首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Hydraulic conductance of leaves ( K leaf) typically decreases with increasing water stress. However, the extent to which the decrease in K leaf is due to xylem cavitation, conduit deformation or changes in the extra-xylary pathway is unclear. We measured K leaf concurrently with ultrasonic acoustic emission (UAE) in dehydrating leaves of two vessel-bearing and two tracheid-bearing species to determine whether declining K leaf was associated with an accumulation of cavitation events. In addition, images of leaf internal structure were captured using cryo-scanning electron microscopy, which allowed detection of empty versus full and also deformed conduits. Overall, K leaf decreased as leaf water potentials ( Ψ L) became more negative. Values of K leaf corresponding to bulk leaf turgor loss points ranged from 13 to 45% of their maximum. Additionally, Ψ L corresponding to a 50% loss in conductivity and 50% accumulated UAE ranged from −1.5 to −2.4 MPa and from −1.1 to −2.8 MPa, respectively, across species. Decreases in K leaf were closely associated with accumulated UAE and the percentage of empty conduits. The mean amplitude of UAEs was tightly correlated with mean conduit diameter ( R 2 = 0.94, P  = 0.018). These results suggest that water stress-induced decreases in K leaf in these species are directly related to xylem embolism.  相似文献   

2.
张杰  张强  赵建华  王胜  赵宏  王静 《生态学报》2008,28(4):1646-1654
针对作物水分胁迫较为严重的西北半干旱区,应用CI301-PS光合作用仪对春小麦开花到乳熟期间的生理特征和环境因子进行了近1个月的观测, 并研究分析了3种作物干旱指标叶水势、作物水分胁迫指数以及气孔导度随时间变化和对气象因子的响应.发现干旱胁迫增加时,叶片水分减少,作物水分胁迫指数增大,叶水势降低,气孔导度有所减小.因此,气孔下腔的CO2浓度降低,作物净光合速率有所减小,不利于半干旱区小麦生物量的累积;三者相比,叶水势是反应西北半干旱区作物干旱最敏感的指标;受半干旱区逆湿现象的影响,9:00或之后一段时间观测叶水势和气孔导度对小麦等作物缺水状况反映得更客观.  相似文献   

3.
Gerbera jamesonii plants were subjected to a drying and rewatering for 10 d under greenhouse conditions. Transpiration rate and leaf water potential decreased with the application of stress and recovered to a level similar to that observed in the control plants. Leaf abscisic acid concentration increased while ethylene production decreased under stress. After rewatering, each of the parameters recovered, to similar levels, as in the control. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The control of stomata by water balance   总被引:26,自引:0,他引:26  
It is clear that stomata play a critical role in regulating water loss from terrestrial vegetation. What is not clear is how this regulation is achieved. Stomata appear to respond to perturbations of many aspects of the soil-plant-atmosphere hydraulic continuum, but there is little agreement regarding the mechanism (or mechanisms) by which stomata sense such perturbations. This review discusses feedback and feedforward mechanisms by which hydraulic perturbations are putatively transduced into stomatal movements, in relation to generic empirical features of those responses. It is argued that a metabolically mediated feedback response of stomatal guard cells to the water status in their immediate vicinity ('hydro-active local feedback') remains the best explanation for many well-known features of hydraulically related stomatal behaviour, such as transient 'wrong-way' responses and the equivalence of hydraulic supply and demand as stomatal effectors. Furthermore, many curious phenomena that appear inconsistent with feedback, such as 'apparent feedforward' humidity responses and 'isohydric' behaviour (water potential homeostasis), are in fact expected to emerge from the juxtaposition of hydro-active local feedback and the well-known hysteretic and threshold-like effect of water potential on xylem hydraulic resistance.  相似文献   

