首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lateral cilia of the gill of Mytilus edulis are controlled by a reciprocal serotonergic-dopaminergic innervation from their ganglia. Other bivalves have been studied to lesser degrees and lateral cilia of most respond to serotonin and dopamine when applied directly to the gill indicating a possible neuro or endocrine mechanism. Lateral cilia in Crassostrea virginica are affected by serotonin and dopamine, but little work has been done regarding ganglionic control of their cilia. We examined the role of the cerebral and visceral ganglia in innervating the lateral ciliated cells of the gill epithelium of C. virginica. Ciliary beating rates were measured in preparations which had the ipsilateral cerebral or visceral ganglia attached. Superfusion of the cerebral or visceral ganglia with serotonin increased ciliary beating rates which was antagonized by pretreating with methysergide. Superfusion with dopamine decreased beating rates and was antagonized by ergonovine. This study demonstrates there is a reciprocal serotonergic-dopaminergic innervation of the lateral ciliated cells, similar to that of M. edulis, originating in the cerebral and visceral ganglia of the animal and this preparation is a useful model to study regulatory mechanisms of ciliary activity as well as the pharmacology of drugs affecting biogenic amines in nervous systems.  相似文献   

2.
3.
Investigating the spatial and temporal expression of connexin36 (Cx36) protein in neuronal tissue is of prime importance to understand the molecular mechanisms underlying extensive electrical coupling. Although Cx36 mRNA was shown to be expressed in neurons of the central nervous system in different studies, only the determination of Cx36 protein expression allows a correlation between localization and its functional role in gap junction-mediated neuronal coupling. After the initial use of antibodies recognizing the skate connexin35 protein, antibodies directed to the mammalian Cx36 sequence allowed the detailed investigation of Cx36 cellular localization. However, results on Cx36 protein distribution still remained controversial in some areas of the central nervous system. In the present study, we have investigated: (a) the distribution of Cx36 protein in various areas of the central nervous system and (b) determined the specificity in the immunohistochemical staining of two polyclonal antibodies comparing wildtype and Cx36-deficient mice. In some areas of the central nervous system, for example in the retina and the inferior nuclear olivary complex, Cx36 antibodies were highly specific, and in the cerebellar cortex, Cx36 protein expression was partly specific. In other regions, particularly in pyramidal cells of the hippocampal formation, non-specific staining was prevalent, indicating that Cx36 antibodies also recognize proteins other than Cx36 in these tissues. The present results argue for a re-evaluation of many documented immunohistochemical protein distribution patterns and require, not only in connexin research, their assessment using null-mutant animals.  相似文献   

4.
5.
Kaliotoxin (KTX), a specific blocker of potassium channels, exerts various toxic effects due to its action on the central nervous system. Its use in experimental model could help the understanding of the cellular and molecular mechanisms involved in the neuropathological processes related to potassium channel dysfunctions. In this study, the ability of KTX to stimulate neuro‐immuno‐endocrine axis was investigated. As results, the intracerebroventricular injection of KTX leads to severe structural–functional alterations of both hypothalamus and thyroid. These alterations were characterized by a massive release of hormones’ markers of thyroid function associated with damaged tissue which was infiltrated by inflammatory cell and an imbalanced redox status. Taken together, these data highlight that KTX is able to modulate the neuro‐endocrine response after binding to its targets leading to the hypothalamus and the thyroid stimulation, probably by inflammatory response activation and the installation of oxidative stress in these organs.  相似文献   

6.
Connexins (Cxs) 40, 43, and 45 are expressed in many different tissues, but most abundantly in the heart, blood vessels, and the nervous system. We examined formation and gating properties of heterotypic gap junction (GJ) channels assembled between cells expressing wild-type Cx40, Cx43, or Cx45 and their fusion forms tagged with color variants of green fluorescent protein. We show that these Cxs, with exception of Cxs 40 and 43, are compatible to form functional heterotypic GJ channels. Cx40 and Cx43 hemichannels are unable or effectively impaired in their ability to dock and/or assemble into junctional plaques. When cells expressing Cx45 contacted those expressing Cx40 or Cx43 they readily formed junctional plaques with cell-cell coupling characterized by asymmetric junctional conductance dependence on transjunctional voltage, V(j). Cx40/Cx45 heterotypic GJ channels preferentially exhibit V(j)-dependent gating transitions between open and residual states with a conductance of approximately 42 pS; transitions between fully open and closed states with conductance of approximately 52 pS in magnitude occur at substantially lower ( approximately 10-fold) frequency. Cx40/Cx45 junctions demonstrate electrical signal transfer asymmetry that can be modulated between unidirectional and bidirectional by small changes in the difference between holding potentials of the coupled cells. Furthermore, both fast and slow gating mechanisms of Cx40 exhibit a negative gating polarity.  相似文献   

