首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Redistribution of pulmonary EC-SOD after exposure to asbestos.   总被引:3,自引:0,他引:3  
Inhalation of asbestos fibers leads to interstitial lung disease (asbestosis) characterized by inflammation and fibrosis. The pathogenesis of asbestosis is not fully understood, but reactive oxygen species are thought to play a central role. Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme that protects the lung in a bleomycin-induced pulmonary fibrosis model, but its role has not been studied in asbestos-mediated disease. EC-SOD is found in high levels in the extracellular matrix of lung alveoli because of its positively charged heparin-binding domain. Proteolytic removal of this domain results in clearance of EC-SOD from the matrix of tissues. We treated wild-type C57BL/6 mice with 0.1 mg of crocidolite asbestos by intratracheal instillation and euthanized them 24 h later. Compared with saline- or titanium dioxide-treated control mice, bronchoalveolar lavage fluid (BALF) from asbestos-treated mice contained significantly higher total protein levels and increased numbers of inflammatory cells, predominantly neutrophils, indicating acute lung injury in response to asbestos. Decreased EC-SOD protein and activity were found in the lungs of asbestos-treated mice, whereas more EC-SOD was found in the BALF of these mice. The EC-SOD in the BALF was predominantly in the proteolyzed form, which lacks the heparin-binding domain. This redistribution of EC-SOD correlated with development of fibrosis 14 days after asbestos exposure. These data suggest that asbestos injury leads to enhanced proteolysis and clearance of EC-SOD from lung parenchyma into the air spaces. The depletion of EC-SOD from the extracellular matrix may increase susceptibility of the lung to oxidative stress during asbestos-mediated lung injury.  相似文献   

2.
Asbestosis is a chronic form of interstitial lung disease characterized by inflammation and fibrosis that results from the inhalation of asbestos fibers. Although the pathogenesis of asbestosis is poorly understood, reactive oxygen species may mediate the progression of this disease. The antioxidant enzyme extracellular superoxide dismutase (EC-SOD) can protect the lung against a variety of insults; however, its role in asbestosis is unknown. To determine if EC-SOD plays a direct role in protecting the lung from asbestos-induced injury, intratracheal injections of crocidolite were given to wild-type and ec-sod-null mice. Bronchoalveolar lavage fluid (BALF) from asbestos-treated ec-sod-null mice at 24 h, 14 days, or 28 days posttreatment showed increased inflammation and total BALF protein content compared to that of wild-type mice. In addition, lungs from ec-sod-null mice showed increased hydroxyproline content compared to those of wild-type mice, indicating a greater fibrotic response. Finally, lungs from ec-sod-null mice showed greater oxidative damage, as assessed by nitrotyrosine content compared to those of their wild-type counterparts. These results indicate that depletion of EC-SOD from the lung increases oxidative stress and injury in response to asbestos.  相似文献   

3.
Bleomycin administration results in well-described intracellular oxidative stress that can lead to pulmonary fibrosis. The role of alveolar interstitial antioxidants in this model is unknown. Extracellular superoxide dismutase (EC-SOD) is the primary endogenous extracellular antioxidant enzyme and is abundant in the lung. We hypothesized that EC-SOD plays an important role in attenuating bleomycin-induced lung injury. Two weeks after intratracheal bleomycin administration, we found that wild-type mice induced a 106 +/- 25% increase in lung EC-SOD. Immunohistochemical staining revealed that a large increase in EC-SOD occurred in injured lung. Using mice that overexpress EC-SOD specifically in the lung, we found a 53 +/- 14% reduction in bleomycin-induced lung injury assessed histologically and a 17 +/- 6% reduction in lung collagen content 2 wk after bleomycin administration. We conclude that EC-SOD plays an important role in reducing the magnitude of lung injury from extracellular free radicals after bleomycin administration.  相似文献   

