首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genome of bread wheat (Triticum aestivum) is predicted to be greater than 16 Gbp in size and consist predominantly of repetitive elements, making the sequencing and assembly of this genome a major challenge. We have reduced genome sequence complexity by isolating chromosome arm 7DS and applied second‐generation technology and appropriate algorithmic analysis to sequence and assemble low copy and genic regions of this chromosome arm. The assembly represents approximately 40% of the chromosome arm and all known 7DS genes. Comparison of the 7DS assembly with the sequenced genomes of rice (Oryza sativa) and Brachypodium distachyon identified large regions of conservation. The syntenic relationship between wheat, B. distachyon and O. sativa, along with available genetic mapping data, has been used to produce an annotated draft 7DS syntenic build, which is publicly available at http://www.wheatgenome.info . Our results suggest that the sequencing of isolated chromosome arms can provide valuable information of the gene content of wheat and is a step towards whole‐genome sequencing and variation discovery in this important crop.  相似文献   

2.
The high-molecular-weight (HMW) glutenin genes, located on the group 1L chromosome arms, are a major determinant for baking quality in wheat ( Triticum aestivum L.). In addition, the HMW glutenin genes provide a valuable model system for studying the evolution and regulation of orthologous and paralogous genes in polyploid species. The goal of this study was to identify loci that modify the expression of the HMW glutenins, and to map them to specific chromosome arms. Comparisons were made between endosperms with zero versus three (or three versus six) doses for each of the 42 chromosome arms of wheat. SDS-PAGE and scanning densitometry were used to quantify the protein expression levels of the four HMW glutenin genes in cv. Chinese Spring, for each of the dosage comparisons. Fifteen chromosome arms were found to have significant effects on Glu-B1-1, excluding the structural gene dosage effect: eight positive effects on 1AL, 2AS, 2BL, 2DS, 5DS, 6AL, 6DL, and 7AL and seven negative effects on 1BS, 1DS, 1DL, 4DL, 6BS, 6DS, and 7AS. Nineteen chromosome arms had significant effects on Glu-B1-2, excluding the structural gene dosage effect: eight positive effects on 1AL, 2AS, 2BS, 3AL, 4BL, 6DS, 7BL and 7DS and 11 negative effects on 1AS, 1BS, 1DS, 1DL, 2AL, 2BL, 3DS, 4BS, 4DL, 5BL, and 6BS. Twenty chromosome arms had significant effects on Glu-D1-1, excluding the structural gene dosage effect: 11 positive effects on 1AL, 1BL, 2BS, 2DS, 5BS, 5DS, 6AL, 6DS, 6DL, 7AL, and 7BL and nine negative effects on 1AS, 1BS, 1DS, 2BL, 4DL, 5BL, 5DL, 6BL, and 7DS. Twenty-five chromosome arms had significant effects on Glu-D1-2, excluding the structural gene dosage effect: 17 positive effects on 1BL, 2AS, 2BS, 2DS, 2DL, 3AS, 3AL, 3BS, 5AS, 5BS, 5DL, 6AL, 6DL, 7AL, 7BS, 7BL, and 7DL and eight negative effects on 1DS, 4DL, 5AL, 5BL, 6BS, 6BL, 6DS and 7DS. Of the 164 gene-chromosome arm tests performed, about 52% (85/164) showed no significant effects, and 48% (79/164) showed significant effects, excluding the structural gene dosage effects. Of the significant effects, 56% (44/79) were positive effects, and 44% (35/79) were negative effects. Comparisons of dosage effects on orthologous loci (both x-type or both y-type HMW glutenins) showed that orthologous HMW glutenin genes are largely influenced by the same regulatory systems. Less correlation was found for comparisons between paralogous genes, although considerable conservation was observed at this level as well. These observations suggest that after polyploidization, many of the duplicated orthologous regulatory loci were inactivated by mutation, thus consolidating control over the HMW glutenin genes. Possible candidates for orthologous regulatory genes were identified in maize and barley. This study represents the first comprehensive search of the wheat genome for regulators of the HMW glutenins.  相似文献   

