首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sugarcane cell cultures were obtained from callus formed on explants derived from young expanding leaves of two early maturing sugarcane varieties viz “CoJ83” and “CoJ86”. The cell cultures were varied with different arginine concentrations in the culture medium. For each cultivar, sucrose content with 20 μM arginine in the culture medium decreased from 3 to 5 days and then increased to 10 days after subculturing. Higher concentration of arginine in the culture medium (60 μM) decreased the sucrose content at different days after subculturing and thus significantly stimulated sucrose mobilization. The activity of sucrose synthase and sucrose phosphate synthase reached maximum while the activity of acid and neutral invertase was minimal in the culture medium with 20 μM arginine. Thus arginine at low concentration (20 μM) enables the cells to accumulate the higher level of sucrose. The optimum level of amino acids can be utilized to regulate the in vivo activity of sucrose synthase, sucrose phosphate synthase and invertase to achieve maximum sucrose accumulation in sugarcane storage tissue.  相似文献   

2.
  总被引:1,自引:0,他引:1  
The possible involvement of acid invertase (sucrose hydrolysis) as a prerequisite for sucrose mobilization from the vacuole of storage cells was investigated. Sugarcane ( Saccharum officinarum ) stalks, carrot ( Daucus carota ) roots and red beet ( Beta vulgaris ) hypocotyls were planted under greenhouse conditions and allowed to resume growth. The plants, however, were not permitted to become photosynthetically autotrophic by removing the new expanded leaves. Sucrose levels declined significantly in all three tissues without the development of acid invertase (EC 3.2.1.26) during the 21‐day experimental period. Acid invertase and thus sucrose hydrolysis within the vacuole was, therefore, not required for sucrose mobilization.  相似文献   

3.
大多数植物的库器官都是以蔗糖的形式接受碳源和能源,蔗糖进入库代谢需要转化酶和蔗糖合成酶降解成为葡萄糖和果糖,而糖又调节植物代谢过程中许多酶的基因表达,因此蔗糖降解酶是植物生长发育中起关键作用的酶.综述了近年来蔗糖合成酶和转化酶的作用及它们基因表达和调节的研究进展.  相似文献   

4.
网纹甜瓜发育果实糖分积累与蔗糖代谢参与酶的关系   总被引:29,自引:0,他引:29  
随着网纹甜瓜果实的发育,果实中葡萄糖和果糖的含量增加,蔗糖的快速积累发生在果实发育的中后期,高蔗糖积累型果实中蔗糖积累速率明显快于低蔗糖积累型.蔗糖磷酸合成酶活性在果实发育的前期短暂下降, 而后稳步上升,在果实发育的中后期高蔗糖积累型果实中该酶的活性显著高于低蔗糖积累型果实;随着果实发育,蔗糖合成酶的分解活性降低而合成活性升高.酸性和中性转化酶在未成熟果实中活性较高,而在成熟果实中很低; 高蔗糖积累型果实中酸性转化酶活性显著低于同期低蔗糖积累型果实.合成蔗糖的酶活性小于分解蔗糖的酶活性时蔗糖几乎没有积累.根据这些结果推测,转化酶活性的下降、蔗糖磷酸合成酶活性的增加以及蔗糖合成酶分解活性的下降和合成活性的增加,是引起果实蔗糖积累的主要内在因子.  相似文献   

5.
蔗糖是一类重要的碳水化合物,其代谢与植物生长发育及抵抗胁迫等有密切的关系。蔗糖合成酶(SUS)、蔗糖磷酸合成酶(SPS)与蔗糖转化酶(INV)是参与蔗糖代谢的三类关键酶。本研究依据转录组测序数据,从能源植物菊芋中鉴定了2个SUS、2个SPS和7个INV基因(GenBank No:MK386943-53)。生物信息学分析表明,菊芋SUS、SPS和INV的氨基酸序列与其他物种具有较高的相似性,均属于亲水性蛋白。在25、30°C处理10、15、20 d的菊芋幼苗叶片中,这三种基因家族成员呈现不同的表达模式;除可溶性总糖含量减少外,果糖、蔗糖、蔗果三糖等含量没有发生明显变化。表明高温下幼苗蔗糖代谢关键酶基因发生了响应,蔗糖代谢处于平衡状态,显示了菊芋对高温的良好耐受性。  相似文献   