5.
  总被引:11,自引:0,他引:11  
Photosynthesis and biomass production of plants are controlled by the water status of the soil. Upon soil drying, plants can reduce water consumption by minimizing transpiration through stomata, the closable pores of the leaf. The phytohormone abscisic acid (ABA) mediates stomatal closure, and is the assigned signal for communicating water deficit from the root to the shoot. However, our study does not support ABA as the proposed long-distance signal. The shoot response to limited soil water supply is not affected by the capacity to generate ABA in the root; however, the response does require ABA biosynthesis and signalling in the shoot. Soil water stress elicits a hydraulic response in the shoot, which precedes ABA signalling and stomatal closure. Attenuation of the hydraulic response in various plants prevented long-distance signalling of water stress, consistent with root-to-shoot communication by a hydraulic signal.  相似文献   

6.
Young plants of Lotus creticus creticus growing in a hydroponic culture were submitted to 0, 70 and 140 mM NaCl treatments for 28 d and the growth and ecophysiological characteristics of these plants have been studied. The growth of Lotus plants was not affected by salinity when applied for a short period (about 15 d); however, 140 mM NaCl induced a decrease in shoot RGR at the end of the treatment. The root growth was not decreased, even it was stimulated by 140 mM NaCl. The osmotic adjustment of Lotus plants at 70 and 140 mM NaCl maintained constant pressure potential, avoiding the visual wilting. For a similar leaf water potential, cuticular transpiration of salinized plants was lower than in control plants due to the salinity effect on the cuticle. Moreover, the presence of hairy leaves (60 and 160 trichomes per mm2 in young and adult leaves, respectively) allows keeping almost 81 % of sprayed water and absorbing the 9 % of the water retained, decreased the epidermal conductance to water vapour diffusion.  相似文献   

7.
8.
干旱胁迫对苗木蒸腾耗水的影响   总被引:64,自引:4,他引:64       下载免费PDF全文
李吉跃  周平  招礼军 《生态学报》2002,22(9):1380-1386
采用Lico-6400便携式光合系统测定仪和BP3400精密天平等仪器研究了9个北方主要造林树种的蒸腾速率及实际蒸腾耗量;用压力室法分阶段测定了苗木的叶水势。得出了苗木在正常水分条件下及干旱胁迫过程中的蒸腾耗水规律。比较分析了不同水势梯度下、昼夜不同时间段的各树种的蒸腾耗水量及蒸腾耗水速率。结果表明,蒸腾耗水以白天为主,在相同的水分条件下,不同的苗木有不同的蒸腾耗水量,同种苗木的蒸腾耗水量随干旱胁迫的加重而减少,在受到严重干旱胁迫时,针叶树油松和侧柏的耗水量均降至正常水分条件下的11.7%,阔叶乔木树种降至6.6%,灌木树种降至16.9%。通过研究苗木在不同水势梯度下的耗水特性和蒸腾耗水量。为在水量缺乏的情况下,进行有效的林木培育和植被恢复重建提供依据。  相似文献   

9.
The effects of nitrogen (N) nutrition on growth, N uptake and leaf osmotic potential of rice plants (Oryza sativa L. ev. IR 36) during simulated water stress were determined. Twenty-one-day-old seedlings in high (28.6 × 10 ?4M) and low (7.14 × 10 4M) N levels were exposed to decreased nutrient solution water potentials by addition of polyethylene glycol 6000. The roots were separated from the solution by a semi-permeable membrane. Nutrient solution water potential was ?0.6 × 105 Pa and was lowered stepwise to ?1 × 105, ?2 × 105, ?4 × 105 and ?6 × 105 Pa at 2-day intervals. Plant height, leaf area and shoot dry weight of high and low nitrogen plants were reduced by lower osmotic potentials of the root medium. Osmotic stress caused greater shoot growth reduction in high N than in low N plants. Stressed and unstressed plants in 7.14 × 104M N had more root dry matter than the corresponding plants in 28.6 × 104M N. Dawn leaf water potential of stressed plants was 1 × 105 to 5.5 × 105 Pa lower than nutrient solution water potential. Nitrogen-deficient water-stressed plants, however, maintained higher dawn leaf water potential than high nitrogen water-stressed plants. It is suggested that this was due to higher root-to-shoot ratios of N deficient plants. The osmotic potentials of leaves at full turgor for control plants were about 1.3 × 105 Pa higher in 7.14 × 10?4M than in 28.6 × 10?4M N and osmotic adjustment of 2.6 × 105 and 4.3 × 105 Pa was obtained in low and high N plants, respectively. The nitrogen status of plants, therefore, affected the ability of the rice plant to adjust osmotically during water stress. Plant water stress decreased transpiration and total N content in shoots of both N treatments. Reduced shoot growth as a result of water stress caused the decrease in amount of water transpired. Transpiration and N uptake were significantly correlated. Our results show that nitrogen content is reduced in water-stressed plants by the integrated effects of plant water stress per se on accumulation of dry matter and transpiring leaf area as well as the often cited changes in soil physical properties of a drying root medium.  相似文献   