3.
EST and genomic DNA sequencing efforts for rice and wheat have provided the basis for interpreting genome organization and evolution. In this study we have used EST and genomic sequencing information and a bioinformatic approach in a two-step strategy to align portions of the wheat and rice genomes. In the first step, wheat ESTs were used to identify rice orthologs and it was shown that wheat 3S and rice 1 contain syntenic units with intrachromosomal rearrangements. Further analysis using anchored rice contiguous sequences and TBLASTX alignments in a second alignment step showed interruptions by orthologous genes that map elsewhere in the wheat genome. This indicates that gene content and order is not as conserved as large chromosomal blocks as previously predicted. Similarly, chromosome 7L contains syntenic units with rice 6 and 8 but is interrupted by combinations of intrachromosomal and interchromosomal rearrangements involving syntenic units and single gene orthologs from other rice chromosome groups. We have used the rice sequence annotations to identify genes that can be used to develop markers linked to biosynthetic pathways on 3BS controlling xanthophyll production in wheat and thus involved in determining flour colour.Electronic Supplementary Material Supplementary material is available in the online version of this article at .  相似文献   

4.
Ent-kaurenoic acid oxidase (KAO) catalysis three steps in the gibberellin (GA) biosynthesis pathway, which yields a large hormone family affecting plant growth and development. In the current study, we performed partial gene cloning and comparative structural and mapping analysis among three Kao genes in bread wheat (Triticum aestivum L.). Molecular-marker-based mapping demonstrated that the Kao loci map to the distal ends of the chromosome arms 7AS, 4AL and 7DS, corresponding to the 7BS/4AL translocation region. Co-linearity of the chromosomal regions carrying the Kao genes was shown. It was concluded that the Kao genes we mapped represent a homoeoloci set, therefore the genes were designated Kao-A1 (chromosome 7AS), Kao-B1 (4AL), and Kao-D1 (7DS). It was found that exonic sequences of the three homoeologues differ from each other mainly by silent mutations, and each homoeologue is expressed.  相似文献   

5.
Wheat is one of the world's most important crops and is characterized by a large polyploid genome. One way to reduce genome complexity is to isolate single chromosomes using flow cytometry. Low coverage DNA sequencing can provide a snapshot of individual chromosomes, allowing a fast characterization of their main features and comparison with other genomes. We used massively parallel 454 pyrosequencing to obtain a 2x coverage of wheat chromosome 5A. The resulting sequence assembly was used to identify TEs, genes and miRNAs, as well as to infer a virtual gene order based on the synteny with other grass genomes. Repetitive elements account for more than 75% of the genome. Gene content was estimated considering non-redundant reads showing at least one match to ESTs or proteins. The results indicate that the coding fraction represents 1.08% and 1.3% of the short and long arm respectively, projecting the number of genes of the whole chromosome to approximately 5,000. 195 candidate miRNA precursors belonging to 16 miRNA families were identified. The 5A genes were used to search for syntenic relationships between grass genomes. The short arm is closely related to Brachypodium chromosome 4, sorghum chromosome 8 and rice chromosome 12; the long arm to regions of Brachypodium chromosomes 4 and 1, sorghum chromosomes 1 and 2 and rice chromosomes 9 and 3. From these similarities it was possible to infer the virtual gene order of 392 (5AS) and 1,480 (5AL) genes of chromosome 5A, which was compared to, and found to be largely congruent with the available physical map of this chromosome.  相似文献   

6.
7.
ABSTRACT: BACKGROUND: Polyploidization is considered one of the main mechanisms of plant genome evolution. The presence of multiple copies of the same gene reduces selection pressure and permits sub-functionalization and neo-functionalization leading to plant diversification, adaptation and speciation. In bread wheat, polyploidization and the prevalence of transposable elements resulted in massive gene duplication and movement. As a result, the number of genes which are non-collinear to genomes of related species seems markedly increased in wheat. RESULTS: We used new-generation sequencing (NGS) to generate sequence of a Mb-sized region from wheat chromosome arm 3DS. Sequence assembly of 24 BAC clones resulted in two scaffolds of 1,264,820 and 333,768 bases. The sequence was annotated and compared to the homoeologous region on wheat chromosome 3B and orthologous loci of Brachypodium distachyon and rice. Among 39 coding sequences in the 3DS scaffolds, 32 have a homoeolog on chromosome 3B. In contrast, only fifteen and fourteen orthologs were identified in the corresponding regions in rice and Brachypodium, respectively. Interestingly, five pseudogenes were identified among the non-collinear coding sequences at the 3B locus, while none was found at the 3DS locus. CONCLUSION: Direct comparison of two Mb-sized regions of the B and D genomes of bread wheat revealed similar rates of non-collinear gene insertion in both genomes with a majority of gene duplications occurring before their divergence. Relatively low proportion of pseudogenes was identified among non-collinear coding sequences. Our data suggest that the pseudogenes did not originate from insertion of non-functional copies, but were formed later during the evolution of hexaploid wheat. Some evidence was found for gene erosion along the B genome locus.  相似文献   

