首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Diverse environmental factors contribute to the evolution of host immunity and host–parasite interactions. However, the effect of insecticides on the insect immune system is less well understood. 2. This study investigated the variation in haemocyte density, phenoloxidase (PO), and total PO activities in the Ostrinia furnacalis larvae following sublethal treatment of tebufenozede and their susceptibility to Escherichia coli infection. 3. Surprisingly, it was found that O. furnacalis larvae exposed to the insecticide have significantly higher haemocyte density, and active and total PO activities than those not exposed. Moreover, when infected with E. coli, O. furnacalis larvae treated with tebufenozide survive much better with lower bacterial load than those not treated. 4. This study demonstrates that insecticide may change the immunity of insects and potentially have an impact on their interactions with parasites.  相似文献   

2.
Water temperature changes (higher and lower than 24 degrees C) were shown to have a significant effect on dopamine (DA) concentration, haemocyte count and the proPO system in the white shrimp Litopenaeus vannamei. No significant difference in any of the parameters was observed in the control group. DA concentration in haemolymph in the experimental groups increased to a peak value at 0.5 days; meanwhile serine protease (SP) activity and proteinase inhibitor (PI) activity decreased. Total haemocyte count (THC), differential haemocyte count (DHC) and PO activity were lowest at 1 day. All defence parameters became stable after 1-3 days, while the total haemocyte and large granular cell count stabilized after 6 days. After these stabilized, there was no significant difference in DA concentration and PI activity between the control and experimental groups, as was the case for the THC, DHC, PO and SP activities of shrimp held at higher temperatures. However these latter four parameters in the lower temperature groups were distinctly lower than the control group. alpha(2)-Macroglobulin activity in the experimental groups increased to a peak value after 1 day compared with the control and then stabilized after 6 days when the activity levels in higher temperature groups were higher than the control, while the lower temperature groups had no significant difference from the control. It was therefore concluded that water temperature changes modulated the immune system of L. vannamei.  相似文献   

3.
Host plant quality can significantly influence the growth and condition of phytophagous insects, and consequently their susceptibility to pathogens. This study examined the relationship between host plant quality, insect condition, immune responsiveness and resistance to pathogens in the cabbage looper, Trichoplusia ni. Two baseline and induced immune parameters were estimated, haemocyte numbers and haemolymph phenoloxidase (PO) activity, for larvae on two host plants, broccoli and cucumber. Haemolymph protein concentration was assessed as an indication of insect condition, and the susceptibility of larvae to T. ni single nucleopolyhedrovirus (SNPV) was used as a measure of disease resistance. T. ni growth, survival and condition was much higher on broccoli than cucumber. Haemocyte numbers were significantly higher in broccoli-reared larvae, whereas PO activity was not. An immune challenge induced significantly elevated numbers of haemocytes for larvae reared on both host plants, but did not affect PO activity or protein concentrations. Susceptibility to T. ni SNPV was markedly higher in larvae reared on cucumber than on broccoli. These results clearly indicate that host plant quality can affect both immune response and disease resistance of T. ni larvae and that bottom-up effects could be important in interactions between insects and entomopathogens.  相似文献   

4.
Interactions between Tolypocladium cylindrosporum (Deuteromycetes), its metabolite, efrapeptins, and the insect immune defense were investigated in vivo and in vitro. In the different phagocytosis studies, Bacillus cereus spores which had been labelled with fluorescein-isothiocyanate (FITC) were used. In vitro studies showed that efrapeptins inhibit phagocytic activity of Galleria mellonella (Lepidoptera: Pyralidae) haemocytes. The response was dose-related. Efrapeptins significantly reduced the number of nodules formed in response to an injection of zymosan supernatant. Phenoloxidase (PO) activation system contained in haemocyte lysate (HLS) was not affected by efrapeptins. In vivo studies when larvae were injected with efrapeptins also revealed that efrapeptins did not affect PO activities and total haemocyte count (THC) after 1 and 6 h post-injection. However, 12 h post-injection there was a significant inhibition of PO activities in HLS. There was also no significant reduction of PO activities and THC when larvae were injected with Tolypocladium cylindrosporum spores until 24 h post-injection. However, PO activities were suppressed and THC reduced 48 h post-treatment of larvae with spores. This study suggests that efrapeptins may interfere with the ligand-receptor interactions that are likely to occur at the plasma membrane of specific haemocytes.  相似文献   

