首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Engagement of CD40 on murine B cells by its ligand CD154 induces the binding of TNFR-associated factors (TRAFs) 1, 2, 3, and 6, followed by the rapid degradation of TRAFs 2 and 3. TRAF degradation occurs in response to signaling by other TNFR superfamily members, and is likely to be a normal regulatory component of signaling by this receptor family. In this study, we found that receptor-induced TRAF degradation limits TRAF2-dependent CD40 signals to murine B cells. However, TRAFs 1 and 6 are not degraded in response to CD40 engagement, despite their association with CD40. To better understand the mechanisms underlying differential TRAF degradation, mixed protein domain TRAF chimeras were analyzed in murine B cells. Chimeras containing the TRAF2 zinc (Zn) domains induced effective degradation, if attached to a TRAF domain that binds to the PXQXT motif of CD40. However, the Zn domains of TRAF3 and TRAF6 could not induce degradation in response to CD40, regardless of the TRAF domains to which they were attached. Our data indicate that TRAF2 serves as the master regulator of TRAF degradation in response to CD40 signaling, and this function is dependent upon both the TRAF Zn domains and receptor binding position.  相似文献   

2.
In B lymphocytes, CD40 signals contribute to the activation of Ab secretion, isotype switching, T cell costimulation, and immunological memory. TRAF proteins appear to be important components of the CD40 signal transduction complex, but their roles in the activation of B cell effector functions are poorly understood. We examined the contributions of TNF receptor-associated factor 2 (TRAF2) and TRAF3 to CD40-activated differentiation in mouse B cells transfected with inducible TRAF and dominant-negative TRAF cDNAs. We find that binding of TRAF2 and TRAF3 to CD40 is not required for the induction of Ab secretion, but that both TRAF molecules can regulate the activation process. We demonstrate a negative regulatory role for TRAF3 and that this activity is dependent on the availability of an intact TRAF3-binding site in the cytoplasmic domain of CD40. In contrast, TRAF2 appears to play a positive role in B cell differentiation, and this activity is apparent even when its binding site on CD40 is disrupted.  相似文献   

3.
Tumor necrosis factor receptor-associated factor 2 (TRAF2), an adapter protein that associates with the cytoplasmic tail of OX40, may play a critical role in OX40-mediated signal transduction. To investigate the in vivo role of TRAF2 in OX40-mediated generation of Ag-specific memory T cells, we bred OVA-specific TCR transgenic mice to TRAF2 dominant-negative (TRAF2 DN) mice. Following Ag stimulation and OX40 engagement of TRAF2 DN T cells in vivo, the number of long-lived OVA-specific T cells and effector T cell function was dramatically reduced when compared with wild-type T cells. We also demonstrate that CTLA-4 is down-regulated following OX40 engagement in vivo and the OX40-specific TRAF2 DN defect was partially overcome by CTLA-4 blockade in vivo. The data provide evidence that TRAF2 is linked to OX40-mediated memory T cell expansion and survival, and point to the down-regulation of CTLA-4 as a possible control element to enhance early T cell expansion through OX40 signaling.  相似文献   

4.
Members of the tumor necrosis factor receptor (TNFR) family play a variety of roles in the regulation of lymphocyte activation. An important TNFR family member for B cell activation is CD40. CD40 signals stimulate B cell TNF-alpha secretion, which subsequently signals via TNFR2 (CD120b) to enhance B cell activation. Although the function of the pro-apoptotic and pro-inflammatory receptor TNFR1 (CD120a) has been the subject of much research, less is understood about the distinct contributions of CD120b to cell activation and how it stimulates downstream events. Members of the tumor necrosis factor receptor family bind various members of the cytoplasmic adapter protein family, the tumor necrosis factor receptor-associated factors (TRAFs), during signaling. Both CD40 and CD120b bind TNF receptor-associated factor 2 (TRAF2) upon ligand stimulation. Wild type and TRAF2-deficient B cells expressing CD40 or the hybrid molecule (human) CD40 (mouse)-CD120b were examined. CD40- and CD120b-mediated IgM secretion were partly TRAF2-dependent, but only CD40 required TRAF2 for c-Jun N-terminal kinase activation. CD40 and CD120b used primarily divergent mechanisms to activate NF-kappaB, exemplifying how TNFR family members can use diverse mechanisms to mediate similar downstream events.  相似文献   