8.
Bread wheat (Triticum aestivum, AABBDD) is an allohexaploid species derived from two rounds of interspecific hybridizations. A high-quality genome sequence assembly of diploid Aegilops tauschii, the donor of the wheat D genome, will provide a useful platform to study polyploid wheat evolution. A combined approach of BAC pooling and next-generation sequencing technology was employed to sequence the minimum tiling path (MTP) of 3176 BAC clones from the short arm of Ae. tauschii chromosome 3 (At3DS). The final assembly of 135 super-scaffolds with an N50 of 4.2 Mb was used to build a 247-Mb pseudomolecule with a total of 2222 predicted protein-coding genes. Compared with the orthologous regions of rice, Brachypodium, and sorghum, At3DS contains 38.67% more genes. In comparison to At3DS, the short arm sequence of wheat chromosome 3B (Ta3BS) is 95-Mb large in size, which is primarily due to the expansion of the non-centromeric region, suggesting that transposable element (TE) bursts in Ta3B likely occurred there. Also, the size increase is accompanied by a proportional increase in gene number in Ta3BS. We found that in the sequence of short arm of wheat chromosome 3D (Ta3DS), there was only less than 0.27% gene loss compared to At3DS. Our study reveals divergent evolution of grass genomes and provides new insights into sequence changes in the polyploid wheat genome.  相似文献   

9.

Background

The ~17 Gb hexaploid bread wheat genome is a high priority and a major technical challenge for genomic studies. In particular, the D sub-genome is relatively lacking in genetic diversity, making it both difficult to map genetically, and a target for introgression of agriculturally useful traits. Elucidating its sequence and structure will therefore facilitate wheat breeding and crop improvement.

Results

We generated shotgun sequences from each arm of flow-sorted Triticum aestivum chromosome 5D using 454 FLX Titanium technology, giving 1.34× and 1.61× coverage of the short (5DS) and long (5DL) arms of the chromosome respectively. By a combination of sequence similarity and assembly-based methods, ~74% of the sequence reads were classified as repetitive elements, and coding sequence models of 1314 (5DS) and 2975 (5DL) genes were generated. The order of conserved genes in syntenic regions of previously sequenced grass genomes were integrated with physical and genetic map positions of 518 wheat markers to establish a virtual gene order for chromosome 5D.

Conclusions

The virtual gene order revealed a large-scale chromosomal rearrangement in the peri-centromeric region of 5DL, and a concentration of non-syntenic genes in the telomeric region of 5DS. Although our data support the large-scale conservation of Triticeae chromosome structure, they also suggest that some regions are evolving rapidly through frequent gene duplications and translocations.

Sequence accessions

EBI European Nucleotide Archive, Study no. ERP002330

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1080) contains supplementary material, which is available to authorized users.  相似文献   

10.
A molecular-marker linkage map of hexaploid wheat (Triticum aestivum L. em. Thell) provides a framework for integration with the classical genetic map and a record of the chromosomal rearrangements involved in the evolution of this crop species. We have constructed restriction fragment length polymorphism (RFLP) maps of the A-, B-, and D-genome chromosomes of homoeologous groups 4, 5, and 7 of wheat using 114 F(7) lines from a synthetic X cultivated wheat cross and clones from 10 DNA libraries. Chromosomal breakpoints for known ancestral reciprocal translocations involving these chromosomes and for a known pericentric inversion on chromosome 4A were localized by linkage and aneuploid analysis. Known genes mapped include the major vernalization genes Vrn1 and Vrn3 on chromosome arms 5AL and 5DL, the red-coleoptile gene Rc1 on 7AS, and presumptively the leaf-rust (Puccinia recondita f.sp. tritici) resistance gene Lr34 on 7DS and the kernel-hardness gene Ha on 5DS. RFLP markers previously obtained for powdery-mildew (Blumeria graminis f.sp. tritici) resistance genes Pm2 and Pm1 were localized on chromosome arms 5DS and 7AL.  相似文献   

11.