4.
Extracellular superoxide dismutase (EC-SOD) is highly expressed in the extracellular matrix of lung and vascular tissue. Localization of EC-SOD to the matrix of the lung may protect against oxidative tissue damage that leads to pulmonary fibrosis. This study directly examines the protective role of EC-SOD in a bleomycin model of pulmonary fibrosis and the effect of this enzyme on oxidative protein fragmentation. Mice null for ec-sod display a marked increase in lung inflammation at 14 d post-bleomycin treatment as compared to their wild-type counterparts. Hydroxyproline analysis determined that both wild-type and ec-sod null mice display a marked increase in interstitial fibrosis at 14 d post-treatment, and the severity of fibrosis is significantly increased in ec-sod null mice compared to wild-type mice. To determine if the lack of EC-SOD promotes bleomycin-induced oxidative protein modification, 2-pyrrolidone content (as a measure of oxidative protein fragmentation at proline residues) was assessed in lung tissue from treated mice. 2-Pyrrolidone levels in the lung hydrolysates from ec-sod null mice were increased at both 7 and 14 d post-bleomycin treatment as compared to wild-type mice, indicating EC-SOD can inhibit oxidative fragmentation of proteins in this specific model of oxidative stress.  相似文献   

5.
Extracellular superoxide dismutase (EC-SOD) is expressed at high levels in lungs. EC-SOD has a polycationic matrix-binding domain that binds to polyanionic constituents in the matrix. Previous studies indicate that EC-SOD protects the lung in both bleomycin- and asbestos-induced models of pulmonary fibrosis. Although the mechanism of EC-SOD protection is not fully understood, these studies indicate that EC-SOD plays an important role in regulating inflammatory responses to pulmonary injury. Hyaluronan is a polyanionic high molecular mass polysaccharide found in the extracellular matrix that is sensitive to oxidant-mediated fragmentation. Recent studies found that elevated levels of low molecular mass hyaluronan are associated with inflammatory conditions. We hypothesize that EC-SOD may inhibit pulmonary inflammation in part by preventing superoxide-mediated fragmentation of hyaluronan to low molecular mass fragments. We found that EC-SOD directly binds to hyaluronan and significantly inhibits oxidant-induced degradation of this glycosaminoglycan. In vitro human polymorphic neutrophil chemotaxis studies indicate that oxidative fragmentation of hyaluronan results in polymorphic neutrophil chemotaxis and that EC-SOD can completely prevent this response. Intratracheal injection of crocidolite asbestos in mice leads to pulmonary inflammation and injury that is enhanced in EC-SOD knock-out mice. Notably, hyaluronan levels are increased in the bronchoalveolar lavage fluid after asbestos-induced pulmonary injury, and this response is markedly enhanced in EC-SOD knock-out mice. These data indicate that inhibition of oxidative hyaluronan fragmentation probably represents one mechanism by which EC-SOD inhibits inflammation in response to lung injury.  相似文献   

6.
Reactive oxygen and nitrogen species have been implicated in the pathogenesis of asbestos fibers-associated pulmonary diseases. By comparing the responses of inducible nitric oxide synthase (iNOS) knockout and wild-type mice we investigated the consequences of iNOS expression for the development of the inflammatory response and tissue injury upon intratracheal instillation of asbestos fibers. Exposure to asbestos fibers resulted in an increased iNOS mRNA and protein expression in the lungs from wild-type mice. Moreover, iNOS knockout mice exhibited an exceeded pulmonary expression and production of TNF-alpha as well as a higher influx of neutrophils into the alveolar space than wild-type mice. In contrast, iNOS knockout animals displayed an attenuated oxidant-related tissue injury reflected in a decrease in protein leakage and LDH release into the alveolar space as well as weaker nitrotyrosine staining of lung tissue compared to wild-type mice. Data presented here indicate that iNOS-derived NO exerts a dichotomous role in acute asbestos-induced lung injury in that iNOS deficiency resulted in an exacerbated inflammatory response but improved oxidant-promoted lung tissue damage.  相似文献   

7.
The antioxidant enzyme extracellular superoxide dismutase (EC-SOD) is highly expressed in the extracellular matrix of lung tissue and is believed to protect the lung from oxidative damage that results in diseases such as pulmonary fibrosis. This study tests the hypothesis that proteolytic removal of the heparin-binding domain of EC-SOD results in clearance of the enzyme from the extracellular matrix of pulmonary tissues and leads to a loss of antioxidant protection. Using a polyclonal antibody to mouse EC-SOD, the immunodistribution of EC-SOD in normal and bleomycin-injured lungs was examined. EC-SOD labeling was strong in the matrix of vessels, airways, and alveolar surfaces and septa in control lungs. At 2 d post-treatment, a slight increase in EC-SOD staining was evident. In contrast, lungs examined 4 or 7 d post-treatment, showed an apparent loss of EC-SOD from the matrix and surface of alveolar septa. Notably, at 7 d post-treatment, the truncated form of EC-SOD was found in the bronchoalveolar lavage fluid of bleomycin-treated mice, suggesting that EC-SOD is being removed from the extracellular matrix through proteolysis. However, loss of EC-SOD through proteolysis did not correlate with a decrease in overall pulmonary EC-SOD activity. The negligible effect on EC-SOD activity may reflect the large influx of intensely staining inflammatory cells at day 7. These results indicate that injuries leading to pulmonary fibrosis have a significant effect on EC-SOD distribution due to proteolytic removal of the heparin-binding domain and may be important in enhancing pulmonary injuries by altering the oxidant/antioxidant balance in alveolar interstitial spaces.  相似文献   

