共查询到20条相似文献,搜索用时 15 毫秒
1.
Paudel KR Das BP Rauniar GP Sangraula H Deo S Bhattacharya SK 《Indian journal of experimental biology》2007,45(6):529-531
Tricyclic antidepressant drugs induce antinociceptive effect and suggest that their analgesic action could be related to the monoaminergic activity of the drugs. The analgesic activity of amitriptyline was observed in mouse models of acute pain. Mice were divided into different groups and were given amitriptyline in different doses alone and in combination with morphine. Reaction time in Hot-Plate and Tail-Flick tests was observed. Results showed that amitriptyline had antinociceptive effect in acute pain state in experimental models. Amitriptyline in combination with morphine had better analgesic effect than the morphine alone in Hot-Plate test. 相似文献
2.
Jae-Seung Hong Jing-Hui Feng Jung-Seok Park Hee-Jung Lee Jae-Yong Lee Soon-Sung Lim 《Animal cells and systems.》2020,24(3):143-150
ABSTRACT Chrysin, a natural flavonoid, is the main ingredient of many medicinal plants, which shows potent pharmacological properties. In the present study, the antinociceptive effects of chrysin were examined in ICR mice. Chrysin orally administered at the doses of from 10 to 100?mg/kg exerted the reductions of formalin-induced pain behaviors observed during the second phase in the formalin test in a dose-dependent manner. In addition, the antinociceptive effect of chrysin was further characterized in streptozotocin-induced diabetic neuropathy model. Oral administration chrysin caused reversals of decreased pain threshold observed in diabetic-induced peripheral neuropathy model. Intraperitoneally (i.p.) pretreatment with naloxone (a classic opioid receptor antagonist), but not yohimbine (an antagonist of α2-adrenergic receptors) or methysergide (an antagonist of serotonergic receptors), effectively reversed chrysin-induced antinociceptive effect in the formalin test. Moreover, chrysin caused a reduction of formalin-induced up-regulated spinal p-CREB level, which was also reversed by i.t. pretreated naloxone. Finally, chrysin also suppressed the increase of the spinal p-CREB level induced by diabetic neuropathy. Our results suggest that chrysin shows an antinociceptive property in formalin-induced pain and diabetic neuropathy models. In addition, spinal opioid receptors and CREB protein appear to mediate chrysin-induced antinociception in the formalin-induced pain model. 相似文献
3.
AimsIbuprofen arginate is a highly soluble salt formed by combining racemic ibuprofen with the amino acid l-arginine. This formulation is absorbed faster, and it is safe and effective in treating many forms of mild to moderate pain. We compared the analgesic effect of ibuprofen arginate and conventional ibuprofen in rat models of pain.Main methodsMechanical and cold allodynia were assessed in the chronic constriction injury (CCI) model of neuropathic pain, and mechanical allodynia was also examined in capsaicin-injected rats (a model of central sensitization). Inflammatory hypersensitivity was assessed with the formalin test. Ibuprofen-l-arginine, ibuprofen, l-arginine or saline was administered orally on a daily basis after CCI or capsaicin injection, and the von Frey and cold plate tests were performed on days 1, 3 and 7 after CCI or capsaicin administration. In the formalin-induced inflammatory pain test, the drugs were administered 30 min before formalin injection.Key findingsIbuprofen only exerts an antinociceptive effect in the formalin model whereas ibuprofen-l-arginine exerts antinociceptive effects on both mechanical and cold allodynia induced by CCI, mechanical allodynia induced by capsaicin injection, and in phase 2 of the formalin test, exhibiting superior antinociceptive activity to ibuprofen in all these tests. l-Arginine only exerted antinociceptive effects on cold allodynia in CCI.SignificanceThese results demonstrate that ibuprofen arginate has stronger antinociceptive effects than ibuprofen in all the models used, suggesting it might improve the therapeutic management of neuropathic and inflammatory pain. 相似文献
4.