Background

The wheat genome sequence is an essential tool for advanced genomic research and improvements. The generation of a high-quality wheat genome sequence is challenging due to its complex 17 Gb polyploid genome. To overcome these difficulties, sequencing through the construction of BAC-based physical maps of individual chromosomes is employed by the wheat genomics community. Here, we present the construction of the first comprehensive physical map of chromosome 1BS, and illustrate its unique gene space organization and evolution.

Results

Fingerprinted BAC clones were assembled into 57 long scaffolds, anchored and ordered with 2,438 markers, covering 83% of chromosome 1BS. The BAC-based chromosome 1BS physical map and gene order of the orthologous regions of model grass species were consistent, providing strong support for the reliability of the chromosome 1BS assembly. The gene space for chromosome 1BS spans the entire length of the chromosome arm, with 76% of the genes organized in small gene islands, accompanied by a two-fold increase in gene density from the centromere to the telomere.

Conclusions

This study provides new evidence on common and chromosome-specific features in the organization and evolution of the wheat genome, including a non-uniform distribution of gene density along the centromere-telomere axis, abundance of non-syntenic genes, the degree of colinearity with other grass genomes and a non-uniform size expansion along the centromere-telomere axis compared with other model cereal genomes. The high-quality physical map constructed in this study provides a solid basis for the assembly of a reference sequence of chromosome 1BS and for breeding applications.  相似文献   

12.

Key message

Comparison of genome sequences of wild emmer wheat and Aegilops tauschii suggests a novel scenario of the evolution of rearranged wheat chromosomes 4A, 5A, and 7B.

Abstract

Past research suggested that wheat chromosome 4A was subjected to a reciprocal translocation T(4AL;5AL)1 that occurred in the diploid progenitor of the wheat A subgenome and to three major rearrangements that occurred in polyploid wheat: pericentric inversion Inv(4AS;4AL)1, paracentric inversion Inv(4AL;4AL)1, and reciprocal translocation T(4AL;7BS)1. Gene collinearity along the pseudomolecules of tetraploid wild emmer wheat (Triticum turgidum ssp. dicoccoides, subgenomes AABB) and diploid Aegilops tauschii (genomes DD) was employed to confirm these rearrangements and to analyze the breakpoints. The exchange of distal regions of chromosome arms 4AS and 4AL due to pericentric inversion Inv(4AS;4AL)1 was detected, and breakpoints were validated with an optical Bionano genome map. Both breakpoints contained satellite DNA. The breakpoints of reciprocal translocation T(4AL;7BS)1 were also found. However, the breakpoints that generated paracentric inversion Inv(4AL;4AL)1 appeared to be collocated with the 4AL breakpoints that had produced Inv(4AS;4AL)1 and T(4AL;7BS)1. Inv(4AS;4AL)1, Inv(4AL;4AL)1, and T(4AL;7BS)1 either originated sequentially, and Inv(4AL;4AL)1 was produced by recurrent chromosome breaks at the same breakpoints that generated Inv(4AS;4AL)1 and T(4AL;7BS)1, or Inv(4AS;4AL)1, Inv(4AL;4AL)1, and T(4AL;7BS)1 originated simultaneously. We prefer the latter hypothesis since it makes fewer assumptions about the sequence of events that produced these chromosome rearrangements.
  相似文献   