8.
Activation of the endothelin (ET) system promotes vasoconstriction, inflammation, and fibrosis in various tissues, including the lung. Therefore, ET-1 transgenic mice overexpressing ET-1 develop pulmonary fibrosis in a slow, age-dependent manner. In vivo, NO is the most important counterregulatory mediator of the ET system and decreases ET-1 promoter activity. The aim of our study was to elucidate the impact on pulmonary inflammation and fibrosis of the interaction between NO and the ET system in young ET-1 transgenic mice before the onset of pulmonary fibrosis. Male ET-1 transgenic mice and wild-type littermates at the age of 8 weeks were randomly allocated to the following 6 groups: WT (n = 11), wild-type animals without treatment; WT + l-NAME (n = 14), wild-type animals receiving l-NAME, an inhibitor of NO synthase; WT + l-NAME + LU (n = 13), wild-type animals receiving l-NAME and LU 302872, a dual ETA/ETB-receptor antagonist; ET1tg (n = 10), ET-1 transgenic mice; ET1tg + l-NAME (n = 13); and ET1tg + l-NAME + LU (n = 13). After 6 weeks, animals were euthanized, and hearts and lungs were harvested for histology and immunohistochemistry. No differences in pulmonary inflammation, as indicated by macrophage infiltration, or in interstitial fibrosis were observed between WT and ET1tg mice at baseline; however, inflammation and interstitial fibrosis were significantly enhanced in ET1tg mice, but not in WT groups, after l-NAME treatment. The combined ETA/ETB-receptor antagonist LU 302872 abolished inflammation and interstitial fibrosis in l-NAME-treated ET1tg mice. Perivascular fibrosis and media/lumen ratio of pulmonary bronchi and arteries did not differ between all study groups. In our study l-NAME induced pulmonary fibrosis and inflammation only in young ET1tg mice. Additional treatment with LU 302872 abolished these effects. We thus conclude that an imbalance between an activated ET system and a suppressed NO system contributes to pulmonary inflammation and fibrosis.  相似文献   

9.
Our recent studies have shown that bone marrow-derived fibroblast precursors contribute significantly to the pathogenesis of renal fibrosis. However, the molecular mechanisms underlying the recruitment and activation of bone marrow-derived fibroblast precursors are incompletely understood. We found that interleukin 6 was induced in the kidney in a murine model of renal fibrosis induced by unilateral ureteral obstruction. Therefore, we investigated if interleukin 6 play a role in the recruitment and maturation of bone marrow-derived fibroblast precursors in the kidney during the development of renal fibrosis. Wild-type and interleukin 6 knockout mice were subjected to unilateral obstructive injury for up to two weeks. Interleukin 6 knockout mice accumulated similar number of bone marrow-derived fibroblast precursors and myofibroblasts in the kidney in response to obstructive injury compared to wild-type mice. Furthermore, IL-6 knockout mice expressed comparable α-SMA in the obstructed kidney compared to wild-type mice. Moreover, targeted disruption of Interleukin 6 did not affect gene expression of profibrotic chemokine and cytokines in the obstructed kidney. Finally, there were no significant differences in renal interstitial fibrosis or expression of extracellular matrix proteins between wild-type and interleukin 6 knockout mice following obstructive injury. Our results indicate that interleukin 6 does not play a significant role in the recruitment of bone marrow-derived fibroblast precursors and the development of renal fibrosis.  相似文献   