5.
The interaction between CD40 and its ligand, CD154, has been shown to play a role in the onset and maintenance of inflammatory disease. Contributing to this process is the ability of CD40 to signal monocyte and macrophage inflammatory cytokine production. We have shown that this event is dependent on Src family tyrosine kinase activity and the subsequent activation of ERK1/2. To address the role of TNFR-associated factor (TRAF) family members in facilitating this signaling pathway, we transfected a CD40-deficient macrophage cell line with wild-type human CD40, or with CD40 containing disrupted TRAF binding sites. Ligation of either wild-type CD40, or a CD40 mutant unable to bind TRAF2/3/5, resulted in the stimulation of inflammatory cytokine production. However, ligation of a CD40 mutant lacking a functional TRAF6 binding site did not initiate inflammatory cytokine production, and this mutant was found to be defective in CD40-mediated activation of ERK1/2, as well as IkappaB kinase (IKK) and NF-kappaB. Likewise, introduction of a dominant-negative TRAF6 into a wild-type (CD40(+)) macrophage cell line resulted in abrogation of CD40-mediated induction of inflammatory cytokine synthesis. Finally, treatment of monocytes with a cell-permeable peptide corresponding to the TRAF6-binding motif of CD40 inhibited CD40 activation of ERK1/2, IKK, and inflammatory cytokine production. These data demonstrate that TRAF6 acts as a critical adapter of both the Src/ERK1/2 and IKK/NF-kappaB proinflammatory signaling pathways in monocytes and macrophages.  相似文献   

6.
IFN-gamma is considered an essential stimulus that allows macrophages to acquire activity against intracellular pathogens in response to a second signal such as TNF-alpha. However, protection against important pathogens can take place in the absence of IFN-gamma through mechanisms that are still dependent on TNF-alpha. Engagement of CD40 modulates antimicrobial activity in macrophages. However, it is not known whether CD40 can replace IFN-gamma as priming signal for induction of this response. We show that CD40 primes mouse macrophages to acquire antimicrobial activity in response to TNF-alpha. The effect of CD40 was not caused by modulation of IL-10 and TGF-beta production or TNFR expression and did not require IFN-alphabeta signaling. Induction of antimicrobial activity required cooperation between TNFR-associated factor 6-dependent CD40 signaling and TNFR2. These results support a paradigm where TNFR-associated factor 6 signaling downstream of CD40 alters the pattern of response of macrophages to TNF-alpha leading to induction of antimicrobial activity.  相似文献   

7.
TNFR-associated factors (TRAFs) participate in the signaling of many TNFR family members, including CD40, CD120a (TNFR1), and CD120b (TNFR2). Previously, we found that a dominant-negative TRAF2 molecule inhibits CD40-mediated Ab secretion by the mouse B cell line CH12.LX. However, disruption of the TRAF2 binding site in the cytoplasmic domain of CD40 does not diminish the ability of CD40 to stimulate Ab secretion, nor is this mutation able to circumvent the inhibition of Ab secretion by dominant-negative TRAF2. Here we demonstrate that CD40-induced TNF stimulates IgM production through CD120b and that CD120b signaling is required for optimal CD40-induced IgM secretion. Furthermore, although both CD40 and CD120b can bind TRAF2, TRAF2-dependent CD40 signals cannot substitute for TRAF2-dependent CD120b signals in the activation of IgM secretion. Our results indicate a potentially important role for CD120b in the activation of IgM secretion and that TRAF2 is used by CD40 and CD120b in distinct ways.  相似文献   

8.
9.
TNFR-associated factor 1 (TRAF1) is unique among the TRAF family, lacking most zinc-binding features, and showing marked up-regulation following activation signals. However, the biological roles that TRAF1 plays in immune cell signaling have been elusive, with many reports assigning contradictory roles to TRAF1. The overlapping binding site for TRAFs 1, 2, and 3 on many TNFR superfamily molecules, together with the early lethality of mice deficient in TRAFs 2 and 3, has complicated the quest for a clear understanding of the functions of TRAF1. Using a new method for gene targeting by homologous recombination in somatic cells, we produced and studied signaling by CD40 and its viral oncogenic mimic, latent membrane protein 1 (LMP1) in mouse B cell lines lacking TRAF1, TRAF2, or both TRAFs. Results indicate that TRAFs 1 and 2 cooperate in CD40-mediated activation of the B cell lines, with a dual deficiency leading to a markedly greater loss of function than that of either TRAF alone. In the absence of TRAF1, an increased amount of TRAF2 was recruited to lipid rafts, and subsequently, more robust degradation of TRAF2 and TRAF3 was induced in response to CD40 signaling. In contrast, LMP1 did not require either TRAFs 1 or 2 to induce activation. Taken together, our findings indicate that TRAF1 and TRAF2 cooperate in CD40 but not LMP1 signaling and suggest that cellular levels of TRAF1 may play an important role in modulating the degradation of TRAF2 and TRAF3 in response to signals from the TNFR superfamily.  相似文献   