10.
As soil and plant water status decline, decreases in hydraulic conductance can limit a plant's ability to maintain gas exchange. We investigated hydraulic limitations for Artemisia tridentata during summer drought. Water use was quantified by measurements of soil and plant water potential ( Ψ ), transpiration and leaf area. Hydraulic transport capacity was quantified by vulnerability to water stress-induced cavitation for root and stem xylem, and moisture release characteristics for soil. These data were used to predict the maximum possible steady-state transpiration rate ( E crit) and minimum leaf xylem pressure ( Ψ crit). Transpiration and leaf area declined by ~ 80 and 50%, respectively, as soil Ψ decreased to –2·6 MPa during drought. Leaf-specific hydraulic conductance also decreased by 70%, with most of the decline predicted in the rhizosphere and root system. Root conductance was projected to be the most limiting, decreasing to zero to cause hydraulic failure if E crit was exceeded. The basis for this prediction was that roots were more vulnerable to xylem cavitation than stems (99% cavitation at –4·0 versus –7·8 MPa, respectively). The decline in water use during drought was necessary to maintain E and Ψ within the limits defined by E crit and Ψ crit.  相似文献   

11.
Lianas are abundant in seasonal tropical forests, where they avoid seasonal water stress presumably by accessing deep‐soil water reserves. Although lianas are favoured in seasonal environments, their occurrence and abundance are low in semiarid environments. We hypothesized that lianas do not tolerate the great water shortage in the soil and air characteristic of semiarid environments, which would increase the risk of embolism. We compared the rooting depth of coarse roots, leaf dynamics, leaf water potential (ψleaf), embolism resistance (P50) and lethal levels of embolism (P88) between congeneric lianas that occur with different abundances in two semiarid sites differing in soil characteristics and vapour pressure deficit in the air (VPDair). Regardless of soil texture and depth, water availability was restricted to the rainy season. All liana species were drought deciduous and had superficial coarse roots (not deeper than 35 cm). P50 varied from ?1.8 to ?2.49 MPa, and all species operated under narrow safety margins against catastrophic (P50) and irreversible hydraulic failure (P88), even during the rainy season. In short, lianas that occur in semiarid environments have lower resistance to cavitation and limit carbon fixation to the rainy season because of leaf fall in the early dry season. We suggest that leaf shedding and shallow roots impairing carbon gain and growth in the dry season may explain why liana abundance is lower in semiarid than in other seasonally dry environments.  相似文献   

12.
    
Drought induces xylem embolism formation, but grapevines can refill non‐functional vessels to restore transport capacity. It is unknown whether vulnerability to embolism formation and ability to repair differ among grapevine species. We analysed in vivo embolism formation and repair using x‐ray computed microtomography in three wild grapevine species from varied native habitats (Vitis riparia, V. arizonica, V. champinii) and related responses to measurements of leaf gas exchange and root pressure. Vulnerability to embolism formation was greatest in V. riparia, intermediate in V. arizonica and lowest in V. champinii. After re‐watering, embolism repair was rapid and pronounced in V. riparia and V. arizonica, but limited or negligible in V. champinii even after numerous days. Similarly, root pressure measured after re‐watering was positively correlated with drought stress severity for V. riparia and V. arizonica (species exhibiting embolism repair) but not for V. champinii. Drought‐induced reductions in transpiration were greatest for V. riparia and least in V. champinii. Recovery of transpiration after re‐watering was delayed for all species, but was greatest for V. champinii and most rapid in V. arizonica. These species exhibit varied responses to drought stress that involve maintenance/recovery of xylem transport capacity coordinated with root pressure and gas exchange responses.  相似文献   