13.
The chromosomal locations of the genes in common wheat that encode the five histones and five members of the HBP (histone gene-binding protein)-1 family were determined by hybridizing their cloned DNAs to genomic DNAs of nullitetrasomic and telosomic lines of common wheat, Triticum aestivum cv. Chinese Spring. The H1 and H2a genes are located on different sets of homoeologous chromosomes or chromosome arms, namely, 5A, 5B and 5D, and 2AS, 2BS and 2DS, respectively. Genes for the other histones, H2b, H3 and H4, are found in high copy number and are dispersed among a large number of chromosomes. The genes for all members of the HBP-1 family are present in small copy numbers. Those for HBP-1a(1) are located on six chromosome arms, 3BL, 5AL, 5DL, 6AL, 6BS and 7DL, whereas those for each HBP-1a(c14), 1a(17), 1b(c1), and 1b(c38) are on a single set of homoeologous chromosome arms; 4AS, 4BL, 4DL; 6AS, 6BS, 6DS; 3AL, 3BL, 3DL; and 3AS, 3BS, 3DS, respectively. The genes for histones H1 and H2a, and for all members of the HBP-1 family except HBP-1a(1) are assumed to have different phylogenetic origins. The genes for histone 2a and HBP-1a(17) are located in the RFLP maps of chromosomes 2B and 6A, respectively. Gene symbols are proposed for all genes whose chromosomal locations have been determined.  相似文献   

14.
Shi JR  Xu DH  Yang HY  Lu QX  Ban T 《Genetica》2008,133(1):77-84
A pyramided FHB resistance line of wheat (WSY) was previously developed from three FHB resistant cultivars (Sumai 3, Wangshuibai, and Nobeokabouzu) in the Jiangsu Academy of Agricultural Sciences, China. In the present study, we analyzed the genetic relationship between WSY and the three parental cultivars using DNA markers in order to clarify how many and which resistance genes had accumulated in WSY. We analyzed 282 DNA markers from the 21 wheat chromosomes. WSY was found to include different chromosome regions that harbored putative FHB QTLs of the three parental germplasm. Haplotypes of DNA markers on these QTL regions revealed that the 1BL, 2BL, 5AS, and 7AL QTL regions were from Sumai 3, the 2AS, 2DS, 3AS, and 6BS QTL regions were from Wangshuibai, and the 3BS QTL region was from Nobeokabouzu. This study showed that different resistance genes from the different resistant germplasm had indeed accumulated in WSY. WSY is a potential resistant resource for FHB resistance in wheat breeding programs.  相似文献   

15.
Targeted Induced Local Lesions in Genomes (TILLING) is a reverse genetics approach to identify novel sequence variation in genomes, with the aims of investigating gene function and/or developing useful alleles for breeding. Despite recent advances in wheat genomics, most current TILLING methods are low to medium in throughput, being based on PCR amplification of the target genes. We performed a pilot-scale evaluation of TILLING in wheat by next-generation sequencing through exon capture. An oligonucleotide-based enrichment array covering ~2 Mbp of wheat coding sequence was used to carry out exon capture and sequencing on three mutagenised lines of wheat containing previously-identified mutations in the TaGA20ox1 homoeologous genes. After testing different mapping algorithms and settings, candidate SNPs were identified by mapping to the IWGSC wheat Chromosome Survey Sequences. Where sequence data for all three homoeologues were found in the reference, mutant calls were unambiguous; however, where the reference lacked one or two of the homoeologues, captured reads from these genes were mis-mapped to other homoeologues, resulting either in dilution of the variant allele frequency or assignment of mutations to the wrong homoeologue. Competitive PCR assays were used to validate the putative SNPs and estimate cut-off levels for SNP filtering. At least 464 high-confidence SNPs were detected across the three mutagenized lines, including the three known alleles in TaGA20ox1, indicating a mutation rate of ~35 SNPs per Mb, similar to that estimated by PCR-based TILLING. This demonstrates the feasibility of using exon capture for genome re-sequencing as a method of mutation detection in polyploid wheat, but accurate mutation calling will require an improved genomic reference with more comprehensive coverage of homoeologues.  相似文献   

16.
17.
The construction of comparative genetic maps of chromosomes 4Am and 5Am of Triticum monococcum and chromosomes of homoeologous groups 4, 5 and 7 of T. aestivum has provided insight into the evolution of these chromosomes. The structures of chromosomes 4A, 5A and 7B of modern-day hexaploid bread wheat can be explained by a 4AL/5AL translocation that occurred at the diploid level and is present both in T. monococcum and T. aestivum. Three further rearrangements, a 4AL/7BS translocation, a pericentric inversion and a paracentric inversion, have taken place in the tetraploid progenitor of hexaploid wheat. These structural rearrangements and the evolution of chromosomes 4A, 5A and 7B of bread wheat are discussed. The presence of the 4AL/5AL translocation in several Triticeae genomes raises two questions — which state is the more primitive, and is the translocation of mono- or poly-phylogenetic origin? The rearrangements that have occurred in chromosome 4A resulted in segments of both arms having different positions relative to the telomere, compared to 4Am and to 4B and 4D. Comparisons of map length in these regions indicate that genetic length is a function of distance from the telomere, with the distal regions showing the highest recombination.  相似文献   

