首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated whether a core temperature threshold for hyperthermic hyperventilation is seen during prolonged submaximal exercise in the heat when core temperature before the exercise is reduced and whether the evoked hyperventilatory response is affected by altering the initial core temperature. Ten male subjects performed three exercise trials at 50% of peak oxygen uptake in the heat (37°C and 50% relative humidity) after altering their initial esophageal temperature (T(es)). Initial T(es) was manipulated by immersion for 25 min in water at 18°C (Precooling), 35°C (Control), or 40°C (Preheating). T(es) after the water immersion was significantly higher in the Preheating trial (37.5 ± 0.3°C) and lower in the Precooling trial (36.1 ± 0.3°C) than in the Control trial (36.9 ± 0.3°C). In the Precooling trial, minute ventilation (Ve) showed little change until T(es) reached 37.1 ± 0.4°C. Above this core temperature threshold, Ve increased linearly in proportion to increasing T(es). In the Control trial, Ve increased as T(es) increased from 37.0°C to 38.6°C after the onset of exercise. In the Preheating trial, Ve increased from the initially elevated levels of T(es) (from 37.6 to 38.6°C) and Ve. The sensitivity of Ve to increasing T(es) above the threshold for hyperventilation (the slope of the T(es)-Ve relation) did not significantly vary across trials (Precooling trial = 10.6 ± 5.9, Control trial = 8.7 ± 5.1, and Preheating trial = 9.2 ± 6.9 L·min(-1)·°C(-1)). These results suggest that during prolonged submaximal exercise at a constant workload in humans, there is a clear core temperature threshold for hyperthermic hyperventilation and that the evoked hyperventilatory response is unaffected by altering initial core temperature.  相似文献   

2.
The independent influence of peak oxygen uptake (Vo(? peak)) on changes in thermoregulatory responses during exercise in a neutral climate has not been previously isolated because of complex interactions between Vo(? peak), metabolic heat production (H(prod)), body mass, and body surface area (BSA). It was hypothesized that Vo(? peak) does not independently alter changes in core temperature and sweating during exercise. Fourteen males, 7 high (HI) Vo(? peak): 60.1 ± 4.5 ml·kg?1·min?1; 7 low (LO) Vo(? peak): 40.3 ± 2.9 ml·kg?1·min?1 matched for body mass (HI: 78.2 ± 6.1 kg; LO: 78.7 ± 7.1 kg) and BSA (HI: 1.97 ± 0.08 m2; LO: 1.94 ± 0.08 m2), cycled for 60-min at 1) a fixed heat production (FHP trial) and 2) a relative exercise intensity of 60% Vo(? peak) (REL trial) at 24.8 ± 0.6°C, 26 ± 10% RH. In the FHP trial, H(prod) was similar between the HI (542 ± 38 W, 7.0 ± 0.6 W/kg or 275 ± 25 W/m2) and LO (535 ± 39 W, 6.9 ± 0.9 W/kg or 277 ± 29 W/m2) groups, while changes in rectal (T(re): HI: 0.87 ± 0.15°C, LO: 0.87 ± 0.18°C, P = 1.00) and aural canal (T(au): HI: 0.70 ± 0.12°C, LO: 0.74 ± 0.21°C, P = 0.65) temperature, whole-body sweat loss (WBSL) (HI: 434 ± 80 ml, LO: 440 ± 41 ml; P = 0.86), and steady-state local sweating (LSR(back)) (P = 0.40) were all similar despite relative exercise intensity being different (HI: 39.7 ± 4.2%, LO: 57.6 ± 8.0% Vo(2 peak); P = 0.001). At 60% Vo(2 peak), H(prod) was greater in the HI (834 ± 77 W, 10.7 ± 1.3 W/kg or 423 ± 44 W/m2) compared with LO (600 ± 90 W, 7.7 ± 1.4 W/kg or 310 ± 50 W/m2) group (all P < 0.001), as were changes in T(re) (HI: 1.43 ± 0.28°C, LO: 0.89 ± 0.19°C; P = 0.001) and T(au) (HI: 1.11 ± 0.21°C, LO: 0.66 ± 0.14°C; P < 0.001), and WBSL between 0 and 15, 15 and 30, 30 and 45, and 45 and 60 min (all P < 0.01), and LSR(back) (P = 0.02). The absolute esophageal temperature (T(es)) onset for sudomotor activity was ~0.3°C lower (P < 0.05) in the HI group, but the change in T(es) from preexercise values before sweating onset was similar between groups. Sudomotor thermosensitivity during exercise were similar in both FHP (P = 0.22) and REL (P = 0.77) trials. In conclusion, changes in core temperature and sweating during exercise in a neutral climate are determined by H(prod), mass, and BSA, not Vo(? peak).  相似文献   

