首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane dynamics is an essential part of many cellular mechanisms such as intracellular trafficking, membrane fusion/fission and mitotic organelle reconstitution. The dynamics of membranes is dependent primarily on their phospholipid and cholesterol composition and how these molecules are ordered in relation to one another. To determine the physical status of membranes in whole cells or purified membranes of subcellular compartments we have developed a novel application exploiting solid-state (2)H-NMR spectroscopy. We utilise this method to probe the dynamics of intact sperm and nuclear envelope precursor membranes. We show, using mass spectrometry, that either multilamellar or small unilamellar vesicles of deuterium-labelled palmitoyl-oleoylphosphatidylcholine can be used to probe the dynamics of sperm cells or nuclear envelope precursor membrane vesicles, respectively. Using (2)H-NMR we determine the order parameters of sperm cells and nuclear envelope precursor membrane vesicles. We demonstrate that whole sperm membranes are more dynamic than nuclear envelope precursor membranes due to the higher cholesterol levels of the latter. Our new application can be exploited as a generic method for monitoring membrane dynamics in whole cells, various subcellular membrane compartments and membrane domains in subcellular compartments.  相似文献   

2.
Membrane dynamics is an essential part of many cellular mechanisms such as intracellular trafficking, membrane fusion/fission and mitotic organelle reconstitution. The dynamics of membranes is dependent primarily on their phospholipid and cholesterol composition and how these molecules are ordered in relation to one another. To determine the physical status of membranes in whole cells or purified membranes of subcellular compartments we have developed a novel application exploiting solid-state 2H-NMR spectroscopy. We utilise this method to probe the dynamics of intact sperm and nuclear envelope precursor membranes. We show, using mass spectrometry, that either multilamellar or small unilamellar vesicles of deuterium-labelled palmitoyl-oleoylphosphatidylcholine can be used to probe the dynamics of sperm cells or nuclear envelope precursor membrane vesicles, respectively. Using 2H-NMR we determine the order parameters of sperm cells and nuclear envelope precursor membrane vesicles. We demonstrate that whole sperm membranes are more dynamic than nuclear envelope precursor membranes due to the higher cholesterol levels of the latter. Our new application can be exploited as a generic method for monitoring membrane dynamics in whole cells, various subcellular membrane compartments and membrane domains in subcellular compartments.  相似文献   

3.
A cell is surrounded by a plasma membrane. It contains various organelles, most of which are enclosed by limiting membranes. The intracellular space is thus divided into a number of subcellular compartments. Structurally, a cell is composed of membranes and the spaces enclosed by those membranes. In order to classify these compartments, the extracellular space has been designated S1 and whenever a unit membrane structure is crossed to arrive at the next space, one is added to term; the cytoplasmic space becomes S2, the intraluminal space of the endoplasmic reticulum and the intermembrane space of the mitochondria S3, and the matrix space of the mitochondria S4. Similarly, the plasma membrane is M1, the outer membrane of the mitochondria M2, and the inner counterpart M3. This classification of the subcellular compartments is useful in understanding a number of complicated cellular structures and functions. The intracellular transport of newly synthesized protein (protein topogenesis) and the probable development of subcellular organelles during phylogenesis of eukaryotic cells is discussed in terms of these subcellular compartments.  相似文献   

4.
The in vitro incorporation of a well-characterized integral protein cytochrome b5 into membranes of various subcellular organelles was investigated by biochemical and immunochemical methods. Microsomes, peroxisomes, and outer mitochondrial membranes, all containing endogenous cytochrome b5, incorporated large amounts of the hemoprotein in such a way that it was reducible by an inherent NADH cytochrome b5 reductase. Lysosomal membranes did not incorporate cytochrome b5. Inner mitochondrial and Golgi membranes, which do not naturally contain cytochrome b5, bound it in vitro but it was not reduced in the presence of NADH. These results show some discrepancies between the natural localization and the in vitro binding of cytochrome b5. They confirm one aspect of the fluid membrane theory and bring new elements to our understanding of the maintenance of the specific features of the membranes of subcellular organelles with respect to the cell dynamism.  相似文献   