13.
王丁  姚健  杨雪  薛建辉 《生态学报》2011,31(8):2216-2226
水势是反映植物水分亏缺或水分状况的一个直接指标,可用来确定植物受干旱胁迫的程度和抗旱能力高低。本文研究了6种喀斯特造林树种苗木在干旱胁迫条件下叶片水势及其吸水潜能的变化。结果表明:(1)随着胁迫强度的增加,6种树种不同生长时期,其叶片水势均表现出下降趋势,且不同干旱胁迫强度之间差异显著(p<0.002)。在干旱胁迫下,所有树种叶片水势均以生长旺期的下降幅度最大,生长末期次之,生长初期最小。在生长旺期,6个树种叶片水势最低值分别比对照下降了2.21 Mpa、2.14 Mpa、3.57 Mpa、2.89Mpa、4.02Mpa和3.07Mpa。(2)侧柏苗木在生长初期轻度干旱条件下,其叶片水势胁迫指数只有0.150;在中度干旱胁迫条件下,其胁迫指数增加到0.559;在重度干旱胁迫条件下,达0.716,叶片水势下降超过70%。香樟苗木在生长初期轻度干旱胁迫条件下,其叶片水势胁迫指数就已达0.603,叶片水势下降超过了60%;在中度和重度干旱胁迫条件下,其水势胁迫指数相差不大。其它树种苗木的胁迫指数亦有与侧柏或香樟相似的变化趋势。(3)6个树种苗木在干旱胁迫条件下平均叶片水势与土壤水势差值大小排序为,生长初期:刺槐(1.261Mpa)>香樟(0.850 Mpa)>滇柏(0.846 Mpa)>侧柏(0.568 Mpa)>构树(0.524 Mpa)>杜英(0.219 Mpa);生长旺期:香樟(2.994 Mpa)>刺槐(2.68 Mpa)>侧柏(2.028 Mpa)>滇柏(2.008 Mpa)>杜英(1.824 Mpa)>构树(1.543 Mpa);生长末期:刺槐(0.692 Mpa)>构树(0.687 Mpa)>滇柏(0.653 Mpa)>侧柏(0.354 Mpa)>香樟(0.338 Mpa)>杜英(0.262 Mpa)。(4)干旱胁迫复水24h后,不同生长阶段苗木叶片水势恢复指数随干旱胁迫强度的增加而逐渐减小。叶片水势恢复度按生长时期排序为:生长末期>生长旺期>生长初期。(5)利用隶属函数累加法将6个树种苗木的吸水潜能大小可排序为:侧柏>滇柏>刺槐>香樟>构树>杜英。  相似文献   

14.
    
Previous studies have shown that reduced gibberellin (GA) level or signal promotes plant tolerance to environmental stresses, including drought, but the underlying mechanism is not yet clear. Here we studied the effects of reduced levels of active GAs on tomato (Solanum lycopersicum) plant tolerance to drought as well as the mechanism responsible for these effects. To reduce the levels of active GAs, we generated transgenic tomato overexpressing the Arabidopsis thaliana GA METHYL TRANSFERASE 1 (AtGAMT1) gene. AtGAMT1 encodes an enzyme that catalyses the methylation of active GAs to generate inactive GA methyl esters. Tomato plants overexpressing AtGAMT1 exhibited typical GA‐deficiency phenotypes and increased tolerance to drought stress. GA application to the transgenic plants restored normal growth and sensitivity to drought. The transgenic plants maintained high leaf water status under drought conditions, because of reduced whole‐plant transpiration. The reduced transpiration can be attributed to reduced stomatal conductance. GAMT1 overexpression inhibited the expansion of leaf‐epidermal cells, leading to the formation of smaller stomata with reduced stomatal pores. It is possible that under drought conditions, plants with reduced GA activity and therefore, reduced transpiration, will suffer less from leaf desiccation, thereby maintaining higher capabilities and recovery rates.  相似文献   

