首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new member of the AKH/RPCH family was isolated and identified from the corpora cardiaca of the firebug Pyrrhocoris apterus. The peptide was isolated in a single step by reversed phase HPLC and the structure deduced from the multiple MS (MS(N)) electrospray mass spectra and amino acid analysis as that of an octapeptide with the sequence pGlu-Leu-Asn-Phe-Thr-Pro-Asn-Trp-NH(2): this sequence was confirmed by synthesis. The synthetic peptide induced lipid mobilisation and stimulated locomotory activity in macropterous females. This peptide, designated as Pyrrhocoris apterus adipokinetic hormone (Pya-AKH), is the first identified adipokinetic hormone described in a representative species of the suborder Heteroptera.  相似文献   

2.
Neuropeptides of the adipokinetic hormone (AKH) family are among the best studied hormone peptides, but its signaling pathways remain to be elucidated. In this study, we molecularly characterized the signaling of Bombyx AKH receptor (AKHR) and its peptide ligands in HEK293 cells. In HEK293 cells stably expressing AKHR, AKH1 stimulation not only led to a ligand concentration dependent mobilization of intracellular Ca2+ and cAMP accumulation, but also elicited transient activation of extracellular signal-regulated kinase 1/2 (ERK1/2) pathway. We observed that AKH receptor was rapidly internalized after AKH1 stimulation. We further demonstrated that AKH2 exhibited high activities in cAMP accumulation and ERK1/2 activation on AKHR comparable to AKH1, whereas AKH3 was much less effective.  相似文献   

3.
We have used an enzyme-linked immunoassay (ELISA) for determination of the AKH content in CNS (brain + corpora cardiaca + corpora allata) and haemolymph of adult macropterous and brachypterous females of the bug Pyrrhocoris apterus. The tests revealed that the AKH content fluctuates between 1 and almost 4 pmol/CNS during the first 14 days of adult life and significantly increased in order diapausing brachypters相似文献   

4.
5.
R Ziegler  K Eckart  J H Law 《Peptides》1990,11(5):1037-1040
The peptide hormone which controls activation of fat body glycogen phosphorylase in starving larvae of Manduca sexta was isolated from larval corpora cardiaca and sequenced by FAB tandem mass spectrometry. It was found to be identical with Manduca AKH. This, together with earlier observations, demonstrates that in M. sexta AKH controls glycogen phosphorylase activation in starving larvae while in adults it controls lipid mobilization during flight. Larval corpora cardiaca contain about 10 times less AKH than the corpora cardiaca of adults. The corpora cardiaca of M. sexta appear to contain only one AKH.  相似文献   

6.
Abstract.  Changes in the content of adipokinetic hormone (AKH), the adipokinetic response and the walking activity of 10-day-old adult macropterous females of the firebug, Pyrrhocoris apterus (L.), reared under long-day (LD) photoperiod (LD 18 : 6 h) are compared with those exposed for 3 days to constant darkness (DD). Diel changes of all the parameters studied in LD females persist in females kept in constant dark. A positive correlation exists between diel changes of AKH content in the central nervous system (CNS) in the LD and DD females, and a negative correlation in the AKH level in haemolymph and walking activity. In addition, there is a positive correlation between diel changes of AKH level in haemolymph and walking activity in macropterous females reared under LD conditions, as well as in those transferred to constant darkness. The data suggest that there is some feedback between the release of AKH from CNS into the haemolymph and walking activity in macropterous females. Preliminary studies on the simultaneous expression of mRNA for the period gene and a positive reaction to an antibody against AKH in the same corpus cardiacum cells suggest that the period gene may be involved in regulating the AKH content in this gland.  相似文献   

7.
8.
Dose-response curves were measured with synthetic Manduca adipokinetic hormone (AKH) for glycogen phosphorylase activation in larvae and for lipid mobilization in adults. Both responses are known hormonal functions in Manduca sexta. In ligated larvae, full activation of glycogen phosphorylase was achieved with 0.1 pmol and half-maximal activation with 0.03-0.04 pmol. Maximal lipid mobilization in adults required 10 pmol and half-maximal mobilization 0.15 to 0.2 pmol, respectively. An estimate of AKH content of corpora cardiaca from M. sexta was gained by comparing the dose-response curves for synthetic Manduca AKH with curves from gland extracts. Corpora cardiaca extracts were also quantitated by high performance liquid chromatography. According to both estimates corpora cardiaca of adults contain 10-20 pmol AKH per pair, while a pair of larval corpora cardiaca contains 0.7-2 pmol.  相似文献   