6.
The activities of sucrose-phosphate synthase (SPS), sucrose synthase (SUSY), neutral invertase (NI) and soluble acid invertase (SAI) regulates sucrose activity in sugarcane were studied. Micropropagated sugarcane plants were obtained from callus cultures of four Mexican commercially available sugarcane varieties characterized by differences in sugar production, and activities of SPS, SUSY, NI, SAI and concentrations of sucrose were monitored in the sugarcane stem. The results indicated that sucrose accumulation was positively and significantly related to an increase in activity of SPS and SUSY and negatively to a reduction in activity of SAI and NI (P<0.05). SPS explained most of the variations found for sucrose accumulation and least for NI. The relationship between activity of SPS, SUSY, NI and SAI in sugarcane stem was similar in each variety.  相似文献   

7.
The effects of chilling stress on leaf photosynthesis and sucrose metabolism were investigated in tomato plants (Lycopersicon esculentum Mill. cultivar Marmande). Twenty-one-day-old seedlings were grown in a growth chamber at 25/23 °C (day/night) (control) and at 10/8 °C (day/night) (chilled) for 7 days. The most evident effect of chilling was the marked reduction of plant growth and of CO2 assimilation as measured after 7 days, the latter being associated with a decrease in stomatal closure and an increase in Ci. The inhibition in photosynthetic rate was also related to an impairment of photochemistry of photosystem II (PSII), as seen from the slight, but significant change in the ratio of Fv/Fm. The capacity of chilled leaves to maintain higher qP values with respect to the controls suggests that some protection mechanism prevented excess reduction of PSII acceptors. The results of the determination of starch and soluble sugar content could show that chilling impaired sucrose translocation. The activity of leaf invertase increased significantly in chilled plants, while that of other sucrose-metabolizing enzymes was not affected by growing temperature. Furthermore, the increase in invertase (neutral and acid) activity, which is typical of senescent tissue characterized by reduced growth, seems to confirm that tomato is a plant which is not a plant genetically adapted to low temperatures.  相似文献   

8.
龙柚果肉糖积累与蔗糖代谢相关酶活性的研究   总被引:1,自引:0,他引:1  
本文探讨龙柚果实发育过程中果肉糖积累与蔗糖代谢相关酶活性的变化。结果表明,在龙柚果实发育过程中,3种可溶性糖含量同步上升,在果实膨大期和成熟期,以蔗糖积累为主。在龙柚糖积累过程中,蔗糖合成酶(SS)和蔗糖磷酸合成酶(SPS)活性较高;而蔗糖中性转化酶(NI)活性则随着蔗糖的积累而降低。  相似文献   