《Life sciences》1995,57(14):PL181-PL186
The novel analgesic filenadol (d,1-erythro-1-(3′,4′-methylenedioxyphenyl)-1-morpholinopropan-2-ol) inhibited phenyl-p-benzoquinone-induced writhing in mice with ID50 values of 68.8 (p.o.), 1.67 (i.v.) and 0.48 (i.c.v.) mg/kg. Hyperalgesia induced by arachidonic acid, PGE2 or LTB4 in this test was also decreased by filenadol (ID50 = 24.4, 3.7 and 50.1 mg/kg p.o., respectively). This compound was effective on PGE2, LTB4, bradykinin, PAF or IL-1μ-induced decrease in pain threshold in the rat paw pressure model and almost totally suppressed the writhing induced by zymosan in mice, while peritoneal production of 6-ketoPGF1α was inhibited by 48.5–62 % and only at 100 mg/kg significant inhibition of LTC4 was achieved. The late phase of formalin-induced pain response in mice was prevented by filenadol, without affecting the oedema. Filenadol is an antinociceptive agent that reduces the hyperalgesic effects of inflammatory mediators besides inhibiting partially the synthesis of eicosanoids. 相似文献
5.
L.S. Lopes S.S. Pereira L.L. Silva K.A. Figueiredo B.A. Moura F.R.C. Almeida F.C.F. Sousa 《Life sciences》2009,84(3-4):105-110
This study assesses the antinociceptive effect induced by different dosages of topiramate (TP), an anticonvulsant drug that is orally administered in models of neuropathic pain and acute pain in rats and mice, respectively. Orally administered TP (80 mg/Kg) in mice causes antinociception in the first and second phases of a formalin test, while in doses of 20 and 40 mg/Kg it was only effective in the second phase. TP (80 mg/Kg, p.o) also exhibited antinociceptive action in the hot plate test, however, it did not have an effect in the capsaicin test in mice, nor in the model of neuropathic pain in diabetic rats. The antinociceptive effect caused by TP (80 mg/Kg, p.o) in the formalin test was reversed by prior treatment with naloxone (opioid antagonist), but not with glibenclamide (antagonist of the potassium channel), ondansetron (antagonist of the serotonin 5HT3 receptor) or cyproheptadine (antagonist of the serotonin 5HT2A receptor).The data show that TP has an important antinociceptive effect in the models of nociception induced by chemical (formalin) or thermal (hot plate) stimuli, and that the opioid system plays a part in the antinociceptive effect, as shown by formalin. 相似文献
6.
《Saudi Journal of Biological Sciences》2020,27(9):2485-2490
ObjectiveTo investigate the analgesic effect of amitriptyline on neuropathic pain model rats, diabetic neuropathic pain model rats and fibromyalgia model rats.MethodsThe healthy male Sprague wrote – Dawley (SD) rats were taken as the research object, and they were randomly divided into model group (group A), beside the sciatic nerve and injection of 5 mm amitriptyline group (group B), beside the sciatic nerve and injection of 10 mm amitriptyline group (group C), beside the sciatic nerve and injection of 15 mm amitriptyline group (group D), intraperitoneal injection of amitriptyline group (group E). Pain induced by selective injury of sciatic nerve branches in rats, pain induced by chronic compression of sciatic nerve, diabetic neuropathic pain and fibromyalgia were conducted to determine the pain threshold of mechanical stimulation in rats after drug administration.ResultsThe pain threshold of mechanical stimulation in the local amitriptyline group (group B, C, D) was significantly higher than that in the group A and group E at each time point after drug treatment, and the pain threshold of mechanical stimulation gradually increased with the increase of concentration. There was no statistically significant difference in mechanical stimulation pain threshold between group A and group E at each time point after drug treatment.ConclusionPara-sciatic injection of amitriptyline at different concentrations has analgesic effects on neuropathic pain, diabetic neuropathic pain and fibromyalgia in rat models, and amitriptyline directly ACTS on the local sciatic nerve. 相似文献
7.