5.
Global warming and its associated increase in temperature extremes pose a substantial challenge on natural systems. Tropical ectotherms, living close to their (upper) critical thermal limits, may be particularly vulnerable to global warming, yet they are as a group understudied. Most studies assessing fitness effects under global warming focused on life‐history correlates such as body size and largely neglected immune function. Furthermore they did not consider to what extent temperature effects may be modulated under resource‐based trade‐offs. Against this background we here investigate effects of temperature extremes on fitness‐related adult traits (viz. body mass, fat content, and two key parameters of arthropod immune function: phenoloxidase (PO) activity and haemocyte numbers) at different levels of larval and adult food stress in the tropical butterfly Bicyclus anynana. Body mass and PO activity decreased after short‐term larval food stress, but not fat content and haemocyte numbers (probably owing to compensatory mechanisms during further development). Longer‐term food deprivation in the adult stage, in contrast, diminished performance throughout, confirming that the feeding treatments chosen imposed stress. Temperature manipulations yielded contrary responses between life‐history correlates and immune function: while body mass and fat content increased by increasing temperatures, PO activity and haemocyte numbers decreased. The latter was particularly pronounced under adult food stress, suggesting a resource‐allocation trade‐off. Our data suggest that global warming will not only reduce performance through direct effects of thermal stress, but also through secondary effects on adult immune function, which may be missed when exclusively focussing on other life‐history correlates.  相似文献   

6.
棉铃虫血淋巴酚氧化酶活性的微量测定   总被引:12,自引:0,他引:12  
昆虫血淋巴黑化的形成由激活酚氧化酶原的级联系统所引发 ,酚氧化酶在昆虫体液免疫中起着重要作用。用抗凝剂从棉铃虫血淋巴中分离获得了血浆及完整的血细胞 ,以L DOPA为底物 ,牛胰蛋白酶为激活剂 ,测定了血浆及血细胞裂解液中酚氧化酶及酚氧化酶原的活性。结果表明 ,血浆及血细胞中两者都有一定量的分布。这一昆虫血淋巴酚氧化酶的微量测定方法 ,所需样品量少 ,耗时短 ,简便易行。  相似文献   

7.
Abstract 1. In animals with a complex life cycle, larval stressors may carry over to the adult stage. Carry‐over effects not mediated through age and size at metamorphosis have rarely been studied. The present study focuses on the poorly documented immune costs of short‐term food stress both in the larval stage and after metamorphosis in the adult stage. 2. The present study quantified immune function [number of haemocytes, activity of prophenoloxidase (proPO) and phenoloxidase (PO)] in an experiment where larvae of the damselfly Lestes viridis were exposed to a transient starvation period. 3. Directly after starvation, immune variables were reduced in starved larvae. Levels of proPO and PO remained low after starvation, even after metamorphosis. In contrast, haemocyte numbers were fully compensated by the end of the larval stage, yet were lower in previously starved animals after metamorphosis. This can be explained as a cost of the observed compensatory growth after starvation. Focusing only on potential costs of larval stressors within the larval stage may therefore be misleading. 4. The here‐identified immunological cost in the adult stage of larval short‐term food stress and associated compensatory growth strongly indicates that physiological costs may explain hidden carry‐over effects bridging metamorphosis. This adds to the increasing awareness that the larval and adult stages in animals with a complex life cycle should be jointly studied, as trade‐offs may span metamorphosis.  相似文献   