9.
Recent reports have suggested that sucrose phosphate synthase (EC 2.4.1.14), a key enzyme in sucrose biosynthesis in photosynthetic “source” tissues, may also be important in some sucrose accumulating “sink” tissues. These experiments were conducted to determine if sucrose phosphate synthase is involved in sucrose accumulation in fruits of several species. Peach (Prunus persica NCT 516) and strawberry (Fragaria x ananassa cv. Chandler) fruits were harvested directly from the plant at various stages of fruit development. Kiwi (Actinidia chinensis), papaya (Carica papaya), pineapple (Ananas comosus) and mango (Mangifera indica) were sampled in postharvest storage over a period of several days. Carbohydrate concentrations and activities of sucrose phosphate synthase, sucrose synthase (EC 2.4.1.13), and acid and neutral invertases (EC 3.2.1.26) were measured. All fruits contained significant activities of sucrose phosphate synthase. Moreover, in fruits from all species except pineapple and papaya, there was an increase in sucrose phosphate synthase activity associated with the accumulation of sucrose in situ. The increase in sucrose concentration in peaches was also associated with an increase in sucrose synthase activity and, in strawberries, with increased activity of both sucrose synthase and neutral invertase. The hexose pools in all fruits were comprised of equimolar concentrations of fructose and glucose, except in the mango. In mango, the fructose to glucose ratio increased from 2 to 41 during ripening as sucrose concentration more than doubled. The results of this study indicate that activities of the sucrose metabolizing enzymes, including sucrose phosphate synthase, within the fruit itself, are important in determining the soluble sugar content of fruits of many species. This appears to be true for fruits which sweeten from a starch reserve and in fruits from sorbitol translocating species, raffinose saccharide translocating species, and sucrose translocating species.  相似文献   

10.
    
The presence of sucrose and the enzymes related to sucrose metabolism, i.e. sucrose synthase (SS) (UDP-glucose: D-fructose-2-glucosyl transferase, EC 2.4.1.13), sucrose phosphate synthase (SPS) (UDP-glucose: D-fructose-6-phosphate-2-glucosyl transferase, EC 2.4.1.14) and invertase (β-D-fructofuranoside fructohydrolase, EC 3.2.1.26) was demonstrated in Prototheca zopfii, a colorless alga. The levels of enzyme activities were lower than those obtained in Chlorella vulgaris, which is generally considered the photosynthetic counterpart of P. zopfii. Whem enzyme activities were measured in bleached cells of C. vulgaris, the levels were of the same order than those found in P. zopfii. These results would indicate that the sucrose metabolizing enzymes are not related to the algae ability to carry on photosynthesis.  相似文献   

11.
12.
Sucrose accumulation and enzyme activities in callus culture of sugarcane   总被引:1,自引:0,他引:1  
The activities of sucrose phosphate synthase (SPS), sucrose synthase (SUSY), neutral invertase (NI) and soluble acid invertase (SAI) were measured in callus cultures of four Mexican sugarcane cultivars (Saccharum spp.) with a different capacity to accumulate sucrose in stem parenchyma cells. The results indicated that sucrose accumulation in callus was positively correlated to the activity of SPS and SUSY and negatively to the activity of SAI and NI while SPS explained most of the variation found for sucrose accumulation and NI least.The research was funded by the department of Biotechnology and Bioengineering CINVESTAV Mexico City, and F. G.-M. received grant-aided support from CONACyT, Mexico.  相似文献   

13.
枇杷果实发育过程中糖积累及相关酶活性变化研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以'青种'、'霸红'和'鸡蛋白'3个枇杷品种为材料,测定不同果实发育时期果实中蔗糖、葡萄糖和果糖含量以及蔗糖代谢相关酶即酸性转化酶(AI)、中性转化酶(NI)、蔗糖合成酶(SS)和蔗糖磷酸合成酶(SPS)的活性,并对果实中糖积累与酶活性的关系进行了分析.结果表明:在果实膨大期(5月3日)之前,3种枇杷果实的蔗糖、葡萄糖和果糖积累缓慢,之后则迅速积累,存在着明显的转折点;果实成熟(5月23日)之后糖分积累速度趋于平稳.3种枇杷果实在发育过程中转化酶、蔗糖合成酶和蔗糖磷酸合成酶的活性变化与3种糖积累的动态变化趋势相一致.NI和AI活性在果实膨大期之前都较低且没有明显的变化,之后均快速上升;SS和SPS的活性在果实膨大期之前都很低且几乎无变化,随后'鸡蛋白'的活性迅速上升至果实成熟之后便缓慢上升,而'青种'和'霸红'随果实成熟度的增加而升高,但均低于'鸡蛋白'.可见,枇杷果实膨大期是糖分积累代谢活跃期,其糖积累受蔗糖代谢相关酶综合调控.  相似文献   