15.
Effect of acidic fog on needle surface and water relations of Picea abies   总被引:3,自引:0,他引:3  
Young spruce trees [ Picea abies (L.) Karst.) exposed to acidic fog (pH 3) showed a disintegration of the epicuticular waxes of the current year's needles as compared with trees treated with a fog of pH 5. The fog treatment was followed by a period in which the trees received different water supply. Under water stress conditions, trees that had been exposed to the acidic fog showed significantly higher transpiration rates than control trees that were treated with a fog of pH 5. The water loss of the controls was 0 at the middle of the photoperiod, while the trees pretreated with acidic fog still showed a substantial transpiration rate at this time. Water loss of excised twigs measured in the dry atmosphere of a desiccator also provided evidence that the water holding capacity of needles pretreated with acidic fog was affected. There is evidence that particularly the cuticular transpiration was increased by pretreatment with acidic fog. The xylem water potential of twigs pretreated with acidic fog was significantly lower than that of twigs pretreated with a fog of pH 5, while the osmotic potential was not affected by the different fog treatments. It is suggested that in draught years trees with a damaged cuticle caused by acidic fog will be affected in their resistance against water stress. In this way acidic fog could be involved in forest decline now widely spread in Central Europe.  相似文献   

16.
This investigation was performed to study the effect on plant water relations and growth when some of roots grow into dry soil. Common spring water (Triticum aestivum) plants were grown from seed in soil in 1.2 m long PVC (polyvinyl chloride) tubes. Some of the tubes had a PVC partition along their center so that plants developed a split root system (SPR). Part of the roots grew in fully irrigated soil on one side of the partition while the rest of the roots grew into a very dry (-4.1 MPa) soil on the other side of the partition. Split root plants were compared with plants grown from emergence on stored soil moisture (STOR) and with plants that were fully irrigated as needed (IRR). The experiment was duplicated over two temperature regimes (10°/20°C and 15°/25°C, night/day temperatures) in growth chambers. Data were collected on root dry matter distribution, soil moisture status, midday leaf water potential (LWP), leaf relative water content (RWC) and parameters of plant growth and yield.Some roots were found in the dry side of SPR already at 21 DAE (days after emergence) at a soil depth of 15 to 25 cm. Soil water potential around these roots was -0.7 to -1.0 MPa at midday, as compared with the initial value of -4.1 MPa. Therefore, water apparently flowed from the plant into the dry soil, probably during the night. Despite having most of their roots (around 2/3 of the total) in wet soil, SPR plants developed severe plant water stress, even in comparison with STOR plants. Already at 21 DAE, SPR plants had a LWP of -1.5 to -2.0 MPa, while IRR and STOR had a LWP of -0.5 MPa or higher. As a consequence of their greater plant water stress, SPR as compared with IRR plants were lower in tiller number, ear number, shoot dry matter, root dry matter, total biomass, plant height and grain yield and had more epicuticular wax on their leaves.It was concluded that the exposure of a relatively small part of a plant root system to a dry soil may result in a plant-to-soil water potential gradient which may cause severe plant water stress, leading to reduced plant growth and yield.  相似文献   

