trp260 and domain B. The most destabilizing mutation was R209K. Both CD and fluorescence experiments carried out in the presence of urea showed a decrease in cooperativity of the unfolding, which also occurred at lower urea concentrations. Unlike native R, R(R209K) was not stabilized by excess cAMP. Additionally, CD revealed significant alterations in the secondary structure of the R209K mutant. Therefore, Arg209 is important not only as a contact site for cAMP binding but also for the intrinsic structural stability of the full-length protein. Introducing the comparable mutation into domain B, R333K, had a smaller effect on the integrity and stability of domain A. Unfolding was still cooperative; the protein was stabilized by excess cAMP, but the unfolding curve was biphasic. The R(M329W) mutant behaved functionally like the native protein. The Delta(260-379)R deletion mutant was not significantly different from wild-type RIalpha in its stability. Consequently, domain B and the interaction between Trp260 and cAMP bound to site A are not critical requirements for the structural stability of the cAPK regulatory subunit.  相似文献   

16.
A novel peptide mapping approach has been used to map sites of charge modification to major structural domains of regulatory subunit (R) of type I cAMP-dependent protein kinase from S49 mouse lymphoma cells. Proteolytic fragments of crude, radiolabeled R were purified by cAMP affinity chromatography and displayed by two-dimensional polyacrylamide gel electrophoresis. [35S]methionine-labeled peptides containing sites of mutation or phosphorylation exhibited charge heterogeneity attributable to the modification. Phosphate-containing fragments were also labeled with [32P]orthophosphate to confirm their phosphorylation. Major fragments from [35S]methionine-labeled S49 cell R corresponded in size to carboxyterminal cAMP-binding fragments reported from proteolysis of purified type I Rs from various mammalian species; additional fragments were also visualized. End-specific markers in Rs from some mutant S49 sublines confirmed that cAMP-binding fragments extended to the carboxyterminus of R. Aminoterminal endpoints of fragments could be deduced, therefore, from peptide molecular weights. Clustering of proteolytic cleavage sites within the "hinge-region" separating aminoterminal and carboxyterminal domains of R permitted high resolution mapping in this region: the endogenous phosphate and a "phenotypically-silent" electrophoretic marker mutation fell within a 2.5-kdalton interval at its aminoterminal end. On the other hand, Ka mutations that increase the apparent constant for activation of kinase by cAMP mapped within the large cAMP-binding region of R. A map of charge density distribution within the hinge-region of R was constructed to facilitate structural comparisons between Rs from S49 cells and from other mammalian sources.  相似文献   

17.
The aquatic fungus Blastocladiella emersonii provides a system for studying the regulation of expression of regulatory (R) and catalytic (C) subunits of cAMP-dependent protein kinase (PKA). Blastocladiella cells contain a single PKA with properties very similar to type II kinases of mammalian tissues. During development cAMP-dependent protein kinase activity and its associated cAMP-binding activity change drastically. We have previously shown that the increase in cAMP-binding activity during sporulation is due to de novo synthesis of R subunit and to an increase in the translatable mRNA coding for R (Marques et al., Eur. J. Biochem. 178, 803, 1989). In the present work we have continued these studies to investigate the mechanism by which the changes in the level of kinase activity take place. The C subunit of Blastocladiella has been purified; antiserum has been raised against it and used to determine amounts of C subunit throughout the fungus' life cycle. A sharp increase in C subunit content occurs during sporulation and peaks at the zoospore stage. Northern blot analyses, using Blastocladiella C and R cDNA probes, have shown that the levels of C and R mRNAs parallel their intracellular protein concentrations. These results indicate a coordinate pretranslational control for C and R subunit expression during differentiation in Blastocladiella.  相似文献   

18.
A truncated regulatory subunit of cAMP-dependent protein kinase I was constructed which contained deletions at both the carboxyl terminus and at the amino terminus. The entire carboxyl-terminal cAMP-binding domain was deleted as well as the first 92 residues up to the hinge region. This monomeric truncated protein still forms a complex with the catalytic subunit, and activation of this complex is mediated by cAMP. The affinity of this mutant holoenzyme for cAMP and its activation by cAMP are nearly identical to holoenzyme formed with a regulatory subunit having only the carboxyl-terminal deletion and very similar to native holoenzyme. The off rate for cAMP from both mutant regulatory subunits, however, is monophasic and very fast relative to the biphasic off rate seen for the native regulatory subunit. The effects of NaCl, urea, and pH on cAMP binding are also very similar for the mutant and native holoenzymes. Like the native type I holoenzyme, both mutant holoenzymes bind ATP with a high affinity. The positive cooperativity seen for MgATP binding to the native holoenzyme, however, is abolished in the double deletion mutant. The Hill coefficient for ATP binding to this mutant holoenzyme is 1.0 in contrast to 1.6 for the native holoenzyme. The Kd (cAMP) is increased by approximately 1 order of magnitude for both mutant forms of the holoenzyme in the presence of MgATP. A similar shift is seen for the native holoenzyme. Further characterization of the MgATP-binding properties of the wild-type holoenzyme indicates that a binary complex containing catalytic subunit and MgATP is required, in particular, for reassociation with the cAMP-bound regulatory subunit. This binary complex is required for rapid dissociation of the bound cAMP and is probably responsible for the observed reduction in cAMP-binding affinity for the type I holoenzyme in the presence of MgATP.  相似文献   

19.
The type I regulatory subunit (R-I) of rat brain cAMP-dependent protein kinase was expressed in E. coli and site-directed mutagenesis was used to substitute amino acids in the putative cAMP-binding sites. The wild-type recombinant R-I bound 2 mol of cAMP/mol subunit, while two mutant R-Is with a single amino acid substitution in one of the two intrachain cAMP-binding sites (clone N153:a glutamate for Gly-200, and clone C254:an aspartate for Gly-324) bound 1 mol of cAMP/mol subunit. When these two substitutions were made in one mutant, cAMP did not bind to this mutant, indicating that binding of cAMP to N153 or C254 was to their nonmutated sites. Competition experiments with site-selective analogs and dissociation of bound cAMP from mutant R-Is provided evidence for strong intrachain interactions between the two classes of cAMP-binding sites in R-I.  相似文献   

20.
The cAMP-dependent protein kinase (PKA) from Candida albicans is a tetramer composed of two catalytic subunits (C) and two type II regulatory subunits (R). To evaluate the role of a putative autophosphorylation site of the R subunit (Ser(180)) in the interaction with C, this site was mutated to an Ala residue. Recombinant wild-type and mutant forms of the R subunit were expressed in Escherichia coli and purified. The wild-type recombinant R subunit was fully phosphorylated by the purified C subunit, while the mutant form was not, confirming that Ser(180) is the target for the autophosphorylation reaction. Association and dissociation experiments conducted with both recombinant R subunits and purified C subunit showed that intramolecular phosphorylation of the R subunit led to a decreased affinity for C. This diminished affinity was reflected by an 8-fold increase in the concentration of R subunit needed to reach half-maximal inhibition of the kinase activity and in a 5-fold decrease in the cAMP concentration necessary to obtain half-maximal dissociation of the reconstituted holoenzyme. Dissociation of the mutant holoenzyme by cAMP was not affected by the presence of MgATP. Metabolic labeling of yeast cells with [(32)P]orthophosphate indicated that the R subunit exists as a serine phosphorylated protein. The possible involvement of R subunit autophosphorylation in modulating C. albicans PKA activity in vivo is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号