7.
Summary

Parasites are invariably characterized by a prodigious egg output and channel much of their metabolic activity towards reproduction. While certain aspects of reproduction, such as gametogenesis and egg formation, have received attention, surprisingly little is known about the mechanisms regulating reproductive physiology and behaviour. It is likely that these mechanisms will involve neuropeptides because, in the absence of endocrine glands and a circulatory system, it is the secretory (peptidergic) component of the nervous system that will serve as an endocrine system. The last few years have witnessed a growing awareness of the range of peptidergic molecules produced by parasites, a diversity that overshadows the number of transmitters produced by the conventional nervous system. Neuropeptides are distributed throughout the CNS; in addition, peptidergic elements occur in those components of the PNS that innervate the gonads and muscularised ducts of the male and female reproductive systems. Peptidergic cells are also associated with the eggforming chamber, or ootype, and the implications of this for the control of egg formation and as a possible target for chemotherapy are discussed.  相似文献   

8.
Mesenchymal stem cells have shown regenerative properties in many tissues. This feature had originally been ascribed to their multipotency and thus their ability to differentiate into tissue-specific cells. However, many researchers consider the secretome of mesenchymal stem cells the most important player in the observed reparative effects of these cells. In this review, we specifically focus on the potential neuroregenerative effect of mesenchymal stem cells, summarize several possible mechanisms of neuroregeneration and list key factors mediating this effect. We illustrate examples of mesenchymal stem cell treatment in central nervous system disorders including stroke, neurodegenerative disorders (such as Parkinson's disease, Huntington's disease, multiple system atrophy and cerebellar ataxia) and inflammatory disease (such as multiple sclerosis). We specifically highlight studies where mesenchymal stem cells have entered clinical trials.  相似文献   

9.
Post-Golgi transport of peptide hormone-containing vesicles from the site of genesis at the trans-Golgi network to the release site at the plasma membrane is essential for activity-dependent hormone secretion to mediate various endocrinological functions. It is known that these vesicles are transported on microtubules to the proximity of the release site, and they are then loaded onto an actin/myosin system for distal transport through the actin cortex to just below the plasma membrane. The vesicles are then tethered to the plasma membrane, and a subpopulation of them are docked and primed to become the readily releasable pool. Cytoplasmic tails of vesicular transmembrane proteins, as well as many cytosolic proteins including adaptor proteins, motor proteins, and guanosine triphosphatases, are involved in vesicle budding, the anchoring of the vesicles, and the facilitation of movement along the transport systems. In addition, a set of cytosolic proteins is also necessary for tethering/docking of the vesicles to the plasma membrane. Many of these proteins have been identified from different types of (neuro)endocrine cells. Here, we summarize the proteins known to be involved in the mechanisms of sorting various cargo proteins into regulated secretory pathway hormone-containing vesicles, movement of these vesicles along microtubules and actin filaments, and their eventual tethering/docking to the plasma membrane for hormone secretion.  相似文献   

10.
MOTIVATION: Immune cells coordinate their efforts for the correct and efficient functioning of the immune system (IS). Each cell type plays a distinct role and communicates with other cell types through mediators such as cytokines, chemokines and hormones, among others, that are crucial for the functioning of the IS and its fine tuning. Nevertheless, a quantitative analysis of the topological properties of an immunological network involving this complex interchange of mediators among immune cells is still lacking. RESULTS: Here we present a method for quantifying the relevance of different mediators in the immune network, which exploits a definition of centrality based on the concept of efficient communication. The analysis, applied to the human IS, indicates that its mediators differ significantly in their network relevance. We found that cytokines involved in innate immunity and inflammation and some hormones rank highest in the network, revealing that the most prominent mediators of the IS are molecules involved in these ancestral types of defence mechanisms which are highly integrated with the adaptive immune response, and at the interplay among the nervous, the endocrine and the immune systems. CONTACT: claudio.franceschi@unibo.it.  相似文献   

11.
Despite their economic importance, only very little information is available regarding (neuro)endocrine mechanisms of reproduction in bivalve molluscs. To gain insights into the molecular control of gonadic development of these animals, G protein-coupled receptors (GPCR) expressed in the gonad of the pacific oyster Crassostrea gigas were investigated. One such receptor was cloned by RT-PCR using oligonucleotide primers derived from consensus sequences of various vertebrate (neuro)peptide receptors. This receptor named Cg-GnRH-related receptor (Cg GnRH-R) exhibits a high degree of amino acid sequence identity with both vertebrate GnRH receptors and insect AKH receptors. Quantitative RT-PCR shows a specific expression of Cg-GnRH-R in both male and female gonads during the reproductive cycle. This demonstrates for the first time the plausible involvement of a GnRH receptor orthologue in the control of reproduction in a protostomian invertebrate.  相似文献   