9.
Gäde G  Simek P  Marco HG 《Peptides》2007,28(7):1359-1367
Two novel octapeptide members of the AKH/RPCH family have been identified from the corpora cardiaca (CC) of two species of water bugs. The giant water bug Lethocerus indicus (family: Belostomatidae) contains a peptide code-named Letin-AKH with the sequence pGlu-Val-Asn-Phe-Ser-Pro-Tyr-Trp amide, and the water scorpion Nepa cinerea (family: Nepidae) has the peptide code-named Nepci-AKH with the sequence pGlu-Leu/Ile-Asn-Phe-Ser-Ser-Gly-Trp amide. The sequences were deduced from the multiple MS(N) electrospray mass data from crude CC extracts. Synthetic peptides were made and co-elution on reversed-phase high performance liquid chromatography (RP-HPLC) with the natural peptide from crude gland extract confirmed the accuracy of the deduced sequence for Letin-AKH and demonstrated that Nepci-AKH contains a Leu residue at position 2 and not an Ile residue. A previously characterized member of the AKH/RPCH family was identified in the stick water scorpion Ranatra linearis by mass spectrometry: Grybi-AKH (pGlu-Val-Asn-Phe-Ser-Thr-Gly-Trp amide) has the same mass (919 Da) as Nepci-AKH and differs in two positions from Nepci-AKH (residues 2 and 6). The apparent function of the peptides is to achieve lipid mobilization in the species under investigation; indications for this came from conspecific bioassays using the appropriate synthetic peptides for injecting into the insects. This function is very likely linked to dispersal flight metabolism of water bugs. Swimming activity in N. cinerea also results in an increase in lipid concentration in the hemolymph.  相似文献   

10.
Maintenance of biological functions under negative energy balance depends on mobilization of storage lipids and carbohydrates in animals. In mammals, glucagon and glucocorticoid signaling mobilizes energy reserves, whereas adipokinetic hormones (AKHs) play a homologous role in insects. Numerous studies based on AKH injections and correlative studies in a broad range of insect species established the view that AKH acts as master regulator of energy mobilization during development, reproduction, and stress. In contrast to AKH, the second peptide, which is processed from the Akh encoded prohormone [termed “adipokinetic hormone precursor-related peptide” (APRP)] is functionally orphan. APRP is discussed as ecdysiotropic hormone or as scaffold peptide during AKH prohormone processing. However, as in the case of AKH, final evidence for APRP functions requires genetic mutant analysis. Here we employed CRISPR/Cas9-mediated genome engineering to create AKH and AKH plus APRP-specific mutants in the model insect Drosophila melanogaster. Lack of APRP did not affect any of the tested steroid-dependent processes. Similarly, Drosophila AKH signaling is dispensable for ontogenesis, locomotion, oogenesis, and homeostasis of lipid or carbohydrate storage until up to the end of metamorphosis. During adulthood, however, AKH regulates body fat content and the hemolymph sugar level as well as nutritional and oxidative stress responses. Finally, we provide evidence for a negative autoregulatory loop in Akh gene regulation.  相似文献   

11.
The in vivo effects of oxidative stress on adipokinetic hormone (AKH) titer in short-winged (brachypterous) males of the firebug Pyrrhocoris apterus were tested using paraquat (PQ), a bipyridilium herbicide. PQ undergoes a cyclic redox reaction with oxygen during microsomal and electron transfer reactions forming free radicals in the insect body. Oxidative insult (40 pmol PQ) resulted in enhanced protein carbonylation (a biomarker for oxidative stress) and a depletion of glutathione (GSH) pool in the hemolymph. Interestingly, AKH titer was significantly enhanced in hemolymph at 4 h post inoculation of PQ, while its content in CNS (brain with corpora cardiaca) showed non-specific changes in comparable period. Co-injection of AKH with PQ (40 pmol each) reversed these effects by decreasing protein carbonyl formation, increasing reduced GSH levels, and enhancing the total antioxidant capacity of cell free plasma. Our results indicate that there is a positive feedback regulation between an oxidative stressor action and the level of AKH in insect body, and that AKHs might be involved in the activation of antioxidant protection mechanism.  相似文献   

12.
This report examines three aspects of adipokinetic hormone (AKH) involvement in migratory flight behavior in the grasshopper, Melanoplus sanguinipes. The titer of hemolymph AKH I during long-duration tethered flight was examined using radioimmunoassay (RIA) after narrow bore RP-HPLC. The hemolymph fraction containing AKH I was assayed using commercially available anti-Tyr1-AKH I serum. Titer determinations of hemolymph AKH were done at rest and after various periods of flight. The amount of AKH I released from the corpora cardiaca during flight was estimated. When resting levels of AKH I and II in corpora cardiaca (CC) of migrants and non-migrants were examined with HPLC, no significant differences in AKH levels were detected between non-migrants, animals that had flown for 1 h to identify them as migrants, and animals that had flown to exhaustion (i.e., voluntary cessation). CC levels of both AKH I and II were less in this species than in locusts. When the lipid mobilization in response to AKH I and II was compared in migrants (animals that had self-identified as migrants in a 1-h tethered flight test) and non-migrants (animals that would not perform a 1-h flight in a tethered flight test), the adipokinetic response to AKH I was greater in migrants than in non-migrants, possibly indicating differences in level of sensitivity or number of receptors in the target tissues. AKH II had little effect on hemolymph lipid levels in either flight group, and may not play a significant role in lipid mobilization in this species.  相似文献   