Cioato Stefania Giotti Medeiros Liciane Fernandes Lopes Bettega Costa de Souza Andressa Medeiros Helouise Richardt Assumpção José Antônio Fagundes Caumo Wolnei Roesler Rafael Torres Iraci L. S. 《Purinergic signalling》2020,16(4):573-584
This study aimed to evaluate the effect of a single administration of IB-MECA, an A3 adenosine receptor agonist, upon the nociceptive response and central biomarkers of rats submitted to chronic pain models. A total of 136 adult male Wistar rats were divided into two protocols: (1) chronic inflammatory pain (CIP) using complete Freund’s adjuvant and (2) neuropathic pain (NP) by chronic constriction injury of the sciatic nerve. Thermal and mechanical hyperalgesia was measured using von Frey (VF), Randal-Selitto (RS), and hot plate (HP) tests. Rats were treated with a single dose of IB-MECA (0.5 μmol/kg i.p.), a vehicle (dimethyl sulfoxide—DMSO), or positive control (morphine, 5 mg/kg i.p.). Interleukin 1β (IL-1β), brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) levels were measured in the brainstem and spinal cord using enzyme-linked immunosorbent assay (ELISA). The establishment of the chronic pain (CIP or NP) model was observed 14 days after induction by a decreased nociceptive threshold in all three tests (GEE, P < 0.05). The antinociceptive effect of a single dose of IB-MECA was observed in both chronic pain models, but this was more effective in NP model. There was an increase in IL-1β levels promoted by CIP. NP model promoted increase in the brainstem BDNF levels, which was reversed by IB-MECA 相似文献
8.
The synthetic peptide identical to the C-terminus of murine S100A9 protein (mS100A9p) has antinociceptive effect on different acute inflammatory pain models. In this study, the effect of mS100A9p was investigated on neuropathic pain induced by chronic constriction injury (CCI) of the sciatic nerve in rats. Hyperalgesia, allodynia, and spontaneous pain were assessed to evaluate nociception. These three signs were detected as early as 2 days after sciatic nerve constriction and lasted for over 14 days after CCI. Rats were treated with different doses of mS100A9p by intraplantar, oral, or intrathecal routes on day 14 after CCI, and nociception was evaluated 1h later. These three routes of administration blocked hyperalgesia, allodynia and spontaneous pain. The duration of the effect of mS100A9p depends on the route used and phenomenon analyzed. Moreover, intraplantar injection of mS100A9p in the contralateral paw inhibited the hyperalgesia on day 14 days after CCI. The results obtained herein demonstrate the antinociceptive effect of the C-terminus of murine S100A9 protein on experimental neuropathic pain, suggesting a potential therapeutic use for it in persistent pain syndromes, assuming that tolerance does not develop to mS100A9p. 相似文献
9.
Neuropathic pain refers to pain that originates from pathology of the nervous system. Diabetes, infection (herpes zoster), nerve compression, nerve trauma, and autoimmune diseases are examples of diseases that may cause neuropathic pain. Unfortunately no satisfactory treatment is yet available for this type of pain. This consideration has led to an explosion of interest for the underlying mechanisms, accompanied by a growing number of animal models. In recent years, most of the neuropathic pain models initially developed in the rat have been translated to mice in order to exploit the resource represented by genetically modified mice. Obviously the most useful animal models of pain would be ones in which the etiology of the pain would be endogenous and not induced by the experimenters: together with the classic models based on peripheral nerve ligation, in the last years other techniques are being developed that mimic more closely clinical pain syndromes, often by attempting to induce the disease associated to neuropathic pain. Although several variables must be taken into account when using animal models for mimicking clinical neuropathic pain, the huge number of models that are now reproducible and well characterized should help to reach important goals in the comprehension of mechanisms and to discover novel therapeutic target for this disease. 相似文献
10.