3.
Postischemic temperature, which modulates brain injury, is commonly determined via a rectal temperature (Trec) probe. This procedure causes a stress-induced fever (SIF) in rodents that may aggravate injury or diminish the efficacy of a neuroprotectant. We continually measured core temperature (Tcore) via an implanted telemetry probe and made 16 Trec measurements over 4 days in sham and ischemic gerbils (5 min bilateral carotid artery occlusion). Controls did not have Trec sampled, but Tcore was measured. Rectal temperature measurements predicted Tcore in sham and ischemic gerbils. The Trec measurements caused a SIF (1 degrees C peak) in shams that did not habituate, whereas the SIF was initially absent and then increased over days in ischemic gerbils. Ischemic groups had similar CA1 injury (approximately 32% remaining), presumably because Trec measurements only resulted in a significant SIF starting on day 2 postischemia, when cell death is less sensitive to hyperthermia. Caution is warranted with Trec measurements, since the resultant SIF occurs to different extents in normal and ischemic rodents. Furthermore, the SIF could vary according to many other factors, such as the type and severity of insult, the time and frequency of measurement, and drug treatment. Accordingly, postischemic Trec measurements should be replaced with telemetry probes.  相似文献   

4.
The hypothesis tested in the present study is a seasonal difference in the core interthreshold zone (CIZ), as we suggested in an earlier study that individual awareness of heat may change the CIZ due to thermoregulatory behavior. A series of human experiments were carried out in a climatic chamber in January and August of 2009 and January of 2010. The air temperature in the chamber was controlled at 20-24°C. Subjects wore a water-perfused suit that was perfused with 25°C water at a rate of 600 cc/min. They exercised on an ergometer at 50% of their maximum work rate for 10-15 min until their sweating rate increased and then remained seated without exercise until oxygen uptake increased. Subjects' rectal temperature and skin temperatures at four sites were monitored by thermistors. The sweating rate was measured at the forehead with a sweat rate monitor (SKD 4000, Skinos Co.). Oxygen uptake was monitored with a gas analyzer (Respiromonitor RM-300i, Minato Med. Science Co.). In the 2009 winter experiment, 5 male subjects were exposed to lighting of 36 cd/m(2)/1,050 lx, and in the 2009 summer and 2010 winter experiments, 10 male subjects were exposed to lighting of 18 cd/m2/510 lx. The results showed that the CIZ of 0.69±0.29°C (n=22, data from 2005-2007 experiments) at 36 cd/m(2) and that of 0.37±0.17°C (n=10) at 18 cd/m(2) in summer were greater than the CIZ of 0.37±0.13°C (n=5) at 36 cd/m(2) and that of 0.18±0.17°C (n=10) at 18 cd/m(2) in winter, and thus demonstrated a seasonal difference in the CIZ as well as an effect of lighting conditions on the CIZ.  相似文献   

5.
Session rating of perceived exertion (SRPE) permits global effort estimations after an exercise bout and has shown promise for evaluating training load. However, factors mediating SRPE are not well understood. The purpose of this study was to compare SRPE between cycling and treadmill exercise at low and moderate intensities. In a counterbalanced order, male subjects (n = 7) completed a VO2max trial on a cycle ergometer and a motor-driven treadmill. Then, participants completed trials at 50 and 75% mode-specific VO2max on a cycle ergometer (BK75, BK50) and a treadmill (TM75, TM50) to achieve ~ 400-kcal energy expenditure per trial. Acute RPE (i.e., during exercise) at 5 minutes, midway, and test termination were recorded with SRPE (20-minutes postexercise) expressed as overall (SRPEO), legs (SRPEL), and breathing also recorded were heart rate (HR) and change in rectal temperature (ΔTrec). Significance was accepted at p ≤ 0.05. Repeated-measures analysis of variance revealed significantly greater SRPE for higher intensities within each mode. Crossmodal comparisons also show a higher SRPE at moderate (75% VO2max) intensities [SRPEO] = BK75: 7.6 ± 1.0, TM75: 6.9 ± 1.3) vs. lower (50% VO2max) intensities (BK50: 4.6 ± 1.4, TM50: 4.6 ± 1.1). Within modes, SRPE corresponded well with ΔTrec and HR. Acute RPE was linked with intensity and drifted upward across time. Results indicated that overall and differentiated SRPEs are magnified with exercise intensity with the corresponding disruption in internal environment potentially mediating subjective responses. From a practical application standpoint, SRPE provides a subjective assessment for immediate evaluation of daily training. Results indicate that, when using SRPE to monitor training, consideration should be given to responses across differing exercise modes.  相似文献   