12.
Although the functions of hormones and neuropeptides in the thymus have been extensively studied, we still do not know whether these intra-thymic humoral elements are released in a stimulated manner via the regulated secretory pathway or in a constitutive manner. Carboxypeptidase E (CpE) and chromogranin A (CgA) are functional and structural hallmarks of the regulated secretory pathway in (neuro)endocrine cells. Whereas we have previously shown a CgA-positive neuroendocrine population in the chicken thymus, the current study assesses the expression of CpE in the thymus, both at the mRNA and the protein level. Our immunohistochemical studies provide evidence for the co-existence of CgA and CpE in identical neuroendocrine cells in the thymus. CpE and CgA dual-positive cells have primarily been found in the transition zone between the cortex and medulla of the thymus, an area known to contain numerous arterioles and to be innervated by the autonomic nervous system. Our findings suggest that the diffuse neuroendocrine system serves as a relay for nervous stimuli delivered by the sympathetic and/or parasympathetic nervous system. Thus, these newly defined neuroendocrine cells might play an important role in the immuno-neuro-endocrine cross-talk in the thymus, potentially enabling thymopoiesis to be fine-tuned via the regulated secretory pathway by a variety of physical and environmental factors.  相似文献   

13.
The immune system is a homeostatic system that contributes to maintain the constancy of the molecular and cellular components of the organism. Immune cells can detect the intrusion of foreign antigens or alteration of self-components and send information to the central nervous system (CNS) about this kind of perturbations, acting as a receptor sensorial organ. The brain can respond to such signals by emitting neuro/endocrine signals capable of affecting immune reactivity. Thus, the immune system, as other physiologic systems, is under brain control. Under disease conditions, when priorities for survival change, the immune system can, within defined limits, reset brain-integrated neuro-endocrine mechanisms in order to favour immune processes at the expenses of other physiologic systems. In addition, some cytokines initially conceived as immune products, such as IL-1 and IL-6, are also produced in the “healthy” brain by glial cells and even by some neurons. These and other cytokines have the capacity to affect synaptic plasticity acting as mediators of interactions between astrocytes and pre- and post-synaptic neurons that constitute what is actually defined as a tripartite synapse. Since the production of cytokines in the brain is affected by peripheral immune and central neural signals, it is conceivable that tripartite synapses can, in turn, serve as a relay system in immune-CNS communication.  相似文献   

14.
15.
The nervous system generates behaviours through the activity in groups of neurons assembled into networks. Understanding these networks is thus essential to our understanding of nervous system function. Understanding a network requires information on its component cells, their interactions and their functional properties. Few networks come close to providing complete information on these aspects. However, even if complete information were available it would still only provide limited insight into network function. This is because the functional and structural properties of a network are not fixed but are plastic and can change over time. The number of interacting network components, their (variable) functional properties, and various plasticity mechanisms endows networks with considerable flexibility, but these features inevitably complicate network analyses. This review will initially discuss the general approaches and problems of network analyses. It will then examine the success of these analyses in a model spinal cord locomotor network in the lamprey, to determine to what extent in this relatively simple vertebrate system it is possible to claim detailed understanding of network function and plasticity.  相似文献   

16.
The central and peripheral nervous systems (CNS and PNS) of the ascidian tadpole larva are comparatively simple, consisting of only about 350 cells. However, studies of the expression of neural patterning genes have demonstrated overall similarity between the ascidian CNS and the vertebrate CNS, suggesting that the ascidian CNS is sufficiently complex to be relevant to those of vertebrates. Recent progress in the Ciona intestinalis genome project and cDNA project together with considerable EST information has made Ciona an ideal model for investigating molecular mechanisms underlying the formation and function of the chordate nervous system. Here, we characterized 56 genes specific to the nervous system by determining their full-length cDNA sequences and confirming their spatial expression patterns. These genes included those that function in the nervous systems of other animals, especially those involved in photoreceptor-mediated signaling and neurotransmitter release. Thus, the nervous system-specific genes in Ciona larvae will provide not only probes for determining their function but also clues for exploring the complex network of nervous system-specific genes.  相似文献   