10.
11.
To investigate CD40 signaling complex formation in living cells, we used green fluorescent protein (GFP)-tagged CD40 signaling intermediates and confocal life imaging. The majority of cytoplasmic TRAF2-GFP and, to a lesser extent, TRAF3-GFP, but not TRAF1-GFP or TRAF4-GFP, translocated into CD40 signaling complexes within a few minutes after CD40 triggering with the CD40 ligand. The inhibitor of apoptosis proteins cIAP1 and cIAP2 were also recruited by TRAF2 to sites of CD40 signaling. An excess of TRAF2 allowed recruitment of TRAF1-GFP to sites of CD40 signaling, whereas an excess of TRAF1 abrogated the interaction of TRAF2 and CD40. Overexpression of TRAF1, however, had no effect on the interaction of TRADD and TRAF2, known to be important for tumor necrosis factor receptor 1 (TNF-R1)-mediated NF-kappaB activation. Accordingly, TRAF1 inhibited CD40-dependent but not TNF-R1-dependent NF-kappaB activation. Moreover, down-regulation of TRAF1 with small interfering RNAs enhanced CD40/CD40 ligand-induced NF-kappaB activation but showed no effect on TNF signaling. Because of the trimeric organization of TRAF proteins, we propose that the stoichiometry of TRAF1-TRAF2 heteromeric complexes ((TRAF2)2-TRAF1 versus TRAF2-(TRAF1)2) determines their capability to mediate CD40 signaling but has no major effect on TNF signaling.  相似文献   

12.
CD40 function is initiated by tumor necrosis factor (TNF) receptor-associated factor (TRAF) adapter proteins, which play important roles in signaling by numerous receptors. Characterizing roles of individual TRAFs has been hampered by limitations of available experimental models and the poor viability of most TRAF-deficient mice. Here, B cell lines made deficient in TRAF2 using a novel homologous recombination system reveal new roles for TRAF2. We demonstrate that TRAF2 participates in synergy between CD40 and B cell antigen receptor signals, and in CD40-mediated, TNF-dependent IgM production. We also find that TRAF2 participates in the degradation of TRAF3 associated with CD40 signaling, a role that may limit inhibitory actions of TRAF3. Finally, we show that TRAF2 and TRAF6 have overlapping functions in CD40-mediated NF-kappaB activation and CD80 up-regulation. These findings demonstrate previously unappreciated roles for TRAF2 in signaling by TNF receptor family members, using an approach that facilitates the analysis of genes critical to the viability of whole organisms.  相似文献   

13.
Involvement of TNF receptor-associated factor 6 in IL-25 receptor signaling   总被引:5,自引:0,他引:5  
IL-25 (IL-17E) induces IL-4, IL-5, and IL-13 production from an unidentified non-T/non-B cell population and subsequently induces Th2-type immune responses such as IgE production and eosinophilic airway inflammation. IL-25R is a single transmembrane protein with homology to IL-17R, but the IL-25R signaling pathways have not been fully understood. In this study, we investigated the signaling pathway under IL-25R, especially the possible involvement of TNFR-associated factor (TRAF)6 in this pathway. We found that IL-25R cross-linking induced NF-kappaB activation as well as ERK, JNK, and p38 activation. We also found that IL-25R-mediated NF-kappaB activation was inhibited by the expression of dominant negative TRAF6 but not of dominant negative TRAF2. Furthermore, IL-25R-mediated NF-kappaB activation, but not MAPK activation, was diminished in TRAF6-deficient murine embryonic fibroblast. In addition, coimmunoprecipitation assay revealed that TRAF6, but not TRAF2, associated with IL-25R even in the absence of ligand binding. Finally, we found that IL-25R-mediated gene expression of IL-6, TGF-beta, G-CSF, and thymus and activation-regulated chemokine was diminished in TRAF6-deficient murine embryonic fibroblast. Taken together, these results indicate that TRAF6 plays a critical role in IL-25R-mediated NF-kappaB activation and gene expression.  相似文献   

14.
Optimal activation of B-lymphocytes depends both upon expression of various cell surface receptors and adequate integration of signaling pathways. This requires signals generated upon recognition of antigen by the B lymphocyte antigen receptor (BCR) as well as additional signals provided by cognate interaction with T helper cells, including the CD40-CD154 interaction. Engagement of both the BCR and CD40 results in synergistic activation of B cells. Previous studies identified tumor necrosis factor receptor-associated factor (TRAF)-2 and TRAF3 in the CD40-signaling pathway together with BCR-activated protein kinase D (PKD) as important cooperative factors in this synergy. To better understand the role of these factors in bridging the BCR and CD40 signaling pathways, BCR signal regulation of TRAF function was examined. Results show that phosphorylation of TRAF2 is increased upon BCR but not CD40 engagement and that of the potentially phosphorylated residues of TRAF2, tyrosine 484 is crucial for BCR-CD40 synergy. Additionally, wild type or constitutively active Bruton's tyrosine kinase (Btk) enhanced, whereas the xid mutant form of Btk prevented, BCR-CD40 synergy. These effects were dependent upon TRAF2 and PKD activity. These findings suggest a model in which Btk contributes to the enhancement of the CD40 response by TRAF2 in a PKD-dependent manner.  相似文献   