13.
A hypertrehalosaemic neuropeptide from the corpora cardiaca of the blowfly Phormia terraenovae has been isolated by reversed-phase h.p.l.c., and its primary structure was determined by pulsed-liquid phase sequencing employing Edman chemistry after enzymically deblocking the N-terminal pyroglutamate residue. The C-terminus was also blocked, as indicated by the lack of digestion when the peptide was incubated with carboxypeptidase A. The octapeptide has the sequence pGlu-Leu-Thr-Phe-Ser-Pro-Asp-Trp-NH2 and is clearly defined as a novel member of the RPCH/AKH (red-pigment-concentrating hormone/adipokinetic hormone) family of peptides. It is the first charged member of this family to be found. The synthetic peptide causes an increase in the haemolymph carbohydrate concentration in a dose-dependent fashion in blowflies and therefore is named 'Phormia terraenovae hypertrehalosaemic hormone' (Pht-HrTH). In addition, receptors in the fat-body of the American cockroach (Periplaneta americana) recognize the peptide, resulting in carbohydrate elevation in the blood. However, fat-body receptors of the migratory locust (Locusta migratoria) do not recognize this charged molecule, and thus no lipid mobilization is observed in this species.  相似文献   

14.
Adipokinetic hormone gene sequence from Manduca sexta   总被引:4,自引:0,他引:4  
  相似文献   

15.
Gäde G  Marco HG 《ZooKeys》2011,(157):81-94
The presented work is a hybrid of an overview and an original research paper on peptides belonging to the adipokinetic hormone (AKH) family that are present in the corpora cardiaca of Chrysomeloidea. First, we introduce the AKH/red pigment-concentrating hormone (RPCH) peptide family. Second, we collate the available primary sequence data on AKH peptides in Cerambycidae and Chrysomelidae, and we present new sequencing data (from previously unstudied species) obtained by liquid-chromatography coupled with ion trap electrospray ionisation mass spectrometry. Our expanded data set encompasses the primary structure of AKHs from seven species of Cerambycidae and three species of Chrysomelidae. All of these species synthesise the octapeptide code-named Peram-CAH-I (pGlu-Val-Asn-Phe-Ser-Pro-Asn-Trp amide). Whereas this is the sole AKH peptide in Cerambycidae, Chrysomelidae demonstrate a probable event of AKH gene duplication, thereby giving rise to an additional AKH. This second AKH peptide may be either Emppe-AKH (pGlu-Val-Asn-Phe-Thr-Pro-Asn-Trp amide) or Peram-CAH-II (pGlu-Leu-Thr-Phe-Thr-Pro-Asn-Trp amide). The peptide distribution and structural data suggest that both families are closely related and that Peram-CAH-I is the ancestral peptide. We hypothesise on the molecular evolution of Emppe-AKH and Peram-CAH-II from the ancestral peptide due to nonsynonymous missense single nucleotide polymorphism in the nucleotide coding sequence of prepro-AKH. Finally, we review the biological significance of the AKH peptides as hyperprolinaemic hormones in Chrysomeloidea, i.e. they cause an increase in the circulating concentration of proline. The mobilisation of proline has been demonstrated during flight in both cerambycid and chrysomelid beetles.  相似文献   

16.
In the present paper we studied the effects of five biogenic amines - norepinephrine, dopamine, octopamine, serotonin and histamine - on the locomotory activity and mobilization of lipids in the adult females of the firebug, Pyrrhocoris apterus (L.). We tested the hypothesis (1) whether the stimulation of walking activity in the bugs injected with the bioamines is associated also with their hyperlipaemic effects, like in the case of adipokinetic hormones (AKHs), and (2) whether these effects are direct or mediated through a release of the AKHs into the hemolymph. The results demonstrated that all five tested biogenic amines mobilized the fat body lipids, but only norepinephrine and dopamine were capable to enhance the walking activity simultaneously with an elevation of the lipid level in the hemolymph. Those two amines had no effect on the level of AKHs in CNS, but modulated the AKHs level in hemolymph: norepinephrine increased it, while dopamine decreased it. The results indicate an apparent feedback between AKH characteristics and dopamine and norepinephrine actions occurring in this insect species. While the stimulatory effects of norepinephrine on lipid mobilization and walking activity could involve the release of bug's own AKHs, dopamine probably employs an independent stimulatory pathway.  相似文献   