6.
The aim of this study was to investigate the differences in the length-dependent changes in quadriceps muscle torque during voluntary isometric and isokinetic contractions performed after severe muscle-damaging exercise. Thirteen physically active men (age = 23.8 ± 3.2 years, body weight = 77.2 ± 4.5 kg) performed stretch-shortening cycle (SSC) exercise comprising 100 drop jumps with 30-second intervals between each jump. Changes in the voluntary and electrically evoked torque in concentric and isometric conditions at different muscle lengths, muscle soreness, and plasma creatine kinase (CK) activity were assessed within 72 hours after SSC exercise. Isokinetic knee extension torque decreased significantly (p < 0.05) at all joint angles after SSC exercise. At 2 minutes and at 72 hours after SSC exercise, the changes in knee torque were significantly smaller at 80° (where 180° = full knee extension) than at 110-130°. At 2 minutes after SSC exercise, the optimal angle for isokinetic knee extension torque shifted by 9.5 ± 8.9° to a longer muscle length (p < 0.05). Electrically induced torque at low-frequency (20-Hz) stimulation decreased significantly more at a knee joint angle of 130° than at 90°. The subjects felt acute muscle pain and CK activity in the blood increased to 1,593.9 ± 536.2 IU·L?1 within 72 hours after SSC exercise (p < 0.05). This study demonstrates that the effect of muscle-damaging exercise on isokinetic torque is greatest for contractions at short muscle lengths. These findings have practical importance because the movements in most physical activities are dynamic in nature, and the decrease in torque at various points in the range of motion during exercise might affect overall performance.  相似文献   

7.
The purpose of this study was to test the hypotheses that digital infrared thermographic imaging (DITI) during simulated uncontrolled hemorrhage will reveal 1) respiratory rate and 2) changes of skin temperature that track reductions of stroke volume. In 45 healthy volunteers (25 men and 20 women), we recorded the ECG, finger photoplethysmographic arterial pressure, respiratory rate (pneumobelt and DITI of the nose), cardiac output (inert rebreathing), and skin temperature of the forehead during lower body negative pressure (LBNP) at three continuous decompression rates; slow (-3 mmHg/min), medium (-6 mmHg/min), and fast (-12 mmHg/min) to an ending pressure of -60 mmHg. Respiratory rates calculated from the pneumobelt (14.7 ± 0.9 breaths/min) and DITI (14.9 ± 1.2 breaths/min) were not different (P = 0.21). LBNP induced an average stroke volume reduction of 1.3 ml/mmHg regardless of decompression speed. Maximal reductions of stroke volume and forehead temperature were -100 ± 12 ml and -0.32 ± 0.12°C (slow), -86 ± 12 ml and -0.74 ± 0.27°C (medium), and -78 ± 5 ml and -0.17 ± 0.02°C (fast). Changes of forehead temperature as a function of changes of stroke volume were best described by a quadratic fit to the data (slow R(2) = 0.95; medium R(2) = 0.89; and fast R(2) = 0.99).Our results suggest that a thermographic camera may prove useful for the remote assessment of traumatically injured patients. Life sign detection may be determined by verifying respiratory rate. Determining the magnitude and rate of hemorrhage may also be possible based on future algorithms derived from associations between skin temperature and stroke volume.  相似文献   