15.
16.
17.
Optimal Ag-specific B lymphocyte activation requires both recognition of Ag by the B cell Ag receptor (BCR) and contact-mediated interactions with Ag-specific Th lymphocytes. One of these interactions involves ligation of B cell CD40 by T cell-expressed CD154. CD40 signaling is crucial for Ab production, isotype switching, up-regulation of surface molecules, development of germinal centers, and the humoral memory response. The signaling pathways emanating from the BCR and CD40 are able to cooperate, but the molecular mechanisms responsible for this interaction are incompletely understood. The present study explored the roles of signaling motifs in the CD40 cytoplasmic tail in this synergy. We find that threonine in the PXQXT motif in the TNFR-associated factor-2 binding site is critical for synergistic effects of CD40 and BCR signals, independent of its phosphorylation. Furthermore, data suggest an indirect role for TNFR-associated factor-2 in the cooperative signaling.  相似文献   

18.
Lymphotoxin-beta receptor (LTbetaR) and CD40 are members of the tumor necrosis factor family of signaling receptors that regulate cell survival or death through activation of NF-kappaB. These receptors transmit signals through downstream adaptor proteins called tumor necrosis factor receptor-associated factors (TRAFs). In this study, the crystal structure of a region of the cytoplasmic domain of LTbetaR bound to TRAF3 has revealed an unexpected new recognition motif, 388IPEEGD393, for TRAF3 binding. Although this motif is distinct in sequence and structure from the PVQET motif in CD40 and PIQCT in the regulator TRAF-associated NF-kappaB activator (TANK), recognition is mediated in the same binding crevice on the surface of TRAF3. The results reveal structurally adaptive "hot spots" in the TRAF3-binding crevice that promote molecular interactions driving specific signaling after contact with LTbetaR, CD40, or the downstream regulator TANK.  相似文献   

19.
Signaling by Ag to the B cell Ag receptor (BCR) is enhanced by several cooperating signals, including several provided by B-T cell interactions. One of these, CD40, provides critical signals for B cell differentiation, isotype switching, and B cell memory. The molecular mechanisms by which BCR and CD40 signals synergize are not well understood. Although the BCR and CD40 share certain signaling pathways, we hypothesized that unique signals provided by each could provide mutual enhancement of their signaling pathways. The BCR, but not CD40, activates protein kinase D (PKD), while CD40, but not the BCR, employs the TNFR-associated factor (TRAF) adapter proteins in signaling. In this study, we show that genetic or pharmacologic inhibition of BCR-mediated PKD activation in B lymphocytes abrogated the synergy between the CD40 and the BCR, as measured by activation of Ig and cytokine secretion. Interestingly, the role of PKD was dependent upon the association of CD40 with TRAF2, and was inhibited by the binding of TRAF3, revealing a novel functional link between these two classes of signaling molecules.  相似文献   

20.
CD40 is a member of the tumor necrosis factor receptor family that mediates a number of important signaling events in B-lymphocytes and some other types of cells through interaction of its cytoplasmic (ct) domain with tumor necrosis factor receptor-associated factor (TRAF) proteins. Alanine substitution and truncation mutants of the human CD40ct domain were generated, revealing residues critical for binding TRAF2, TRAF3, or both of these proteins. In contrast to TRAF2 and TRAF3, direct binding of TRAF1, TRAF4, TRAF5, or TRAF6 to CD40 was not detected. However, TRAF5 could be recruited to wild-type CD40 in a TRAF3-dependent manner but not to a CD40 mutant (Q263A) that selectively fails to bind TRAF3. CD40 mutants with impaired binding to TRAF2, TRAF3, or both of these proteins completely retained the ability to activate NF-kappaB and Jun N-terminal kinase (JNK), implying that CD40 can stimulate TRAF2- and TRAF3-independent pathways for NF-kappaB and JNK activation. A carboxyl-truncation mutant of CD40 lacking the last 32 amino acids required for TRAF2 and TRAF3 binding, CD40(Delta32), mediated NF-kappaB induction through a mechanism that was suppressible by co-expression of TRAF6(DeltaN), a dominant-negative version of TRAF6, but not by TRAF2(DeltaN), implying that while TRAF6 does not directly bind CD40, it can participate in CD40 signaling. In contrast, TRAF6(DeltaN) did not impair JNK activation by CD40(Delta32). Taken together, these findings reveal redundancy in the involvement of TRAF family proteins in CD40-mediated NF-kappaB induction and suggest that the membrane-proximal region of CD40 may stimulate the JNK pathway through a TRAF-independent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号