8.
Despite the obvious benefit of an immune system, its efficacy against pathogens and parasites may show great variation among individuals, populations and species. Understanding the causes of this variation is becoming a central theme in ecology. Many biotic and abiotic factors are known to influence immunocompetence (temperature, age, etc.). However, for a given age, size among individuals varies, probably as a result of accumulated resources. Thus, these variable resources could be allocated to immune defence and, consequently, body size may explain part of the variation in immune responsiveness. However, the influence of body size on immune defence is often overlooked. The present study investigates variations in haemocyte count and phenoloxidase activity in larvae of the phytophagous vine moth Eupoecilia ambiguella Hübner of the same age, although differing in body size. The measurements of immune function are made both when the insects are immunologically naïve and 24 h after a bacterial immune challenge. The base levels of these immune parameters do not covary with body size in naïve larvae. After the bacterial immune challenge, more haemocytes and phenoloxidase enzyme are mobilized, and the mobilization of these immune effectors is correlated positively with individual body size. Thus, larger larvae exhibit higher immunocompetence than smaller ones, suggesting that smaller larvae might be more vulnerable to infection. These results suggest that body size is probably an underestimated variable, which nevertheless modulates the insect immune system and should thus be considered as a covariate in insect immune system measurement. It is recommended therefore, that body size should be taken into account in ecological immunity studies with insects. © 2013 The Royal Entomological Society  相似文献   

9.
In the first part we review the effects of larval endoparasitoids and their polydnavirus and venom on the immune system of their hosts. In all systems investigated, haemocyte spreading and encapsulation activity was reduced; in some cases effects on total (THC) or differential (DHC) haemocyte count as well as modification of haemocyte morphology and ultrastructure were also documented. In many cases polydnavirus (and venom) were shown to play a major role in abrogation of the host's immune reaction. In the second part we present the first investigation of effects of parasitism and polydnavirus/venom on the immune system of the host for an egg-larval parasitoid, Chelonus inanitus. We observed that in 4th and 5th instar larvae, i.e. 7 to 10 days after parasitization, neither haemocyte spreading and encapsulation activity, nor DHC, nor haemocyte ultrastructure were altered. After parasitization with X-ray irradiated wasps, which inject polydnavirus and venom and infertile eggs, there was no alteration of the above mentioned parameters. Nevertheless, parasitoid larvae implanted into 4th instar larvae which developed from eggs parasitized with X-ray irradiated wasps were not encapsulated, whereas co-injected latex beads were. These results show that parasitism by this egg-larval parasitoid does not generally suppress the host's immune system but that polydnavirus/venom injected at oviposition prevent, by, as yet unknown mechanisms, encapsulation of the parasitoid larva.  相似文献   

10.
White shrimp Litopenaeus vannamei were reared at a salinity of 35‰ without a Vibrio alginolyticus injection (unchallenged group), and other shrimp were reared at 35‰, injected with tryptic-soy broth (TSB)-grown V. alginolyticus at 1.8 × 105 colony-forming units (cfu) shrimp?1 (challenged group), and then examined for the hyaline cell (HC) count, granular cell (GC, including semi-granular cell) count, total haemocyte count (THC), phenoloxidase (PO) activity, respiratory burst (RB) and superoxide dismutase (SOD) activity after transfer to 35‰ (control), 25‰, 20‰, and 15‰ for 1, 6, 12, 24, 72, and 120 h. Results indicated that the haemocyte count, PO activity, RB, and SOD activity of unchallenged shrimp and challenged shrimp that were transferred to low-salinity levels all began to significantly decrease at 6, 6, 6, and 1 h, respectively, and reached the lowest levels at 12 h. HC, GC, the THC, PO activity, RB, and SOD activity of unchallenged shrimp that were transferred to 15‰ decreased by 53%, 41%, 49%, 68%, 39%, and 62%, whereas those parameters of challenged shrimp that were transferred to 15‰ decreased by 79%, 78%, 79%, 82%, 54%, and 72%, respectively after 12 h compared to control shrimp. These immune parameters began to recover after 24–72 h for both unchallenged shrimp and challenged shrimp. We concluded that the innate immunity was weakened in white shrimp L. vannamei that received combined stresses of a V. alginolyticus injection, and low-salinity transfer. It was also concluded that shrimp with respectively 21%, 18%, 46%, and 28% lower THC, PO activity, RB, and SOD activity of the original values would be killed due to decreases in their immunity, and resistance to V. alginolyticus infection. Shrimp farming should be maintained at a constant high salinity level to prevent exacerbated decreases in innate immune parameters of shrimp when infected by a pathogen coupled with low-salinity stress leading to mortality.  相似文献   