8.
Continuous recordings of core body temperature (CBT) are a well-established approach in describing circadian rhythms. Given the discomfort of invasive CBT measurement techniques, the use of skin temperature recordings has been proposed as a surrogate. More recently, we proposed a heat-flux approach (the so-called Double Sensor) for monitoring CBT. Studies investigating the reliability of the heat-flux approach over a 24-hour period, as well as comparisons with skin temperature recordings, are however lacking. The first aim of the study was therefore to compare rectal, skin, and heat-flux temperature recordings for monitoring circadian rhythm. In addition, to assess the optimal placement of sensor probes, we also investigated the effect of different anatomical measurement sites, i.e. sensor probes positioned at the forehead vs. the sternum. Data were collected as part of the Berlin BedRest study (BBR2-2) under controlled, standardized, and thermoneutral conditions. 24-hours temperature data of seven healthy males were collected after 50 days of -6° head-down tilt bed-rest. Mean Pearson correlation coefficients indicated a high association between rectal and forehead temperature recordings (r > 0.80 for skin and Double Sensor). In contrast, only a poor to moderate relationship was observed for sensors positioned at the sternum (r = -0.02 and r = 0.52 for skin and Double Sensor, respectively). Cross-correlation analyses further confirmed the feasibility of the forehead as a preferred monitoring site. The phase difference between forehead Double Sensor and rectal recordings was not statistically different from zero (p = 0.313), and was significantly smaller than the phase difference between forehead skin and rectal temperatures (p = 0.016). These findings were substantiated by cosinor analyses, revealing significant differences for mesor, amplitude, and acrophase between rectal and forehead skin temperature recordings, but not between forehead Double Sensor and rectal temperature measurements. Finally, Bland-Altman analysis indicated narrower limits of agreement for rhythm parameters between rectal and Double Sensor measurements compared to between rectal and skin recordings, irrespective of the measurement site (i.e. forehead, sternum). Based on these data we conclude that (1) Double Sensor recordings are significantly superior to skin temperature measurements for non-invasively assessing the circadian rhythm of rectal temperature, and (2) temperature rhythms from the sternum are less reliable than from the forehead. We suggest that forehead Double Sensor recordings may provide a surrogate for rectal temperature in circadian rhythm research, where constant routine protocols are applied. Future studies will be needed to assess the sensor’s ecological validity outside the laboratory under changing environmental and physiological conditions.  相似文献   

9.
The purpose of this study was to determine the effects of dehydration at a controlled relative intensity on physiological responses and trail running speed. Using a randomized, controlled crossover design in a field setting, 14 male and female competitive, endurance runners aged 30 ± 10.4 years completed 2 (hydrated [HY] and dehydrated [DHY]) submaximal trail runs in a warm environment. For each trial, the subjects ran 3 laps (4 km per lap) on trails with 4-minute rests between laps. The DHY were fluid restricted 22 hours before the trial and during the run. The HY arrived euhydrated and were given water during rest breaks. The subjects ran at a moderate pace matched between trials by providing pacing feedback via heart rate (HR) throughout the second trial. Gastrointestinal temperature (T(GI)), HR, running time, and ratings of perceived exertion (RPE) were monitored. Percent body mass (BM) losses were significantly greater for DHY pretrial (-1.65 ± 1.34%) than for HY (-0.03 ± 1.28%; p < 0.001). Posttrial, DHY BM losses (-3.64 ± 1.33%) were higher than those for HY (-1.38 ± 1.43%; p < 0.001). A significant main effect of T(GI) (p = 0.009) was found with DHY having higher T(GI) postrun (DHY: 39.09 ± 0.45°C, HY: 38.71 ± 0.45°C; p = 0.030), 10 minutes post (DHY: 38.85 ± 0.48°C, HY: 38.46 ± 0.46°C; p = 0.009) and 30 minutes post (DHY: 38.18 ± 0.41°C, HY: 37.60 ± 0.25°C; p = 0.000). The DHY had slower run times after lap 2 (p = 0.019) and lap 3 (p = 0.025). The DHY subjects completed the 12-km run 99 seconds slower than the HY (p = 0.027) subjects did. The RPE in DHY was slightly higher than that in HY immediately postrun (p = 0.055). Controlling relative intensity in hypohydrated runners resulted in slower run times, greater perceived effort, and elevated T(GI), which is clinically meaningful for athletes using HR as a gauge for exercise effort and performance.  相似文献   

10.
  • 1 Cyclomorphosis is a well known phenomenon in Daphnia that involves a regular, seasonal, or induced change in body allometry. Long helmets and tail spines were induced in laboratory cultures of Daphnia lumholtzi with temperature of 31 °C as the proximal cue (temperature of locally occurring peak abundance in Kentucky Lake). The effect was greater in embryos than juveniles or adults exposed to the temperature cue.
  • 2 The temperature cue appears to have a threshold value (animals cultured at 25 or 28 °C did not develop elongated helmets or spines). The helmet and spine length receded both with D. lumholtzi kept at a constant 31 °C temperature and when water temperature was decreased.
  • 3 The induced helmet in this experiment (0.66 mm, 1.0 mm animal) was significantly longer than values reported in the literature for induction by planktivorous fish kairomones (0.25 mm, 1.2 mm animal). The strong response to a proximal cue of temperature may require the second weaker chemical cue for maintenance. It is suggested that a synergistic explanation with two cues may be more appropriate for cyclomorphosis induction and maintenance in Daphnia lumholtzi that could be tested with further studies.
  相似文献   