Yi-Ruu Lin Hwei-Hsien Chen Yu-Chin Lin Chien-Hsin Ko Ming-Huan Chan 《Journal of biomedical science》2009,16(1):1-10
Background
Autophagy has been shown recently to play an important role in the intracellular survival of several pathogenic bacteria. In this study, we investigated the effect of a novel small-molecule autophagy-inducing agent, AR-12, on the survival of Francisella tularensis, the causative bacterium of tularemia in humans and a potential bioterrorism agent, in macrophages.Methods and results
Our results show that AR-12 induces autophagy in THP-1 macrophages, as indicated by increased autophagosome formation, and potently inhibits the intracellular survival of F. tularensis (type A strain, Schu S4) and F. novicida in macrophages in association with increased bacterial co-localization with autophagosomes. The effect of AR-12 on intracellular F. novicida was fully reversed in the presence of the autophagy inhibitor, 3-methyl adenine or the lysosome inhibitor, chloroquine. Intracellular F. novicida were not susceptible to the inhibitory activity of AR-12 added at 12 h post-infection in THP-1 macrophages, and this lack of susceptibility was independent of the intracellular location of bacteria.Conclusion
Together, AR-12 represents a proof-of-principle that intracellular F. tularensis can be eradicated by small-molecule agents that target innate immunity. 相似文献11.
Yi-Ruu Lin Hwei-Hsien Chen Yu-Chin Lin Chien-Hsin Ko Ming-Huan Chan 《Journal of biomedical science》2009,16(1):94
The antinociceptive effects of honokiol and magnolol, two major bioactive constituents of the bark of Magnolia officinalis, were investigated on animal paw licking responses and thermal hyperalgesia induced by glutamate receptor agonists including glutamate, N-methyl-D-aspartate (NMDA), and metabotropic glutamate 5 receptor (mGluR5) activator (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), as well as inflammatory mediators such as substance P and prostaglandin E2 (PGE2) in mice. The actions of honokiol and magnolol on glutamate-induced c-Fos expression in the spinal cord dorsal horn were also examined. Our data showed that honokiol and magnolol blocked glutamate-, substance P- and PGE2-induced inflammatory pain with similar potency and efficacy. Consistently, honokiol and magnolol significantly decreased glutamate-induced c-Fos protein expression in superficial (I-II) laminae of the L4-L5 lumbar dorsal horn. However, honokiol was more selective than magnolol for inhibition of NMDA-induced licking behavioral and thermal hyperalgesia. In contrast, magnolol was more potent to block CHPG-mediated thermal hyperalgesia. These results demonstrate that honokiol and magnolol effectively decreased the inflammatory pain. Furthermore, their different potency on inhibition of nociception provoked by NMDA receptor and mGluR5 activation should be considered. 相似文献
12.
Antinociceptive action of intrathecal neurotensin in mice 总被引:2,自引:0,他引:2
Neurotensin has been demonstrated to be analgesic in rodents. This study used intrathecal injection of neurotensin in unanesthetized mice to evaluate the effect of the peptide at the spinal level on unconditioned behavior. Intrathecal administration of neurotensin produced dose-related inhibition of locomotor activity and of the response elicited by subcutaneous hypertonic saline. The effects of the peptide in the tail flick assay were variable and it produced no inhibition of the behavioral response to intrathecal substance P. The results indicate that neurotensin antinociception at the spinal level does not result from locomotor impairment, may be somewhat selective for chemically induced pain, and may be mediated by a presynaptic action on primary afferent fibers. 相似文献
13.