18.
Homoeologous group 1 chromosomes of wheat contain important genes that confer resistance to leaf, stem and stripe rusts, powdery mildew and Russian wheat aphid. A disease resistance gene analog encoding nucleotide binding site-leucine rich repeat (NBS-LRR), designated RgaYr10, was previously identified at the stripe rust resistant locus, Yr10, located on chromosome 1BS distal to the storage protein, Gli-B1 locus. RgaYr10 identified gene members in the homoeologous region of chromosome 1DS cosegregating with the leaf rust resistance gene, Lr21, which originally was transferred from a diploid D genome progenitor. Four RgaYr10 gene members were isolated from chromosome 1DS and compared to two gene members previously isolated from the chromosome 1BS homeologue. NBS-LRR genes tightly linked to stripe rust resistance gene Yr10 on chromosome 1BS were closely related in sequence and structure to NBS-LRR genes tightly linked to leaf rust resistance gene Lr21 located within the homoeologous region on chromosome 1DS. The level of sequence homology was similar between NBS-LRR genes that were isolated from different genomes as compared to genes from the same genome. Electronic Publication  相似文献   

19.
Despite being a major international crop, our understanding of the wheat genome is relatively poor due to its large size and complexity. To gain a greater understanding of wheat genome diversity, we have identified single nucleotide polymorphisms between 16 Australian bread wheat varieties. Whole‐genome shotgun Illumina paired read sequence data were mapped to the draft assemblies of chromosomes 7A, 7B and 7D to identify more than 4 million intervarietal SNPs. SNP density varied between the three genomes, with much greater density observed on the A and B genomes than the D genome. This variation may be a result of substantial gene flow from the tetraploid Triticum turgidum, which possesses A and B genomes, during early co‐cultivation of tetraploid and hexaploid wheat. In addition, we examined SNP density variation along the chromosome syntenic builds and identified genes in low‐density regions which may have been selected during domestication and breeding. This study highlights the impact of evolution and breeding on the bread wheat genome and provides a substantial resource for trait association and crop improvement. All SNP data are publically available on a generic genome browser GBrowse at www.wheatgenome.info .  相似文献   

20.
Fusarium head blight (FHB) is one of the most important fungal wheat diseases worldwide. Understanding the genetics of FHB resistance is the key to facilitating the introgression of different FHB resistance genes into adapted wheat. The objectives of the present study were to detect and map quantitative trait loci (QTL) associated with FHB resistance genes and characterize the genetic components of the QTL in a doubled-haploid (DH) spring wheat population using both single-locus and two-locus analysis. A mapping population, consisting of 174 DH lines from the cross between DH181 (resistant) and AC Foremost (susceptible), was evaluated for type I resistance to initial infection during a 2-year period in spray-inoculated field trials, for Type II resistance to fungal spread within the spike in 3 greenhouse experiments using single-floret inoculation, and for resistance to kernel infection in a 2001 field trial. One-locus QTL analysis revealed 7 QTL for type I resistance on chromosome arms 2DS, 3AS, 3BS, 3BC (centromeric), 4DL, 5AS, and 6BS, 4 QTL for type II resistance on chromosomes 2DS, 3BS, 6BS, and 7BL, and 6 QTL for resistance to kernel infection on chromosomes 1DL, 2DS, 3BS, 3BC, 4DL, and 6BS. Two-locus QTL analysis detected 8 QTL with main effects and 4 additive by additive epistatic interactions for FHB resistance and identified novel FHB resistance genes for the first time on chromosomes 1DL, 4AL, and 4DL. Neither significant QTL by environment interactions nor epistatic QTL by environment interactions were found for either type I or type II resistance. The additive effects of QTL explained most of the phenotypic variance for FHB resistance. Marker-assisted selection for the favored alleles at multiple genomic regions appears to be a promising tool to accelerate the introgression and pyramiding of different FHB resistance genes into adapted wheat genetic backgrounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号