11.
Hyperthermia is common among athletes and in a variety of environments. The purpose of this study was to evaluate the effectiveness of cooling methods on core body temperature, heart rate (HR), and perceptual readings in individuals after exercise. Sixteen subjects (age: 24 ± 6 years, height: 182 ± 7 cm, weight: 74.03 ± 9.17 kg, and body fat: 17.08 ± 6.23%) completed 10 exercise sessions in warm conditions (WBGT: 26.64 ± 4.71°C) followed by body cooling by 10 different methods. Cooling methods included cold water immersion (CWI), shade, Port-a-Cool? (FAN), Emergency Cold Containment System? (ECCS), Rehab. Hood? (HOOD), Game Ready Active Cooling Vest? (GRV), Nike Ice Vest? (NIV), ice buckets (IBs), and ice towels (IT). These cooling modes were compared with a control (SUN). Rectal temperature (T(re)), HR, thermal sensation, thirst sensation, and a 56-question Environmental Symptoms Questionnaire (ESQ) were used to assess physiological and perceptual data. Average T(re) after exercise across all trials was 38.73 ± 0.12°C. After 10 minutes of cooling, CWI (-0.65 ± 0.29°C), ECCS (-0.68 ± 0.24°C), and IB (-0.74 ± 0.34°C) had significantly (p < 0.006) greater decreases in T(re) compared with that in SUN (-0.42 ± 0.15°C). The HR after 10 minutes of cooling was significantly (p < 0.006) lower for CWI (82 ± 15 b·min(-1)), ECCS (87 ± 14 b·min(-1)), and IT (84 ± 15 b·min(-1)) when compared with SUN (101 ± 15 b·min(-1)). The thermal sensation between modalities was all significantly (p < 0.006) lower (CWI: 1.5 ± 0.5; Fan: 3.0 ± 1.0; ECCS: 4.5 ± 1.0; Hood: 4.5 ± 0.5; GRV: 4.0 ± 0.5; NIV: 4.5 ± 1.0; IB: 4.0 ± 1.0; IT: 3.0 ± 1.0) when compared with SUN (5.5 ± 0.5), except for Shade (5.0 ± 1.0). There were no significant differences (p > 0.006) in thirst sensation between modalities. The ESQ scores were significantly (p < 0.006) lower for CWI (1 ± 6), Fan (4 ± 5), and IT (3 ± 8) compared with that for SUN (13 ± 12). In conclusion, when athletes experience mild hyperthermia, CWI, ECCS, and IB resulted in a significantly greater decrease in T(re). These cooling strategies are recommended to decrease T(re) during a brief recovery period between exercise bouts.  相似文献   

12.
This article describes the design and development of a system that is capable of quantifying the thermal comfort of bicycle helmets. The motivation for the development of the system stems from the desire both to increase helmet use and to provide the designer with a quantitative method of evaluating the thermal comfort of a helmet. The system consists of a heated mannequin head form, a heated reference sphere, a small wind tunnel, and a data acquisition system. Both the head form and the reference sphere were instrumented with thermocouples. The system is capable of simulating riding speeds ranging from 4.5-15.5 m/s. A cooling effectiveness, C1, that is independent of both ambient conditions and wind velocity is defined as a measure of how well the helmet ventilates as compared to the reference sphere. The system was validated by testing six commercially available bicycle helmets manufactured between approximately 1992 and 1998.  相似文献   

13.
The cyclomorphic change of head and tailspine of Daphnia cucullatahas been analysed morphometrically and compared with temporalanalyses of enzyme variability. During June, round-headed animalsare rapidly replaced by specimens with high helmets; the rateof increase of the relative helmet length is more rapid thanthe rate of decrease later in the year. The relative sizes ofhelmet and tail spine are not always coupled. The tailspinelength remains approximately the same year round and grows withnegative allometry, so that small animals have the relativelylongest spines. In contrast, the helmet grows in a positivelyallometric fashion and exhibits high seasonal variation. Helmetgrowth is strongly correlated with water temperature but notwith food abundance. The morphometric results are consistentwith the hypothesis that helmet formation is a response to fishpredation while the tail spine provides protection against invertebratepredators. There is no indication of changes in the gene orgenotype frequencies at two loci during the period of rapidmorphological change. Thus cyclomorphosis apparently appearsin the absence of clonal replacement.  相似文献   