5.
Human formiminotransferase-cyclodeaminase (hFTCD) is the autoantigen recognized by anti-liver cytosol type 1 (LC1) autoantibodies in type 2 autoimmune hepatitis (AIH) patients. In rats, this octameric protein is localized on the Golgi apparatus and binds brain microtubules (MTs) and vimentin. Subcellular localization of human formiminotransferase-cyclodeaminase and its implication in the pathogenesis of autoimmune hepatitis are unknown. Localization of the human formiminotransferase-cyclodeaminase in human hepatocytes was done using indirect immunofluorescence and subcellular fractionations followed by in vitro binding techniques. The formiminotransferase-cyclodeaminase antigen at two distinct locations in hepatocytes, free in the cytosol and associated with the Golgi membranes are recognized by anti-liver cytosol type 1 autoantibodies. The human formiminotransferase-cyclodeaminase binds reversibly to the Golgi membranes and this complex formation is increased by anti-liver cytosol type 1 autoantibodies. Finally, human formiminotransferase-cyclodeaminase does not interact with liver-specific cytoskeleton proteins. Anti-liver cytosol type 1 autoantibodies are directed against the mature high molecular form of human formiminotransferase-cyclodeaminase. Therefore, the subcellular location of the protein may influence the production of autoantibodies and their role in the pathogenesis of type 2 autoimmune hepatitis. This antigen-driven response does not appear to be facilitated or enhanced by a possible interaction between human formiminotransferase-cyclodeaminase and hepatocyte cytoskeleton proteins.  相似文献   

6.
Direct ferritin immunoelectron microscopy was used to visualize the asialoglycoprotein receptor in various rat liver subcellular fractions. The cytoplasmic surfaces of cytoplasmic organelles such as the rough and smooth microsomes, Golgi cisternae and lysosomes showed hardly any ferritin label exception for the slight labeling of secretory granules found mainly in the light Golgi fraction (GF1). Occasionally, however, open membrane sheet structures, smooth vesicular or tubular structures heavily labeled with ferritin, were present in all these subcellular fractions. These structures probably correspond to fragmented sinusoidal or lateral hepatocyte plasma membranes recovered to these subcellular fractions. When the limiting membranes of the secretion granules were partially broken by mechanical force, a number of ferritin particles frequently were seen attached in large clusters to the luminal surface of the membrane, the cytoplasmic surface of the corresponding domain being slightly labeled. These observations are strong evidence that the receptor protein is never translocated vertically throughout the intracellular transport from ER to plasma membrane via Golgi apparatus and from plasma membrane back to trans-Golgi elements and also in lysosomes, always exposing the major antigenic sites to the luminal or extracellular surface and the minor counterparts to the cytoplasmic surface of the membranes. The receptor protein also is suggested to be concentrated in clusters on the luminal surface of secretion granules when they form on the trans-side of the Golgi apparatus.  相似文献   

7.
Pea cotyledons were injected with d-[(14)C]mannose or d-[(14)C]-glucosamine and incubated for 1 to 1.5 hours. Cotyledons were homogenized and subcellular fractions were isolated by differential centrifugation followed by linear sucrose density gradient centrifugation.Radioactivity that was precipitated by trichloroacetic acid was associated most extensively with rough endoplasmic reticulum, Golgi membranes, a membrane with a density of 1.14 grams per cubic centimeter (possibly plasma membrane) and an unidentified subcellular component with a density of 1.22 grams per cubic centimeter. Lower levels of incorporation were observed in protein bodies and mitochondria.Isolated membrane fractions were lipid-extracted to determine which components of the membrane contained the label. Rough endoplasmic reticulum contained the most extensively labeled lipids which had similar properties to the lipid intermediates thought to be involved in glycoprotein assembly. The lipid free residues of the various membrane fractions contained radioactivity that was released by protease treatment. Acid hydrolysis of the residues indicated that most of the radioactivity was associated with mannose or glucosamine. It appears that various subcellular components of the pea cotyledon possess glycoproteins that contain mannose and glucosamine.  相似文献   