11.
Although the study of thermoregulation in insects has shown that infected animals tend to prefer higher temperatures than healthy individuals, the immune response and energetic consequences of this preference remain unknown. We examined the effect of environmental temperature and the energetic costs associated to the activation of the immune response of Tenebrio molitor larvae following a lipopolysaccharide (LPS) challenge. We measured the effect of temperature on immune parameters including phenoloxidase (PO) activity and antibacterial responses. Further as proximal and distal costs of the immune response we determined the standard metabolic rate (SMR) and the loss of body mass (mb), respectively. Immune response was stronger at 30 °C than was at 10 or 20 °C. While SMR at 10 and 20 °C did not differ between immune treatments, at 30 °C SMR of LPS-treated larvae was almost 25–60% higher than SMR of PBS-treated and naïve larvae. In addition, the loss in mb was 1.9 and 4.2 times higher in LPS-treated larvae than in PBS-treated and naïve controls. The immune responses exhibited a positive correlation with temperature and both, SMR and mb change, were sensitive to environmental temperature. These data suggest a significant effect of environmental temperature on the immune response and on the energetic costs of immunity.  相似文献   

12.
Topical application of Metarhizium anisopliae var acridum to the desert locust Schistocerca gregaria resulted in changes in the biochemistry and antimicrobial defenses of the haemolymph. M. anisopliae var acridum colonized the host haemolymph from day two post application. The haemocytes did not attach to, phagocytose or nodulate elements of the fungus. However, the presence of the fungus appeared to stimulate hemocyte aggregation over the first few days of mycosis though the number of aggregates declined subsequently. The total hemocyte count increased two days after application, indicating an overall stimulation of the immune system, but declined to a value below that for uninoculated controls by day four. The differential haemocyte count showed that the initial increase in total haemocyte count was primarily due to a larger number of coagulocytes. After day two consistent declines in cell number were observed for all haemocyte classes in mycosed insects. The activity of the enzyme, phenoloxidase, decreased during the course of infection. However, the converse was true for prophenoloxidase. Lysozyme levels were significantly smaller in infected than control locusts. There was a significant correlation between lysozyme and PO activities when data from mycosed and control insects were combined. The total protein content of the haemolymph decreased during the course of infection.  相似文献   

13.
Six types of haemocytes viz., prohaemocytes, plasmatocytes (round, fusiform, vermiform and spindle shaped), granular cells, spherule cells, oenocytoids and adipohaemocytes were found in the haemolymph of larvae of American bollworm H. armigera. The total and differential haemocyte counts (THC and DHC) in H. armigera haemolymph were affected by nucleopolyhedrovirus (NPV) treatment. There was a general decrease in THC in response to NPV treatment in both young and old larvae. However the decrease was more apparent in 5 and 8 day old larvae than in 10 day old larvae. The differential haemocytes showed less of granular cells and more of spherule cells and prohaemocytes in the old larvae. Plasmatocytes and granular cells in 10 day old larvae initially phagocytosed polyhedra; however, disintegrated after 3 to 4 hr. The haemolymph of NPV treated larvae melanized slowly particularly in old larvae. Phenoloxidase (PO) activity decreased positively with granular cells and oenocytoids in 10 day old treated larvae. Cellular fraction had high level of PO activity, which was transferred to plasma in response to NPV infection in the older larvae. The role of NPV pathogenesis vis-à-vis immunity in insect is discussed.  相似文献   

14.
The occurrence of brown ring disease (BRD) in farmed Manila clams Ruditapes philippinarum is seasonal. Development of the disease is believed to require the presence of the infective agent Vibrio tapetis and particular environmental conditions. This paper studies the effect of salinity (20 to 40 per thousand) on measurable immune parameters of Manila clams, and the progression of BRD in experimentally infected individuals. At 20 per thousand salinity, the total haemocyte count was reduced and disease prevalence was highest. At 40 per thousand salinity significantly fewer clams presented signs of BRD, and this was correlated with increases in the total haemocyte count, hyalinocyte count, phenoloxidase levels and phagocytic activity of haemocytes. Inoculation of clams with V. tapetis did not have a significant effect on the immune parameters measured. Thus, this laboratory-based study relates environmental stress to disease development.  相似文献   