14.
OBJECTIVES--To study circumstances of bicycle accidents and nature of injuries sustained and to determine effect of safety helmets on pattern of injuries. DESIGN--Prospective study of patients with cycle related injuries. SETTING--Accident and emergency department of teaching hospital. SUBJECTS--1040 patients with complete data presenting to the department in one year with cycle related injuries, of whom 114 had worn cycle helmets when accident occurred. MAIN OUTCOME MEASURES--Type of accident and nature and distribution of injuries among patients with and without safety helmets. RESULTS--There were no significant differences between the two groups with respect to type of accident or nature and distribution of injuries other than those to the head. Head injury was sustained by 4/114 (4%) of helmet wearers compared with 100/928 (11%) of non-wearers (P = 0.023). Significantly more children wore helmets (50/309 (16%)) than did adults (64/731 (9%)) (P < 0.001). The incidence of head injuries sustained in accidents involving motor vehicles (52/288 (18%)) was significantly higher than in those not involving motor vehicles (52/754 (7%)) (chi 2 = 28.9, P < 0.0001). Multiple logistic regression analysis of probability of sustaining a head injury showed that only two variables were significant: helmet use and involvement of a motor vehicle. Mutually adjusted odds ratios showed a risk factor of 2.95 (95% confidence interval 1.95 to 4.47, P < 0.0001) for accidents involving a motor vehicle and a protective factor of 3.25 (1.17 to 9.06, P = 0.024) for wearing a helmet. CONCLUSION--The findings suggest an increased risk of sustaining head injury in a bicycle accident when a motor vehicle is involved and confirm protective effect of helmet wearing for any bicycle accident.  相似文献   

15.
Football helmet certification tests are performed without a facemask attached to the helmet; however, the facemask is expected to contribute substantially to the structure and dynamics of the helmet through the effects of added mass and added stiffness. Facemasks may increase the peak acceleration and severity index; therefore, as-used helmets may not mitigate head impacts as effectively as certification tests indicate. Furthermore, the effect is expected to depend on the helmet design as well as the orientation and speed of the impact. This study examined the influence of the facemask on impact behavior in a NOCSAE-style linear drop test and the interactions with location, velocity, and helmet model. Increases in peak acceleration and severity index of up to 36% were observed when helmets were tested with the facemask.  相似文献   

16.
OBJECTIVE--To examine the risk of injury to the head and the effect of wearing helmets in bicycle accidents among children. DESIGN--Case-control study by questionnaire completed by the children and their carers. SETTING--Two large children''s hospitals in Brisbane, Australia. SUBJECT--445 children presenting with bicycle related injuries during 15 April 1991 to 30 June 1992. The cases comprised 102 children who had sustained injury to the upper head including the skull, forehead and scalp or loss of consciousness. The controls were 278 cyclists presenting with injuries other than to the head or face. A further 65 children with injuries to the face were considered as an extra comparison group. MAIN OUTCOME MEASURES--Cause and type of injury, wearing of helmet. RESULTS--Most children (230) were injured after losing control and falling from their bicycle. Only 31 had contact with another moving vehicle. Children with head injury were significantly more likely to have made contact with a moving vehicle than control children (19 (19%) v 12 (4%), P < 0.001). Head injuries were more likely to occur on paved surfaces than on grass, gravel, or dirt. Wearing a helmet reduced the risk of head injury by 63% (95% confidence interval 34% to 80%) and of loss of consciousness by 86% (62% to 95%). CONCLUSIONS--The risk of head injury in bicycle accidents is reduced among children wearing a helmet. Current helmet design maximises protection in the type of accident most commonly occurring in this study. Legislation enforcing helmet use among children should be considered.  相似文献   