Jia‐Bao Guo Yi Zhu Bing‐Lin Chen Ge Song Meng‐Si Peng Hao‐Yu Hu Yi‐Li Zheng Chang‐Cheng Chen Jing‐Zhao Yang Pei‐Jie Chen Xue‐Qiang Wang 《Journal of cellular and molecular medicine》2019,23(7):4534-4544
The molecular mechanisms underlying neuropathic pain (NP) remain poorly understood. Emerging evidence has suggested the role of microRNAs (miRNAs) in the initiation and development of NP, but the specific effects of miRNAs in NP are largely unknown. Here, we use network‐ and pathway‐based methods to investigate NP‐induced miRNA changes and their biological functions by conducting a systematic search through multiple electronic databases. Thirty‐seven articles meet the inclusion criteria. Venn analysis and target gene forecasting are performed and the results indicate that 167 overlapping target genes are co‐regulated by five down‐regulated miRNAs (rno‐miR‐183, rno‐miR‐96, rno‐miR‐30b, rno‐miR‐150 and rno‐miR‐206). Protein‐protein interaction network analysis shows that 77 genes exhibit interactions, with cyclic adenosine monophosphate (cAMP)‐dependent protein kinase catalytic subunit beta (degree = 11) and cAMP‐response element binding protein 1 (degree = 10) having the highest connectivity degree. Gene ontology analysis shows that these target genes are enriched in neuron part, neuron projection, somatodendritic compartment and nervous system development. Moreover, analysis of Kyoto Encyclopedia of Genes and Genomes reveals that three pathways, namely, axon guidance, circadian entrainment and insulin secretion, are significantly enriched. In addition, rno‐miR‐183, rno‐miR‐96, rno‐miR‐30b, rno‐miR‐150 and rno‐miR‐206 are consistently down‐regulated in the NP models, thus constituting the potential biomarkers of this disease. Characterizing these miRNAs and their target genes paves way for their future use in clinical practice. 相似文献
14.
15.
Ledeboer A Liu T Shumilla JA Mahoney JH Vijay S Gross MI Vargas JA Sultzbaugh L Claypool MD Sanftner LM Watkins LR Johnson KW 《Neuron glia biology》2006,2(4):279-291
Controlling neuropathic pain is an unmet medical need and we set out to identify new therapeutic candidates. AV411 (ibudilast) is a relatively nonselective phosphodiesterase inhibitor that also suppresses glial-cell activation and can partition into the CNS. Recent data strongly implicate activated glial cells in the spinal cord in the development and maintenance of neuropathic pain. We hypothesized that AV411 might be effective in the treatment of neuropathic pain and, hence, tested whether it attenuates the mechanical allodynia induced in rats by chronic constriction injury (CCI) of the sciatic nerve, spinal nerve ligation (SNL) and the chemotherapeutic paclitaxel (Taxol). Twice-daily systemic administration of AV411 for multiple days resulted in a sustained attenuation of CCI-induced allodynia. Reversal of allodynia was of similar magnitude to that observed with gabapentin and enhanced efficacy was observed in combination. We further show that multi-day AV411 reduces SNL-induced allodynia, and reverses and prevents paclitaxel-induced allodynia. Also, AV411 cotreatment attenuates tolerance to morphine in nerve-injured rats. Safety pharmacology, pharmacokinetic and initial mechanistic analyses were also performed. Overall, the results indicate that AV411 is effective in diverse models of neuropathic pain and support further exploration of its potential as a therapeutic agent for the treatment of neuropathic pain. 相似文献
16.
《Saudi Journal of Biological Sciences》2021,28(12):7090-7097
BackgroundAround 30% world population affected by acute and chronic pain due to inflammation and accidental injuries. Pain is a uncomfortable sensation and it reduce the patients’ life quality.ObjectiveThe present exploration focuses to explore the beneficial effects of butein on the different chemical and thermal-provoked nociceptive and inflammatory mice models.MethodologyThe nociception was induced to the Swiss mice using different chemical (formalin, acetic acid, glutamate, and capsaicin) and thermal (hot plate and tail immersion) methods. the mice were supplemented with 10, 15, and 20 mg/kg of butein and respective standard drugs like morphine, diclofenac sodium, and dexamethasone. The anti-inflammatory effects of butein was studied using carrageenan-provoked inflammation in mice.ResultsThe present findings clearly demonstrated that the butein was substantially lessened the different thermal and chemical provoked nociception in mice. The carrageenan-triggered paw edema and inflammatory cell infiltrations were appreciably suppressed by the butein treatment. The TNF-α, IL-1β, and IL-6 levels in the carrageenan-induced mice were effectively depleted by the butein.ConclusionAltogether, the present findings evidenced the potent antinociceptive and anti-inflammatory properties of the butein in different nociceptive mice models. 相似文献
17.