8.
The accumulation of halothane in brain homogenates was compared with halothane accumulation in brain during inhalation at anesthetic and subanesthetic levels. Anesthesia is achieved at a tissue concentration well below the halothane solubility in brain tissue. Analysis of halothane in the particulate solids of brain homogenate and in purified subcellular membranes indicates that a membrane constituent (presumably the lipids) acts as an ideal solvent in which halothane is fully miscible. Therefore, membranes offer a local microenvironment in which halothane accumulation deviates from Henry's law. Specifically, we observe that even slight increases of halothane in a saline medium result in a relatively large increase in the concentration of halothane in subcellular membranes suspended in the medium, eventually leading to solvation of the membrane in halothane. This observation offers a ready explanation for the high degree of positive correlation between MAC and lipid solubility and the small difference between anesthetic and lethal concentrations of halothane during inhalation. The rate of halothane increase in myelin exceeded the rate in other brain subcellular membranes, indicating that a major site of halothane localization is within this subcellular membrane.  相似文献   

9.
The v-fgr oncogene codes for a unique transforming protein (P70gag-actin-fgr) that contains virus-specific determinants and cell-derived sequences for both a tyrosine-specific kinase domain and an actin domain. We examined the subcellular distribution of the v-fgr protein by immunofluorescence microscopy and various cell fractionation techniques. By immunofluorescence, the v-fgr protein was localized in a diffuse cytoplasmic pattern within transformed cells. The v-fgr protein was not detectable at substratum adhesion sites. Crude membrane preparations (P100) obtained from fgr-transformed cells contained elevated levels of P70gag-actin-fgr. Further analysis of membranes on discontinous sucrose gradients revealed that P70gag-actin-fgr cofractionated with plasma membranes. Using an alternate method of fractionation, we found that the majority of the v-fgr protein remained with the insoluble matrix obtained by treating cells with a buffer containing Triton X-100. When membranes were similarly treated with detergent, nearly all of v-fgr protein remained with the residual insoluble matrix. These results suggest that the transforming activity of P70gag-actin-fgr may be directed to subcellular cytoskeletal targets at or near the cytoplasmic face of the plasma membrane.  相似文献   

10.
The subcellular distribution of prostaglandin (PG) E1, F2α and gonadotropin receptors in bovine corpora lutea was critically examined by preparing various subcellular fractions, assaying for various marker enzymes to assess the purity and examining 3H-PGE1, 3H-PGF2α and 125I-human lutropin (hLH) specific binding. The marker enzyme data suggested that subcellular fractions were relatively pure with little or no cross contamination. The binding of 3H-PGs and 125I-hLH was markedly enriched in plasma membranes with respect to homogenate. The other subcellular fractions also exhibited binding despite very little or no detectable 5′-nucleotidase activity. If 5′-nucleotidase was assumed to lack sensitivity and reliability to detect minor contamination with plasma membranes and 3H-PGs or 125I-hLH binding were used as sensitive plasma membrane markers, it was still difficult to explain binding in other fractions based on plasma membrane contamination. Therefore, these results lead to the inevitable conclusion that plasma membranes were primary (or one of the primary) but not exclusive sites for PGE1, PGF2α and gonadotropin receptors.  相似文献   

11.
The subcellular distribution of rat liver porin was investigated using the immunoblotting technique and monospecific antisera against the protein isolated from the outer membrane of rat liver mitochondria. Subfractionation of mitochondria into inner membranes, outer membranes and matrix fractions revealed the presence of porin only in the outer membranes. Porin was also not detected in highly purified subcellular fractions, including plasma membranes, nuclear membranes, Golgi I and Golgi II, microsomes and lysosomes. Thus, liver porin is located exclusively in the outer mitochondrial membrane.  相似文献   

12.
Isolated bovine rod outer segments and photoreceptor disks actively incorporated [1-14C]docosahexaenoate (22:6) into phospholipids when incubated in the presence of CoA, ATP, and Mg2+. About 80% of the esterified fatty acid was in phosphatidylcholine (PC). Microsomal and mitochondrial fractions incorporated as much 22:6 as rod outer segments, but it was distributed among various phospholipids and neutral glycerides. The isolated photoreceptor membrane thus contains an acyl-CoA synthetase which activates the fatty acid and a docosahexaenoyl-CoA-lysophosphatidylcholine acyltransferase activity. The specific radioactivity of PC was higher in rod outer segments than in the other subcellular fractions. About 2/3 of the label in photoreceptor membrane PC was in its dipolyunsaturated molecular species and 1/3 in hexaenes. Dipolyunsaturated PCs showed high turnover rates of 22:6 in all three subcellular membranes, especially in mitochondria. Retinal membranes in vitro seem to take up free [14C]22:6 from the medium by simple diffusion or partition into the membrane lipid. The ability of these membranes to activate and esterify [1-14C]22:6 indicates that docosahexaenoate-containing molecular species of retina lipids, including those of photoreceptor membranes, are subject to acylation-deacylation reactions in situ.  相似文献   