15.
Cuticular colour in the mealworm beetle (Tenebrio molitor) is a quantitative trait, varying from tan to black. Population level variation in cuticular colour has been linked to pathogen resistance in this species and in several other insects: darker individuals are more resistant to pathogens. Given that cuticular colour has a heritable component, we have taken an experimental evolution approach: we selected 10 lines for black and 10 lines for tan adult cuticular phenotypes over at least six generations and measured the correlated responses to selection in a range of immune effector systems. Our results show that two immune parameters related to resistance (haemocyte density and pre-immune challenge activity of phenoloxidase (PO)) were significantly higher in selection lines of black beetles compared to tan lines. This may help to explain increased resistance to pathogens in darker individuals. Cuticular colour is dependent upon melanin production, which requires the enzyme PO that is present in its inactive form inside haemocytes. Thus, the observed correlated response to selection upon cuticular colour and immune variables probably results from these traits' shared dependence on melanin production.  相似文献   

16.
孔海龙  吕敏  祝树德 《昆虫知识》2012,49(6):1572-1576
为了阐明斜纹夜蛾Spodoptera litura Fabricius幼虫密度对其抗病能力的影响,在室内条件下(温度23℃±1℃,相对湿度75%)对不同幼虫密度(1、2、5、10、15头/皿(直径为12cm))饲养的斜纹夜蛾幼虫抵抗斜纹夜蛾核型多角体病毒侵染的能力及其免疫指标进行了研究。结果表明:幼虫密度对斜纹夜蛾幼虫接种核型多角体病毒后的存活率、存活时间及血淋巴酚氧化酶活性影响显著。随着幼虫密度的增加,接种核型多角体病毒后幼虫的存活率降低,存活时间缩短。当幼虫密度达到15头/皿时,幼虫存活率显著低于其它幼虫密度。不同幼虫密度幼虫的存活时间以1头/皿的最高,15头/皿的最低,且二者之间差异显著。幼虫血淋巴中酚氧化酶活性随幼虫密度的增加而明显降低,当幼虫密度达到5头/皿时,幼虫酚氧化酶活性显著低于1头/皿的。另外,幼虫溶菌酶活性和血细胞总数受幼虫密度影响不显著。不同密度幼虫抗病性的变化与其血淋巴中酚氧化酶活性的变化趋势较为一致。所以斜纹夜蛾幼虫抗病能力的降低可能与幼虫酚氧化酶活性的下降有关。因此,幼虫密度是影响斜纹夜蛾幼虫抗病性变化的重要因子。  相似文献   

17.
The Colorado potato beetle (CPB), Leptinotarsa decemlineata Say is the most destructive insect pest of potato in many areas of the world. Little is known about the haemocyte types of the CPB and its plasma phenoloxidase (PO). In this regard, we investigated the haemocyte profile and PO of CPB and its immune response to the entomopathogenic nematode, Steinernema carpocapsae. Five types of haemocytes, the plasmatocytes (~67.4%), granulocytes (~23.5%), oenocytoids (~2.4%), spherulocytes (~0.25%) and prohaemocytes (~6.5%) were identified in fourth instar CPB larvae. Total haemocyte counts (THCs) were significantly reduced in nematode-injected insects compared with control groups (P < 0.05). Nematode cellular encapsulation observed in haemolymph of nematode-injected insects may partially explain decreased THCs. Plasma PO assay showed increased PO activity in nematode-injected insects compared with control groups (P < 0.05). Plasma PO assay on native polyacrylamide gel electrophoresis (PAGE) assay with L-3, 4-dihydroxyphenylalanine as substrate showed five bands (with molecular weights of approximately 200, 118, 68.5, 62.5 and 58.75 kDa).  相似文献   