17.
免疫细胞内源性儿茶酚胺的免疫调节作用   总被引:2,自引:0,他引:2  
Jiang JL  Qiu YH  Peng YP  Wang JJ 《生理学报》2006,58(4):309-317
机体内儿茶酚胺(catecholamines,CAs)包括去甲肾上腺素(norepinephrine,NE)、肾上腺素(epinephrine,E)和多巴胺(dopamine,DA)。CAs由神经元和内分泌细胞合成和分泌,其主要功能是调节心血管、呼吸和消化等内脏活动。近三十年来的研究说明,CAs也参与调控机体的免疫功能,但CAs的这种免疫调节作用一般视为神经和内分泌系统调节的介导作用。然而,近年来的研究发现,免疫细胞也能合成CAs,这是对传统观念的一种补充和提高。免疫细胞内存在经典的CAs代谢途径,既有合成CAs的酪氨酸羟化酶(tyrosine hydroxylase,TH)又有降解CAs的单胺氧化酶(monoamine oxidase,MAO)和儿茶酚氧位甲基移位酶(catechol-O-methyl transferase,COMT)。免疫细胞合成的内源性CAs可以调控细胞的增殖、分化、凋亡和细胞因子生成等多种免疫功能。CAs的这些作用可能主要通过自分泌或旁分泌途径作用于免疫细胞上相应受体和细胞内环磷酸腺苷(cyclicAMP,cAMP)实现。细胞内氧化应激机制可能也参与免疫细胞内源性CAs的免疫调节作用。此外,一些自身免疫性疾病如多发性硬化、风湿性关节炎可能也与免疫细胞内CAs的代谢异常有关。上述发现不仅为免疫系统有可能成为除神经和内分泌系统以外的第三个CA能系统提供了证据,而且为免疫系统内源性CAs的功能意义拓展了认识。  相似文献   

18.
The well known circulatory, including hemopoetic, and respiratory adjustments to high altitude often serve as classic examples of adaptation to specific environmental conditions. Less extensively studied are the contributions of the nervous and endocrine systems to such adaptive mechanisms even though their involvement in humans and animals is indisputed. Observations from our and other laboratories have identified in the rat a number of neurologic and endocrine responses to acute and prolonged exposure to high altitude attributable primarily to its hypoxic component. These responses include general retardation in maturation and function of the central nervous system as manifested by alterations in spontaneous and evoked electrical activity particularly in the limbic structures and involving selectively the synapse and are associated with impairment of brain protein and lipid metabolism, myelinogenesis and neurotransmission. Together with these neurologic disturbances, endocrine dysfunctions lead to alterations in growth, fertility and metabolism. Thus hypoxia, even of moderate severity, would affect profoundly the biochemical and functional maturation and activity of the brain and endocrines, and, reciprocally, prevention and treatment of these neuroendocrine imbalances might strengthen the adaptive competence of the individual.  相似文献   

19.
This review deals with the analysis of the modern literature concerning molecular mechanisms of secretory activity of gastric mucosa cells and their importance during development of different pathologies. Gastric acid secretion is regulated by paracrine, endocrine and neural systems. The result of these systems functioning at the molecular level is signal transduction pathways activation by histamine, acetylcholine, gastrin and other mediators. Coupling of these agents with specific receptors located on the basolateral plasma membrane of parietal cells modulates acid secretion. It was shown that protein phosphorylation enzymes play the significant role in realization of functional and proliferative activity of the stomach secretory cells in physiological and pathological states. The key role of tyrosine protein kinases associated with growth factors is considered, which take part in regulation of acid secretion, have trophic influence on mucosa cells, protect it from acute injuries, stimulate cell proliferation and accelerate ulcer healing.  相似文献   

20.
Gap-junctional coupling among neurons is subject to regulation by a number of neurotransmitters including nitric oxide. We studied the mechanisms by which NO regulates coupling in cells expressing Cx35, a connexin expressed in neurons throughout the central nervous system. NO donors caused potent uncoupling of HeLa cells stably transfected with Cx35. This effect was mimicked by Bay 21-4272, an activator of guanylyl cyclase. A pharmacological analysis indicated that NO-induced uncoupling involved both PKG-dependent and PKG-independent pathways. PKA was involved in both pathways, suggesting that PKG-dependent uncoupling may be indirect. In vitro, PKG phosphorylated Cx35 at three sites: Ser110, Ser276, and Ser289. A mutational analysis indicated that phosphorylation on Ser110 and Ser276, sites previously shown also to be phosphorylated by PKA, had a significant influence on regulation. Ser289 phosphorylation had very limited effects. We conclude that NO can regulate coupling through Cx35 and that regulation is indirect in HeLa cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号