13.
Membrane biology studies have revealed that in addition to providing structural support for compartment formation and membrane protein function, subcellular biomembranes are also critically involved in many biological events. To facilitate our understanding of the functions, biophysical properties and structural dynamics of organelle membranes, various exciting chemical biology tools have recently emerged. This short review aims to describe the latest molecular probes for organelle membrane studies. In particular, we will feature chemical strategies to visualize and quantitatively analyze the dynamic propeties of organelle membranes and lipids and discuss current limitations and potential future directions of this challenging research area.  相似文献   

14.
The Bin-Amphiphysin-Rvs167 (BAR) domain superfamily consists of proteins containing the BAR domain, the extended FCH (EFC)/FCH-BAR (F-BAR) domain, or the IRSp53-MIM homology domain (IMD)/inverse BAR (I-BAR) domain. These domains bind membranes through electrostatic interactions between the negative charges of the membranes and the positive charges on the structural surface of homo-dimeric BAR domain superfamily members. Some BAR superfamily members have membrane-penetrating insertion loops, which also contribute to the membrane binding by the proteins. The membrane-binding surface of each BAR domain superfamily member has its own unique curvature that governs or senses the curvature of the membrane for BAR-domain binding. The wide range of BAR-domain surface curvatures correlates with the various invaginations and protrusions of cells. Therefore, each BAR domain superfamily member may generate and recognize the curvature of the membrane of each subcellular structure, such as clathrin-coated pits or filopodia. The BAR domain superfamily proteins may regulate their own catalytic activity or that of their binding proteins, depending on the membrane curvature of their corresponding subcellular structures.  相似文献   

15.
Major quantitative, but not qualitative, differences in the various species of proteins in purified membranes from Streptococcus pyogenes and its stabilized L-form have been demonstrated by acidic and alkaline disc gel electrophoresis with and without urea. The fact that no significant differences in the amino acid content or composition between these two membranes could be demonstrated emphasizes that these results are probably due to changes in the relative amounts of the various species of proteins in this subcellular component. The possibility of these protein changes in the L-form membrane being related to its inability to synthesize a rigid cell wall is discussed. Finally, phage-associated lysin, routinely used for removal of the group A streptococcal cell wall, does not appear to affect the protein profile or amino acid composition of the membrane either metabolically or nonmetabolically.  相似文献   

16.
The C2 domain is a Ca(2+)-dependent membrane-targeting module found in many cellular proteins involved in signal transduction or membrane trafficking. C2 domains are unique among membrane targeting domains in that they show a wide range of lipid selectivity for the major components of cell membranes, including phosphatidylserine and phosphatidylcholine. To understand how C2 domains show diverse lipid selectivity and how this functional diversity affects their subcellular targeting behaviors, we measured the binding of the C2 domains of group IVa cytosolic phospholipase A(2) (cPLA(2)) and protein kinase C-alpha (PKC-alpha) to vesicles that model cell membranes they are targeted to, and we monitored their subcellular targeting in living cells. The surface plasmon resonance analysis indicates that the PKC-alpha C2 domain strongly prefers the cytoplasmic plasma membrane mimic to the nuclear membrane mimic due to high phosphatidylserine content in the former and that Asn(189) plays a key role in this specificity. In contrast, the cPLA(2) C2 domain has specificity for the nuclear membrane mimic over the cytoplasmic plasma membrane mimic due to high phosphatidylcholine content in the former and aromatic and hydrophobic residues in the calcium binding loops of the cPLA(2) C2 domain are important for its lipid specificity. The subcellular localization of enhanced green fluorescent protein-tagged C2 domains and mutants transfected into HEK293 cells showed that the subcellular localization of the C2 domains is consistent with their lipid specificity and could be tailored by altering their in vitro lipid specificity. The relative cell membrane translocation rate of selected C2 domains was also consistent with their relative affinity for model membranes. Together, these results suggest that biophysical principles that govern the in vitro membrane binding of C2 domains can account for most of their subcellular targeting properties.  相似文献   