18.
In an attempt to understand the ecological correlates of immunocompetence in Daphnia magna (Crustacea, Cladocera), we tested for variation in immune function in relation to feeding conditions, host conditions, and host genotype. We investigated both phenotypic (environmental dependent and condition dependent) as well as genotypic aspects of the prophenoloxidase activating system (Pro-POAS), which has been described as a key factor in invertebrate immunity. Daphnia magna is an ideal study system to disentangle phenotypic and genetic variation because females can reproduce clonally. Well-fed Daphnia showed higher phenoloxidase (PO) activity than Daphnia kept at a low food level. Wounding provoked a higher level of PO activity, indicating that the Pro-POAS was condition dependent. Further, we found clonal variation in PO activity among four clones of D. magna isolated from four different populations. The same four clones were tested for their resistance to the bacterial pathogen Pasteuria ramosa. High resistance corresponded to high PO activity. Our results suggest adaptive variation in PO activity and suggest that its expression is costly. These costs may influence the evolution of the PO activity level and the maintenance of its genotypic variation.  相似文献   

19.
The innate immunity and resistance against white spot syndrome virus (WSSV) in white shrimp Litopenaeus vannamei which received the Gracilaria tenuistipitata extract were examined. Shrimp immersed in seawater containing the extract at 0 (control), 400 and 600 mg L(-1) for 3 h were challenged with WSSV at 2 × 10(4) copies shrimp(-1). Shrimp not exposed to the extract and not received WSSV challenge served as unchallenged control. The survival rate of shrimp immersed in 400 mg L(-1) or 600 mg L(-1) extract was significantly higher than that of challenged control shrimp over 24-120 h. The haemocyte count, phenoloxidase activity, respiratory burst, superoxide dismutase activity, and lysozyme activity of shrimp immersed in 600 mg L(-1) extract were significantly higher than those of unchallenged control shrimp at 6, 6, 6, 6, and 6-24 h post-challenge. In another experiment, shrimp which had received 3 h immersion of 0, 400, 600 mg L(-1) extract were challenged with WSSV. The shrimp were then received a booster (3 h immersion in the same dose of the extract), and the immune parameters were examined at 12-120 h post-challenge. The immune parameters of shrimp immersed in 600 mg L(-1) extract, and then received a booster at 9, 21, and 45 h were significantly higher than those of unchallenged control shrimp at 12-48 h post-challenge. In conclusion, shrimp which had received the extract exhibited protection against WSSV as evidenced by the higher survival rate and higher values of immune parameters. Shrimp which had received the extract and infected by WSSV showed improved immunity when they received a booster at 9, 21, and 45 h post-WSSV challenge. The extract treatment caused less decrease in PO activity, and showed better performance of lysozyme activity and antioxidant response in WSSV-infected shrimp.  相似文献   

20.
The current work investigated the immune response of Spodoptera exigua Hübner (Lepidoptera: Noctuidae) when challenged with two entomopathogenic nematodes (EPNs), Steinernema carpocapsae (Weiser) and Heterorhabditis bacteriophora (Poinar). The cellular and humoral defences were considered in this study. The haemocytes were observed around H. bacteriophora, but no haemocyte was found around S. carpocapsae. In larvae treated with H. bacteriophora and S. carpocapsae, total haemocyte counts (THCs) reached maximum levels at 4 and 12 hours post-injection (hpi), respectively, but decreased with the proliferation of symbiotic bacteria. In the humoral defence, there was no significant difference between EPNs on phenoloxidase (PO) activity. Phospholipase A2 (PLA2) and protease activity levels in the initial time post-injection were higher in the larvae treated with S. carpocapsae than in H. bacteriophora. In the following, the roles of symbiotic bacteria and axenic infective juveniles (IJs) in suppressing the immune system were studied separately. Maximum THC levels were observed in larvae treated with axenic nematodes and minimum THC levels were recorded in the live Xenorhabdus nematophila treatment. In the humoral defence, PLA2 activity with axenic S. carpocapsae was suppressed at 4 hpi, while in monoxenic S. carpocapsae the PLA2 level was increased to the maximum amount at 8 hpi. PO activity with monoxenic S. carpocapsae decreased gradually by 4 hpi; in live X. nematophila, it decreased from 0.5 to 16 hpi, while in axenic S. carpocapsae, it increased slowly from 0.5 to 16 hpi. The current work showed the synergistic effect of nematode and its bacterium in the suppression of the immune system and highlighted the role of the symbiont in inhibition of immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号