17.
Efficient conduction of water inside leaves is essential for leaf function, yet the hydraulic-mediated impact of drought on gas exchange remains poorly understood. Here we examine the decline and subsequent recovery of leaf water potential ( Ψ leaf), leaf hydraulic conductance ( K leaf), and midday transpiration ( E ) in four temperate woody species exposed to controlled drought conditions ranging from mild to lethal. During drought the vulnerability of K leaf to declining Ψ leaf varied greatly among the species sampled. Following drought, plants were rewatered and the rate of E and K leaf recovery was found to be strongly dependent on the severity of the drought imposed. Gas exchange recovery was strongly correlated with the relatively slow recovery of K leaf for three of the four species, indicating conformity to a hydraulic-stomatal limitation model of plant recovery. However, there was also a shift in the sensitivity of stomata to Ψ leaf suggesting that the plant hormone abscisic acid may be involved in limiting the rate of stomatal reopening. The level of drought tolerance varied among the four species and was correlated with leaf hydraulic vulnerability. These results suggest that species-specific variation in hydraulic properties plays a fundamental role in steering the dynamic response of plants during recovery.  相似文献   

18.
The responses of gas exchange and chlorophyll fluorescence of field-growing Ulmus pumila seedlings to changes in simulated precipitation were studied in Hunshandak Sandland, China. Leaf water potential (Ψwp), net photosynthetic rate (P N), stomatal conductance (g s), and transpiration rate (E) were significantly increased with enhancement of precipitation from 0 to 20 mm (p<0.01), indicating stomatal limitation of U. pumila seedlings that could be avoided when soil water was abundant. However, P N changed slightly when precipitation exceeded 20 mm (p>0.05), indicating more precipitation than 20 mm had no significant effects on photosynthesis. Maximum photochemical efficiency of photosystem 2, PS 2 (Fv/Fm) increased from 0.53 to 0.78 when rainfall increased from 0 to 10 mm, and Fv/Fm maintained a steady state level when rainfall was more than 10 mm. Water use efficiency (WUE) decreased significantly (from 78–95 to 23–27 μmol mol−1) with enhancement of rainfalls. P N showed significant linear correlations with both g s and Ψwp (p<0.0001), which implied that leaf water status influenced gas exchange of U. pumila seedlings. The 20-mm precipitation (soil water content at about 15 %, v/v) might be enough for the growth of elm seedlings. When soil water content (SWC) reached 10 %, down regulation of PS2 photochemical efficiency could be avoided, but stomatal limitation to photosynthesis remained. When SWC exceeded 15 %, stomatal limitation to photosynthesis could be avoided, indicating elm seedlings might tolerate moderate drought.  相似文献   

19.
    
This study tests two predictions from a recently proposed model for stomatal responses to humidity and temperature. The model is based on water potential equilibrium between the guard cells and the air at the bottom of the stomatal pore and contains three independent variables: gs0, Z and Θ. gs0 is the value of stomatal conductance that would occur at saturating humidity and will vary among leaves and with CO2 and light. The value of Z is determined primarily by the resistance to heat transfer from the epidermis to the evaporating site and the value of Θ is determined primarily by the resistance to water vapour diffusion from the evaporating site to the guard cells. This leads to the two predictions that were tested. Firstly, the values of Z and Θ should be constant for leaves of a given species grown under given conditions, although gs0 should vary among leaves and with light and CO2. And secondly, the ratio of Z to Θ should be higher in leaves having their stomata in crypts because the distance for heat transfer is greater than that for water vapour diffusion. Data from three species, Nerium oleander, Pastinaca sativum and Xanthium strumarium support these two predictions.  相似文献   

20.
Soil and plant resistance to water flow under field conditions in pea (Pisum sativum L.) plants were measured at six ages. Transpiration flux, leaf and soil water potentials were used to calculate the total resistance to water flow using the Ohm's law analogy. Plant resistance was estimated from the slope of the water potential difference () vs. transpiration (Q) relationship. Plant growth, root density and soil water content distribution were measured. Leaf area and root length both increased until the end of seed filling and decreased during seed maturation. Total resistance decreased with the transpiration flux in a non-linear relationship. Plant resistance estimated as the slope of the vs. Q regression line increased until pod filling and then decreased. The increased resistance to water flow during pod filling was associated with a 10% increase in cell wall thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号