10.
The major pulmonary antioxidant enzyme involved in the protection of the lung interstitium from oxidative stress is extracellular superoxide dismutase (EC-SOD). It has been previously shown that EC-SOD knock-out mice are more susceptible to bleomycin-induced lung injury, however, the molecular mechanism(s) remains unclear. We report here that bleomycin-induced lung damage, in EC-SOD KO mice, is associated with increased hyaluronan release into alveolar fluid. Analysis of hyaluronan synthase gene expression and hyaluronan molecular weight distribution suggested that elevated levels of hyaluronan in the alveolar fluid are mostly due to its release from the interstitium. Our results indicate that EC-SOD attenuates bleomycin-induced pulmonary injury, at least in part, by preventing superoxide-mediated release of hyaluronan into alveolar space.  相似文献   

11.
This study investigates the role of extracellular SOD (EC-SOD), the major extracellular antioxidant enzyme, in skeletal muscle ischemia and reperfusion (I/R) injury. Pedicled cremaster muscle flaps from homozygous EC-SOD knockout (EC-SOD-/-) and wild-type (WT) mice were subjected to 4.5-h ischemia and 90-min reperfusion followed by functional and molecular analyses. Our results revealed that EC-SOD-/- mice showed significantly profound I/R injury compared with WT littermates. In particular, there was a delayed and incomplete recovery of arterial spasm and blood flow during reperfusion, and more severe acute inflammatory reaction and muscle damage were noted in EC-SOD-/- mice. After 90-min reperfusion, intracellular SOD [copper- and zinc-containing SOD (CuZn-SOD) and manganese-containing (Mn-SOD)] mRNA levels decreased similarly in both groups. EC-SOD mRNA levels increased in WT mice, whereas EC-SOD mRNA was undetectable, as expected, in EC-SOD-/- mice. In both groups of animals, CuZn-SOD protein levels decreased and Mn-SOD protein levels remained unchanged. EC-SOD protein levels decreased in WT mice. Histological analysis showed diffuse edema and inflammation around muscle fibers, which was more pronounced in EC-SOD-/- mice. In conclusion, our data suggest that EC-SOD plays an important role in the protection from skeletal muscle I/R injury caused by excessive generation of reactive oxygen species.  相似文献   

12.

Background

Catalase is preferentially expressed in bronchiolar and alveolar epithelial cells, and acts as an endogenous antioxidant enzyme in normal lungs. We thus postulated epithelial damage would be associated with a functional deficiency of catalase during the development of lung fibrosis.

Methods

The present study evaluates the expression of catalase mRNA and protein in human interstitial pneumonias and in mouse bleomycin-induced lung injury. We examined the degree of bleomycin-induced inflammation and fibrosis in the mice with lowered catalase activity.

Results

In humans, catalase was decreased at the levels of activity, protein content and mRNA expression in fibrotic lungs (n = 12) compared to control lungs (n = 10). Immunohistochemistry revealed a decrease in catalase in bronchiolar epithelium and abnormal re-epithelialization in fibrotic areas. In C57BL/6J mice, catalase activity was suppressed along with downregulation of catalase mRNA in whole lung homogenates after bleomycin administration. In acatalasemic mice, neutrophilic inflammation was prolonged until 14 days, and there was a higher degree of lung fibrosis in association with a higher level of transforming growth factor-β expression and total collagen content following bleomycin treatment compared to wild-type mice.

Conclusions

Taken together, these findings demonstrate diminished catalase expression and activity in human pulmonary fibrosis and suggest the protective role of catalase against bleomycin-induced inflammation and subsequent fibrosis.  相似文献   