14.
The activity of sucrose-phosphate synthase (SPS) in sugar beet (Beta vulgaris L.) leaves was shown to exceed considerably the synthesizing activity of sucrose synthase (SS). The rise in SPS activity was related to the daylight period; i.e., it was associated with the rate of photosynthesis. The highest SPS activity was characteristic of fully expanded source leaves. In young developing leaves (leaves expanded to less than half of their final size), which represent the sink organs, the SPS activity was 2.5 times lower. At all stages of leaf development, the synthesizing SS activity was rather low. The diurnal change of SS activity was independent of photosynthesis and showed a slight rise from 6:00–8:00 p.m. Under field conditions, the highest SPS activity was found in leaves in the terminal stage of their development (105-day-old plants); the synthesizing activity of SS showed little changes during this period. The activity of soluble acid invertase was characteristic of young leaves. In mature leaves, the activity of this enzyme correlated with the daylight period. These changes occurred on the background of low sucrose content in leaves. The regulation of SPS, SS, and invertase activity is discussed. It is supposed that compartmentation of these enzymes in the photosynthesizing cell is important for transport, metabolism, and the osmotic function of sucrose in leaves.  相似文献   

15.
This work reports changes in sucrose synthase and invertase activities throughout endosperm development in wheat, together with the associated substrates and metabolites, sucrose, UDP, glucose, fructose and UDP-glucose. Throughout endosperm development, sucrose synthase had consistently higher activity than invertase and indeed invertase activity did not change appreciably. The observed variation in pattern and amounts of glucose and fructose present during the mid- and late stages of endosperm development confirmed the suggestion that invertase was not the preferred pathway of sucrose catabolism. Kinetic parameters for sucrose synthase were determined in crude extracts. Estimates of UDP and sucrose concentrations suggest that sucrose synthase is unlikely to achieve its potential maximum velocity. This limitation may however be overcome in part by the apparent excess catalytic activity measured during endosperm development.  相似文献   

16.
以‘台农1号’芒果为材料,测定了果实生长发育过程中淀粉、蔗糖、葡萄糖和果糖含量以及淀粉酶、蔗糖代谢相关酶———酸性转化酶(AI)、中性转化酶(NI)、蔗糖合成酶(SS)和蔗糖磷酸合成酶(SPS)的活性,并对果实中糖组分与酶活性的关系进行了分析.结果显示,(1)台农1号芒果果实属于单S型生长曲线,发育前期主要积累淀粉、葡萄糖和果糖,果实成熟软化时,淀粉酶活性降至最低,淀粉水解,蔗糖快速积累.(2)酸性转化酶活性在果实整个发育过程中维持最高,完熟时略有降低;蔗糖磷酸合成酶在果实发育前期略有降低,完熟时升至最高;蔗糖合成酶和中性转化酶活性在整个发育期一直很低且较稳定.(3)淀粉含量与淀粉酶活性呈显著正相关,与SPS活性呈极显著负相关,蔗糖、葡萄糖含量均与SPS、SS呈显著、极显著的正相关;果糖含量与SS呈极显著的正相关.研究表明,芒果成熟时淀粉分解、酸性转化酶活性的降低,且蔗糖合成酶和蔗糖磷酸合成酶活性的增加是引起果实蔗糖积累的主要因子.  相似文献   