17.
The occurrence of neuropeptides in the retrocerebral complexes of adult male and females of the tobacco hawkmoth, Manduca sexta, was investigated using matrix-assisted laser desorption time of flight (MALDI-TOF) mass spectrometry (MS), post source decay (PSD) and collision-induced dissociation (CID) MS/MS. From fractions of methanol extracts of corpora cardiaca (CC)/corpora allata (CA), separated by reversed-phase high performance liquid chromatography (RP-HPLC), a total of 11 mass ions were assigned to known peptides from M. sexta. These peptides were adipokinetic hormone (AKH), FLRFamides I, II and III, crustacean cardioactive peptide (CCAP), cardioactive peptide 2b (CAP(2b)), three myoinhibitory peptides, corazonin, and M. sexta allatostatin (Manse-AS). A further six masses were in agreement with Y/FXFGLamide allatostatins identified from other Lepidoptera. The sequence identities of FLRFamide I and AKH were confirmed using post source decay analysis. Fragmentation by collision-induced dissociation MS/MS identified an extended AKH peptide. The apparent differences in the peptides present in male and female retrocerebral complexes are most likely quantitative rather than sex specific.  相似文献   

18.
Adipokinetic hormone (AKH) is a metabolic neuropeptide principally known for its mobilization of energy substrates, notably lipid and trehalose during energy-requiring activities, such as flight and locomotion. Drosophila melanogaster AKH cell localization in corpora cardiaca, as in other insect species, was confirmed by immunoreactivity and by a genetic approach using the UAS/GAL4 system. To assess AKH general physiological rules, we ablated AKH endocrine cells by specifically driving the expression of apoptosis transgenes in AKH cells. Trehalose levels were decreased in larvae and starved adults, when the stimulation by AKH of the production of trehalose from fat body glycogen is no longer possible. Moreover, we show that these adults without AKH cells become progressively hypoactive. Finally, under starvation conditions, those hypoactive AKH-knockout cell flies survived approximately 50% longer than control wild-type flies, suggesting that the slower rate at which AKH-ablated flies mobilize their energy resources extends their survival.  相似文献   

19.
We have isolated a novel member of the adipokinetic hormone family of peptides from a methanolic extract of corpora cardiaca of the libellulid dragonfly Erythemis simplicicollis by using a single‐step reversed‐phase high performance liquid chromatography method and monitoring biological activity in various heterologous bioassays and a homologous one. The sequence, as determined by Edman degradation and mass spectrometry, was of an uncharged blocked octapeptide: pGlu‐Leu‐Asn‐Phe‐Thr‐Pro‐Ser‐Trp amide. The structure was confirmed by chemical synthesis. The synthetic peptide increased hemolymph lipids in the dragonfly and was active in another libellulid (Orthetrum julia‐falsum) as well, but to a lesser extent than the conspecific peptide Lia‐AKH, which is an isoform of the novel peptide differing by a Val (instead of Leu) at position 2. Since lipids are apparently used as substrate for muscle contraction during flight of Erythemis simplicicollis and the native peptide induces lipid mobilization, this novel peptide is denoted Ers‐AKH. Arch. Insect Biochem. Physiol. 40:99–106, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

20.
Precursor structures of various members of the neuropeptide family adipokinetic hormone/red pigment concentrating hormone (AKH/RPCH) of mandibular arthropods and the APGWamide family of mollusks were compared. Amino acid alignments showed a common overall architecture (signal peptide, active peptide, related peptide), with a similar α helix–random coil secondary structure. DNA sequence alignments revealed close similarities between the genes encoding for the peptides of the two families. The APGWamide genes are larger than the AKH/RPCH genes. The sequence environment occupied by introns is similar in AKH/RPCH and APGWamide genes. Such similarities suggest that these peptide families might have been originated by gene rearrangements from a common ancestor having either an AKH/RPCH/APGWamide-like structure or both an AKH/RPCH-like and an APGWamide-like structures. In the former model, DNA fragments could have been gained when the ancestor evolved to mollusks and it could have lost nucleotides when the progression to mandibular arthropods took place. In the second model, AKH/RPCH-like structures could have been fused during evolution toward mandibular arthropods, whereas in mollusks they could have been lost with the possible amplification of the APGWamide-like structure. Loss of domains in exon 1 may have originated the signal peptide and the first codon of the active RPCH. In exon 2, loss of domains possibly determined the junctions of codons 2 to 5 with the loss of a APGWamide copy; exon 3 underwent fewer variations. The similarity of the mollusk APGWamide precursors is closer to that of the RPCH family than the insect AKH family, indicating an earlier evolutionary departure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号