13.
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by severe, progressive fibrosis. Roles for inflammation and oxidative stress have recently been demonstrated, but despite advances in understanding the pathogenesis, there are still no effective therapies for IPF. This study investigates how extracellular superoxide dismutase (EC-SOD), a syndecan-binding antioxidant enzyme, inhibits inflammation and lung fibrosis. We hypothesize that EC-SOD protects the lung from oxidant damage by preventing syndecan fragmentation/shedding. Wild-type or EC-SOD-null mice were exposed to an intratracheal instillation of asbestos or bleomycin. Western blot was used to detect syndecans in the bronchoalveolar lavage fluid and lung. Human lung samples (normal and IPF) were also analyzed. Immunohistochemistry for syndecan-1 and EC-SOD was performed on human and mouse lungs. In vitro, alveolar epithelial cells were exposed to oxidative stress and EC-SOD. Cell supernatants were analyzed for shed syndecan-1 by Western blot. Syndecan-1 ectodomain was assessed in wound healing and neutrophil chemotaxis. Increases in human syndecan-1 are detected in lung homogenates and lavage fluid of IPF lungs. Syndecan-1 is also significantly elevated in the lavage fluid of EC-SOD-null mice after asbestos and bleomycin exposure. On IHC, syndecan-1 staining increases within fibrotic areas of human and mouse lungs. In vitro, EC-SOD inhibits oxidant-induced loss of syndecan-1 from A549 cells. Shed and exogenous syndecan-1 ectodomain induce neutrophil chemotaxis, inhibit alveolar epithelial wound healing, and promote fibrogenesis. Oxidative shedding of syndecan-1 is an underlying cause of neutrophil chemotaxis and aberrant wound healing that may contribute to pulmonary fibrosis.Idiopathic pulmonary fibrosis (IPF)2 is an interstitial lung disease characterized by severe and progressive fibrosis. IPF patients have a mean survival of 3–5 years (1, 2) and no effective therapies (3, 4), other than orthotopic lung transplantation, have proven to improve survival. The pathogenesis of IPF is poorly understood; however, inflammation and oxidant/antioxidant imbalances in the lung are thought to play important roles (57). A better understanding of the molecular mechanisms involved in oxidative injury and fibrosis could lead to the development of novel therapeutic targets.Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme bound to heparan sulfate in the lung extracellular matrix (810), which can inhibit inflammation (11, 12) and prevent subsequent development of fibrosis (1316). Despite its beneficial role, the mechanisms through which EC-SOD protects the lung remain unknown.The extracellular matrix (ECM) is essential for tissue homeostasis and changes in the ECM microenvironment can be detrimental to cell function during inflammation and wound healing. Heparan sulfate proteoglycans (HSPG) contain a membrane-bound core protein and extracellular carbohydrate side chains. Syndecans are the most abundant HSPG in humans; there are 4 isoforms with variable cell expression (17, 18). Both syndecan-1 and -4 are expressed in the lung, with epithelial cell and ubiquitous expression, respectively (19). Syndecans are essential for ECM homeostasis by binding cytokines and growth factors, acting as co-receptors and soluble effectors. They also have potential roles in inflammation (18, 20, 21), fibrosis (22, 23), and wound healing (2426). Syndecans are shed under physiological and pathological conditions but the function of shed syndecans is poorly understood (22). Reactive oxygen species (ROS) are capable of fragmenting HSPG (27) and other ECM components. Notably, EC-SOD has been shown to prevent oxidative damage to many ECM components (23, 28, 29). Within the lung, EC-SOD binds to syndecan-1 on the cell surface via a heparin-binding domain (8, 30). Because of the known functions of syndecans and its close interaction with EC-SOD, syndecan-1 is a key target that may contribute to the anti-inflammatory and anti-fibrotic effects of EC-SOD in the lung and in the pulmonary fibrosis.This study was conducted to determine the role of EC-SOD in protecting the ECM from oxidative stress and to investigate our hypothesis that EC-SOD protects the lung from inflammation and fibrosis by inhibiting oxidant-induced shedding of syndecan-1. Our findings suggest that a loss of EC-SOD in the lung leaves syndecan-1 vulnerable to oxidative stress and that oxidatively shed syndecan-1 ectodomain induces neutrophil chemotaxis, impairs epithelial wound healing, and promotes fibrogenesis. The discovery that oxidative stress alters the distribution of syndecan-1 in the lung microenvironment is a novel finding in the context of pulmonary fibrosis. These findings advance the understanding of the pathogenesis of idiopathic pulmonary fibrosis and provide a potential new therapeutic target for intervention in IPF.  相似文献   

14.
Extracellular superoxide dismutase (EC-SOD) is highly expressed in lung tissue. EC-SOD contains a heparin-binding domain that is sensitive to proteolysis. This heparin-binding domain is important in allowing EC-SOD to exist in relatively high concentrations in specific regions of the extracellular matrix and on cell surfaces. EC-SOD has been shown to protect the lung against hyperoxia in transgenic and knockout studies. This study tests the hypothesis that proteolytic clearance of EC-SOD from the lung during hyperoxia contributes to the oxidant-antioxidant imbalance that is associated with this injury. Exposure to 100% oxygen for 72 h resulted in a significant decrease in EC-SOD levels in the lungs and bronchoalveolar lavage fluid of mice. This correlated with a significant depletion of EC-SOD from the alveolar parenchyma as determined by immunofluorescence and immunohistochemistry. EC-SOD mRNA was unaffected by hyperoxia; however, there was an increase in the ratio of proteolyzed to uncut EC-SOD after hyperoxia, which suggests that hyperoxia depletes EC-SOD from the alveolar parenchyma by cutting the heparin-binding domain. This may enhance hyperoxic pulmonary injury by altering the oxidant-antioxidant balance in alveolar spaces.  相似文献   