17.
We examined variability in sucrose levels and metabolism in ripe fruits of wild and domestic Vaccinium species and in developing fruits of cultivated blueberry (V. ashei and V. corymbosum). The objective was to determine if sufficient variability for fruit sucrose accumulation was present in existing populations to warrant attempts to breed for high-sucrose fruit, which potentially would be less subject to bird predation. Threefold differences in fruit sucrose concentration were found among Vaccinium species, ranging from 19 to 24 mg (g fresh weight)?1 in V. stamineum and V. arboreum to approximately 7 mg (g fresh weight)?1 in cultivated blueberry (V. ashei and V. corymbosum) and V. darrowi. Hexose levels were similar among species, ranging from 90 to 110 mg (g fresh weight)–1, and glucose and fructose were present in equal amounts. Soluble acid invertase (EC 3.2.1.26) activity was negatively correlated with fruit sucrose concentration. There was no apparent correlation between fruit sugar concentration and either sucrose synthase (EC 2.4.1.13) or sucrose phosphate synthase (EC 2.4.1.14) activities, both of which were low for all species studied. Developmental increases in fruit sugar levels of cultivated blueberry followed a pattern similar to that observed in fruit fresh weight accumulation. Hexose concentrations ranged from 6 to 30 mg (g fresh weight)?1 during the first 60 days after anthesis. Between 60 days and fruit ripening (80 days), hexose levels rose from 30 to 80 mg (g fresh weight)?1. Sucrose was not detected in fruits until ripening, when low levels were found. Insoluble acid invertase activity was relatively high early in fruit development, decreasing as soluble acid invertase activity increased. Between 60 days and fruit ripening, soluble acid invertase activity increased from 3 to 55 μmol (g fresh weight)–1 h–1. Both sucrose synthase and sucrose phosphate synthase activities were low throughout development. The extent of sucrose accumulation in fruits and the degree of variability for this trait among Vaccinium species support the feasibility of developing high sucrose fruits, which would be a potentially valuable addition to current strategies of minimizing crop losses to birds.  相似文献   

18.
    
Regulation of carbohydrate metabolism and compartmentation were studied during the acclimatization of tissue cultured Calathea plantlets. At transplantation plants were characterised by a heterotrophic metabolism with roots and stems as the main storage organs for carbohydrates. As acclimatization proceeded, a switch to autotrophic growth was observed: leaves became source organs, which was among others reflected by significant increases of invertase, sucrose synthase and sucrose-P synthase activities. Mobilization of reserves in roots and stems was also observed during the same period. Sucrose and starch accumulation in leaves was positively correlated with increasing light intensity.  相似文献   

19.
Higher amylase activity in cotyledons of kinetin treated salt stressed (75 mM NaCl) chickpea (Cicer arietinum L. cv. PBG-1) seedlings, as compared to salt stressed seedlings was observed during a growth period of 7 d. The activities of acid and alkaline invertases were maximum in shoots and minimum in cotyledons under all conditions. The reduced shoot invertase activities under salt stress were enhanced by kinetin with a simultaneous increase in reducing sugar content. Kinetin increased the activities of sucrose synthase (SS) and sucrose phosphate synthase (SPS) in both the cotyledons and shoots of stressed seedlings. Kinetin appears to increase the turnover of sucrose in the shoots of stressed seedlings.  相似文献   

20.
Accumulation of 60–70 % of biomass in turnip root takes place between 49–56 days after sowing. To understand the phenomenon of rapid sink filling, the activities of sucrose metabolising enzymes and carbohydrate composition in leaf blades, petiole and root of turnip from 42–66 days of growth were determined. An increase (2–3 folds) in glucose and fructose contents of roots accompanied by an increase in activities of acid and alkaline invertases was observed during rapid biomass accumulating phase of roots. The observed decrease in the activities of acid and alkaline invertases along with sucrose synthase (cleavage) in petiole during this period could facilitate unrestricted transport of sucrose from leaves to the roots. During active root filling period, a decrease in sucrose synthase (cleavage) and alkaline invertase activities was also observed in leaf blades. A rapid decline in the starch content of leaf blades was observed during the phase of rapid sink filling. These metabolic changes in the turnip plant led to increase in hexose content (35–37 %) of total dry biomass of roots at maturity. High hexose content of the roots appears to be due to high acid invertase activity of the root.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号