Acute analgesic effect of loperamide as compared to morphine after intrathecal administration in rat
Loperamide, a mu opioid receptor agonist, which is commonly used as an antidiarrhoeal agent has been reported to possess analgesic activity after intrathecal administration. However, the exact analgesic profile, i.e., onset, duration and intensity of analgesia in relation to morphine is not fully known. In the present study, the acute analgesic effect of loperamide (5 microg) was compared with that of morphine (5 microg) and morphine + loperamide (5 microg of each) using the tail flick method after intrathecal administration. Naloxone (5 mg/kg) reversibility of the analgesic effect was also studied. The analgesic response of loperamide was significantly higher than morphine. Even after 22 hr, maximum possible effect was greater than 49%. Naloxone partially antagonized the analgesic effect of loperamide. This suggested that loperamide may be acting through blockade of Ca2+ channels besides activating mu opioid receptors. Loperamide may prove to be a better substitute for morphine as spinal analgesic. 相似文献
18.
神经病理痛是临床上常见病症,其发病机制尚不清楚,目前尚无有效的治疗手段,其慢性神经病理痛持续时间长,故其研究成为疼痛领域的热点和重点。近年来发现T型钙通道在神经病理性疼痛中起到了关键性的作用。本文将近年T型钙通道在神经病理性痛模型中介导疼痛的机制研究进展加以综述。 相似文献
19.
Dynorphin-(1-13) and -(1-10) were administered by intrathecal injection into six terminal cancer patients at doses of 7.5, 15, 30 and 60 micrograms. Compared with saline, both analogues of dynorphin were effective in suppressing pain. The duration of relief at doses of 15 micrograms and above was more than 4 hours on the average for both peptides. However, no proportional increase in response was observed when the dose applied was doubled. This lack of response might have been due to the development of tolerance. 相似文献
20.
Liang Zhong Kui Fu Weimin Xiao Fang Wang Lu-Lu Shen 《Journal of cellular biochemistry》2019,120(5):7989-7997
MicroRNA (miRNA) are significant regulators of neuropathic pain development and neuroinflammation can contribute a lot to the progression of neuropathic pain. Recently, miR-98 has been reported to be involved in various diseases. However, little is known about the role of miR-98 in neuropathic pain development and neuroinflammation. Therefore, our study was aimed to investigate the function of miR-98 in neuropathic pain via establishing a rat model using chronic constriction injury (CCI) of the sciatic nerve. Here, we observed that miR-98 was downregulated in CCI rat models. Overexpression of miR-9 was able to inhibit neuropathic pain progression. Recently, STAT3 has been reported to serve a key role in various processes, including inflammation. Interestingly, our study indicated that STAT3 was dramatically upregulated and activated in CCI rats. By using informatics analysis, STAT3 was predicted as a direct target of miR-98 and the direct correlation was confirmed. Then, miR-98 was overexpressed in CCI rats and it was found that miR-98 was able to repress neuropathic pain development via inhibiting the neuroinflammation. As displayed, interleukin 6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α) expression was obviously induced in CCI rats, while miR-98 reduced their protein levels. Finally, we found that overexpression of STAT3 reversed the inhibitory effect of miR-98 on neuropathic pain development. Taken these together, we reported that overexpression of miR-98 attenuated neuropathic pain development via targeting STAT3 in CCI rat models. 相似文献