15.
Oxidative damage is a major cause of lung injury during systemic inflammatory response syndrome. In this study, the expression of an antioxidant enzyme, extracellular superoxide dismutase (EC-SOD), and its protective role against pulmonary oxidative damage were investigated using mouse models of systemic inflammation. Intraperitoneal injection with bacterial endotoxin lipopolysaccharides (LPS; 20 mg/kg) caused oxidative damage in lungs as assessed by increased tyrosine nitration in proteins. LPS administration also resulted in a rapid and significant loss of more than 80% of pulmonary EC-SOD in a time- and dose-dependent manner, but other types of SODs, cytoplasmic CuZn-SOD and mitochondrial Mn-SOD, were not affected. EC-SOD protein is most abundant in lungs but also present at high levels in other tissues such as heart and white fat; however, the LPS-mediated decrease in this enzyme was most apparent in the lungs. Intravenous injection of mice with tumor necrosis factor alpha (10 microg per mouse) also caused a 60% decrease in EC-SOD in the lungs, suggesting that the EC-SOD down-regulation is mediated by this LPS-inducible inflammatory cytokine. A protective role for EC-SOD against LPS-mediated systemic inflammation was shown by an increased survival rate (75% vs 29% in 5 days) and decreased pulmonary oxidative damage in EC-SOD transgenic mice that overexpress the human EC-SOD gene. These results demonstrate that the inflammation-mediated EC-SOD down-regulation has a major pathophysiological impact during the systemic inflammatory response syndrome.  相似文献   

16.

Background

The role of the receptor for advanced glycation end-products (RAGE) has been shown to differ in two different mouse models of asbestos and bleomycin induced pulmonary fibrosis. RAGE knockout (KO) mice get worse fibrosis when challenged with asbestos, whereas in the bleomycin model they are largely protected against fibrosis. In the current study the role of RAGE in a mouse model of silica induced pulmonary fibrosis was investigated.

Methodology/Principal Findings

Wild type (WT) and RAGE KO mice received a single intratracheal (i.t.) instillation of silica in saline or saline alone as vehicle control. Fourteen days after treatment mice were subjected to a lung mechanistic study and the lungs were lavaged and inflammatory cells, protein and TGF-β levels in lavage fluid determined. Lungs were subsequently either fixed for histology or excised for biochemical assessment of fibrosis and determination of RAGE protein- and mRNA levels. There was no difference in the inflammatory response or degree of fibrosis (hydroxyproline levels) in the lungs between WT and RAGE KO mice after silica injury. However, histologically the fibrotic lesions in the RAGE KO mice had a more diffuse alveolar septal fibrosis compared to the nodular fibrosis in WT mice. Furthermore, RAGE KO mice had a significantly higher histologic score, a measure of affected areas of the lung, compared to WT silica treated mice. A lung mechanistic study revealed a significant decrease in lung function after silica compared to control, but no difference between WT and RAGE KO. While a dose response study showed similar degrees of fibrosis after silica treatment in the two strains, the RAGE KO mice had some differences in the inflammatory response compared to WT mice.

Conclusions/Significance

Aside from the difference in the fibrotic pattern, these studies showed no indicators of RAGE having an effect on the severity of pulmonary fibrosis following silica injury.  相似文献   

17.
IFN-gamma production is upregulated in lung cells (LC) of bleomycin-treated C57BL/6 mice. The present study characterizes the time course, cellular source, and regulation of IFN-gamma expression in bleomycin-induced lung injury. IFN-gamma mRNA in LC from bleomycin-treated mice peaked 3 days after intratracheal instillation. IFN-gamma protein levels were increased at 6 days, as was the percentage of LC expressing IFN-gamma. CD4+, CD8+, and natural killer cells each contributed significantly to IFN-gamma production. IL-12 mRNA levels were increased at 1 day in LC of bleomycin-treated mice. Anti-IL-12 and anti-IL-18 antibodies decreased IFN-gamma production by these cells. To define the role of endogenous IFN-gamma in the evolution of bleomycin lung injury, we compared the effect of bleomycin in mice with a targeted knockout mutation of the IFN-gamma gene (IFN-gamma knockout) and wild-type mice. At 14 days after intratracheal bleomycin, total bronchoalveolar lavage cell counts and lung hydroxyproline were decreased in IFN-gamma knockouts compared with wild-type animals. There was no difference in morphometric parameters of fibrosis. Our data show that enhanced IFN-gamma production in the lungs of bleomycin-treated mice is at least partly IL-12 and IL-18 dependent. Absence of IFN-gamma in IFN-gamma knockout mice does not increase pulmonary fibrosis. Endogenous IFN-gamma may play a proinflammatory or profibrotic role in bleomycin-induced lung fibrosis.  相似文献   