17.
It has been established that substantial negative changes in neurocognitive function can be observed in a large percentage of athletes who participate in contact sports such as soccer or football, motivating a need for improved safety systems. Head accelerations in men’s lacrosse are similar to those in football and female lacrosse players experience high rates of concussions, necessitating better head protection in both sports. Previous studies have sought to evaluate the ability of modern football helmets to mitigate impacts both normal and oblique to the surface of the helmet using a system that quantifies both the input load and the resulting accelerations of a Hybrid III headform. This study quantifies the inputs and outputs of the helmet-Hybrid III headform system in order to compare the impact attenuation capability of two male and two female lacrosse helmets. Of those helmets tested, the better performing male helmet was the Schutt Stallion 650 and the better performing female helmet was the Hummingbird excepting device failure at the rear boss impact location, but football helmets still generally outperformed the lacrosse helmets tested here.  相似文献   

18.
The purpose of the current study was to determine the effect of a locally administered nonselective β-adrenergic antagonist on sweat gland function during exercise. Systemically administered propranolol has been reported to increase, decrease, or not alter sweat production during exercise. To eliminate the confounding systemic effects associated with orally administered propranolol, we used iontophoresis to deliver it to the eccrine sweat glands within a localized area on one forearm prior to exercise. This allowed for determination of the direct effect of β-adrenergic receptor blockade on sweating during exercise. Subjects (n = 14) reported to the laboratory (23 ± 1°C, 35 ± 3% relative humidity) after having refrained from exercise for ≥12 h. Propranolol (1% solution) was administered to a 5-cm(2) area of the flexor surface of one forearm via iontophoresis (1.5 mA) for 5 min. A saline solution was administered to the opposing arm via iontophoresis. Each subject then exercised on a motor-driven treadmill at 75% of their age-predicted maximal heart rate for 20 min, while sweat rate was measured simultaneously in both forearms. Immediately after cessation of exercise, the number of active sweat glands was measured by application of iodine-impregnated paper to each forearm. The sweat rate for the control and propranolol-treated forearm was 0.62 ± 41 and 0.60 ± 0.44 (SD) mg·cm(-2)·min(-1), respectively (P = 0.86). The density of active sweat glands for the control and propranolol-treated forearm was 130 ± 6 and 134 ± 5 (SD) glands/cm(2), respectively, (P = 0.33). End-exercise skin temperature was 32.9 ± 0.2 and 33.1 ± 0.3°C for the control and propranolol-treated forearm, respectively (P = 0.51). Results of the current study show that when propranolol is administered locally, thus eliminating the potential confounding systemic effects of the drug, it does not directly affect sweating during the initial stages of high-intensity exercise in young, healthy subjects.  相似文献   

19.
Jockey head injuries, especially concussions, are common in horse racing. Current helmets do help to reduce the severity and incidences of head injury, but the high concussion incidence rates suggest that there may be scope to improve the performance of equestrian helmets. Finite element simulations in ABAQUS/Explicit were used to model a realistic helmet model during standard helmeted rigid headform impacts and helmeted head model University College Dublin Brain Trauma Model (UCDBTM) impacts.

Current helmet standards for impact determine helmet performance based solely on linear acceleration. Brain injury-related values (stress and strain) from the UCDBTM showed that a performance improvement based on linear acceleration does not imply the same improvement in head injury-related brain tissue loads. It is recommended that angular kinematics be considered in future equestrian helmet standards, as angular acceleration was seen to correlate with stress and strain in the brain.  相似文献   

20.
The mean ±s.e. optimum temperature (T(opt)) for aerobic scope in juvenile coho salmon Oncorhynchus kisutch was determined to be 17·0 ± 0·7° C. The repeated measures protocol took 3 weeks to complete the T(opt) determination using 12 fish tested at five temperatures separated by 2° C increments. This experiment also demonstrated that the T(opt) was associated with maximum heart rate (f(H)) failing to maintain a Q(10) -related increase with temperature. When maximum f(H) was produced in anaesthetized fish with pharmacological stimulation and f(H) measured from electrocardiogram recordings during acute warming, the Arrhenius break temperature (ABT) for Q(10) discontinuities in maximum f(H) (mean ±s.e. = 17·1 ± 0·5° C for 15 ppm clove oil and 16·5 ± 0·2° C for 50 ppm MS-222) was statistically indistinguishable from the T(opt) measured using aerobic scope. Such a determination took only 3 days rather than 3 weeks. Therefore, it is proposed that determining ABT for discontinuities in maximum f(H) in anaesthetized fish presents itself as a valuable, high-throughput screening tool to assess T(opt) in fishes, a metric that has become recognized as being extremely valuable in fish biology and fisheries management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号