17.
Calcium-dependent protein kinases (CDPKs), the most abundant serine/threonine kinases in plants, are found in various subcellular localizations, which suggests that this family of kinases may be involved in multiple signal transduction pathways. A complete analysis to try to understand the molecular basis of the presence of CDPKs in various localizations in the cell has not been accomplished yet. It has been suggested that myristoylation may be responsible for membrane association of CDPKs. In this study, we used a rice CDPK, OSCPK2, which has a consensus sequence for myristoylation at the N-terminus, to address this question. We expressed wild-type OSCPK2 and various mutants in different heterologous systems to investigate the factors that affect its membrane association. The results show that OSCPK2 is myristoylated and palmitoylated and targeted to the membrane fraction. Both modifications are required, myristoylation being essential for membrane localization and palmitoylation for its full association. The fact that palmitoylation is a reversible modification may provide a mechanism for regulation of the subcellular localization. OSCPK2 is the first CDPK shown to be targeted to membranes by an src homology domain 4 (SH4) located at the N-terminus of the molecule.  相似文献   

18.
Cholesterol is an essential component of mammalian cell membranes whose subcellular concentration and function are tightly regulated by de novo biosynthesis, transport, and storage. Although recent reports have suggested diverse functions of cellular cholesterol in different subcellular membranes, systematic investigation of its site-specific roles has been hampered by the lack of a methodology for spatiotemporal manipulation of cellular cholesterol levels. Here, we report the development of a new cholesterol depletion system that allows for spatiotemporal manipulation of intracellular cholesterol levels. This system utilizes a genetically encoded cholesterol oxidase whose intrinsic membrane binding activity is engineered in such a way that its membrane targeting can be controlled in a spatiotemporally specific manner via chemically induced dimerization. In combination with in situ quantitative imaging of cholesterol and signaling activity measurements, this system allows for unambiguous determination of site-specific functions of cholesterol in different membranes, including the plasma membrane and the lysosomal membrane.  相似文献   

19.
The molecular mechanisms that determine the correct subcellular localization of proteins targeted to membranes by tail-anchor sequences are poorly defined. Previously, we showed that two isoforms of the tung oil tree [Vernicia (Aleurites) fordii] tail-anchored Cb5 (cytochrome b5) target specifically to ER (endoplasmic reticulum) membranes both in vivo and in vitro [Hwang, Pelitire, Henderson, Andrews, Dyer and Mullen (2004) Plant Cell 16, 3002-3019]. In the present study, we examine the targeting of various tung Cb5 fusion proteins and truncation mutants to purified intracellular membranes in vitro in order to assess the importance of the charged CTS (C-terminal sequence) in targeting to specific membranes. Removal of the CTS from tung Cb5 proteins resulted in efficient binding to both ER and mitochondria. Results from organelle competition, liposome-binding and membrane proteolysis experiments demonstrated that removal of the CTS results in spontaneous insertion of tung Cb5 proteins into lipid bilayers. Our results indicate that the CTSs from plant Cb5 proteins provide ER specificity by preventing spontaneous insertion into incorrect subcellular membranes.  相似文献   

20.
The proteins encoded by the oncogene v-src and its cellular counterpart c-src (designated generically here as pp60src) are tightly associated with both plasma membranes and intracellular membranes. This association is due in part to the amino-terminal myristylation of pp60src, but several lines of evidence suggest that amino-terminal portions of the protein itself are also involved. We now report that pp60src contains at least three domains which, in conjunction with myristylation, are capable of mediating attachment to membranes and determining subcellular localization. We identified these domains by fusing various portions of pp60src to pyruvate kinase, which is normally a cytoplasmic protein. Amino acids 1 to 14 of pp60src are sufficient to mediate both myristylation and the attachment of pyruvate kinase to cytoplasmic granules. In contrast, amino acids 38 to 111 mediate association with the plasma membrane and perinuclear membranes, whereas amino acids 204 to 259 mediate association primarily with perinuclear membranes. We conclude that pp60src contains independent domains that target the protein to distinctive subcellular locations and thus may facilitate diverse biological functions of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号