18.
Protection from pulmonary fibrosis in the absence of CCR2 signaling   总被引:27,自引:0,他引:27  
Pulmonary fibrosis can be modeled in animals by intratracheal instillation of FITC, which results in acute lung injury, inflammation, and extracellular matrix deposition. We have previously shown that despite chronic inflammation, this model of pulmonary fibrosis is lymphocyte independent. The CC chemokine monocyte-chemoattractant protein-1 is induced following FITC deposition. Therefore, we have investigated the contribution of the main monocyte-chemoattractant protein-1 chemokine receptor, CCR2, to the fibrotic disease process. We demonstrate that CCR2(-/-) mice are protected from fibrosis in both the FITC and bleomycin pulmonary fibrosis models. The protection is specific for the absence of CCR2, as CCR5(-/-) mice are not protected. The protection is not explained by differences in acute lung injury, or the magnitude or composition of inflammatory cells. FITC-treated CCR2(-/-) mice display differential patterns of cellular activation as evidenced by the altered production of cytokines and growth factors following FITC inoculation compared with wild-type controls. CCR2(-/-) mice have increased levels of GM-CSF and reduced levels of TNF-alpha compared with FITC-treated CCR2(+/+) mice. Thus, CCR2 signaling promotes a profibrotic cytokine cascade following FITC administration.  相似文献   

19.
Systemic inflammatory response syndrome (SIRS), a serious clinical condition characterized by whole-body inflammation, is particularly threatening for elderly patients, who suffer much higher mortality rates than the young. A major pathological consequence of SIRS is acute lung injury caused by neutrophil-mediated oxidative damage. Previously, we reported an increase in protein tyrosine nitration (a marker of oxidative/nitrosative damage) and a decrease in the antioxidant enzyme extracellular superoxide dismutase (EC-SOD) in the lungs of young mice during endotoxemia-induced SIRS. Here we demonstrate that during endotoxemia, down-regulation of EC-SOD is significantly more profound and prolonged, whereas up-regulation of iNOS is augmented, in aged compared to young mice. Aged mice also showed 2.5-fold higher protein nitration levels, compared to young mice, with particularly strong nitration in the pulmonary vascular endothelium during SIRS. Additionally, by two-dimensional gel electrophoresis, Western blotting, and mass spectrometry, we identified proteins that show increased tyrosine nitration in age- and SIRS-dependent manners; these proteins (profilin-1, transgelin-2, LASP 1, tropomyosin, and myosin) include components of the actin cytoskeleton responsible for maintaining pulmonary vascular permeability. Reduced EC-SOD in combination with increased oxidative/nitrosative damage and altered cytoskeletal protein function due to tyrosine nitration may contribute to augmented lung injury in the aged with SIRS.  相似文献   

20.
Lungkine (CXCL15) is a novel CXC chemokine that is highly expressed in the adult mouse lung. To determine the biologic function of Lungkine, we generated Lungkine null mice by targeted gene disruption. These mice did not differ from wild-type mice in their hematocrits or in the relative number of cells in leukocyte populations of peripheral blood or other tissues, including lung and bone marrow. However, Lungkine null mice were more susceptible to Klebsiella pneumonia infection, with a decreased survival and increased lung bacterial burden compared with infected wild-type mice. Histologic analysis of the lung and assessment of leukocytes in the bronchioalveolar lavage revealed that neutrophil numbers were normal in the lung parenchyma, but reduced in the airspace. The production of other neutrophil chemoattractants in the Lungkine null mice did not differ from that in wild-type mice, and neutrophil migration into other tissues was normal. Taken together, these findings demonstrate that Lungkine is an important mediator of neutrophil migration from the lung parenchyma into the airspace.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号