首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated mean residence time (MRT) for soil organic carbon (SOC) sampled from paired hardwood and pine forests located along a 22 °C mean annual temperature (MAT) gradient in North America. We used acid hydrolysis fractionation, radiocarbon analyses, long-term laboratory incubations (525-d), and a three-pool model to describe the size and kinetics of the acid insoluble C (AIC), active and slow SOC fractions in soil. We found that active SOC was 2 ± 0.2% (mean ± SE) of total SOC, with an MRT of 33 ± 6 days that decreased strongly with increasing MAT. In contrast, MRT for slow SOC and AIC (70 ± 6% and 27 ± 6% of total SOC, respectively) ranged from decades to thousands of years, and neither was significantly related to MAT. The accumulation of AIC (as a percent of total SOC) was greater in hardwood than pine stands (36% and 21%, respectively) although the MRT for AIC was longer in pine stands. Based on these results, we suggest that the responsiveness of most SOC decomposition in upland forests to global warming will be less than currently modeled, but any shifts in vegetation from hardwood to pine may alter the size and MRT of SOC fractions.  相似文献   

2.
Determining soil carbon (C) responses to rising temperature is critical for projections of the feedbacks between terrestrial ecosystems, C cycle, and climate change. However, the direction and magnitude of this feedback remain highly uncertain due largely to our limited understanding of the spatial heterogeneity of soil C decomposition and its temperature sensitivity. Here we quantified C decomposition and its response to temperature change with an incubation study of soils from 203 sites across tropical to boreal forests in China spanning a wide range of latitudes (18°16′ to 51°37′N) and longitudes (81°01′ to 129°28′E). Mean annual temperature (MAT) and mean annual precipitation primarily explained the biogeographic variation in the decomposition rate and temperature sensitivity of soils: soil C decomposition rate decreased from warm and wet forests to cold and dry forests, while Q10‐MAT (standardized to the MAT of each site) values displayed the opposite pattern. In contrast, biological factors (i.e. plant productivity and soil bacterial diversity) and soil factors (e.g. clay, pH, and C availability of microbial biomass C and dissolved organic C) played relatively small roles in the biogeographic patterns. Moreover, no significant relationship was found between Q10‐MAT and soil C quality, challenging the current C quality–temperature hypothesis. Using a single, fixed Q10‐MAT value (the mean across all forests), as is usually done in model predictions, would bias the estimated soil CO2 emissions at a temperature increase of 3.0°C. This would lead to overestimation of emissions in warm biomes, underestimation in cold biomes, and likely significant overestimation of overall C release from soil to the atmosphere. Our results highlight that climate‐related biogeographic variation in soil C responses to temperature needs to be included in next‐generation C cycle models to improve predictions of C‐climate feedbacks.  相似文献   

3.
Coupled climate–ecosystem models predict significant alteration of temperate forest biome distribution in response to climate warming. Temperate forest biomes contain approximately 10% of global soil carbon (C) stocks and therefore any change in their distribution may have significant impacts on terrestrial C budgets. Using the Sierra Nevada as a model system for temperate forest soils, we examined the effects of temperature and soil mineralogy on soil C mineralization. We incubated soils from three conifer biomes dominated by ponderosa pine (PP), white fir (WF), and red fir (RF) tree species, on granite (GR), basalt (BS), and andesite (AN) parent materials, at three temperatures (12.5°C, 7.5°C, 5.0°C). AN soils were dominated by noncrystalline materials (allophane, Al‐humus complexes), GR soils by crystalline minerals (kaolinite, vermiculite), and BS soils by a mix of crystalline and noncrystalline materials. Soil C mineralization (ranging from 1.9 to 34.6 [mg C (g soil C)?1] or 0.1 to 2.3 [mg C (g soil)?1]) differed significantly between parent materials in all biomes with a general pattern of ANδ13C values of respired CO2 suggest greater decomposition of recalcitrant soil C compounds with increasing temperature, indicating a shift in primary C source utilization with temperature. Our results demonstrate that soil mineralogy moderates soil C mineralization and that soil C response to temperature includes shifts in decomposition rates, mineralizable pool size, and primary C source utilization.  相似文献   

4.
Microbial characteristics of soils on a latitudinal transect in Siberia   总被引:2,自引:0,他引:2  
Soil microbial properties were studied from localities on a transect along the Yenisei River, Central Siberia. The 1000 km‐long transect, from 56°N to 68°N, passed through tundra, taiga and pine forest characteristic of Northern Russia. Soil microbial properties were characterized by dehydrogenase activity, microbial biomass, composition of microbial community (PLFAs), respiration rates, denitrification and N mineralization rates. Relationships between vegetation, latitude, soil quality (pH, texture), soil organic carbon (SOC) and the microbial properties were examined using multivariate analysis. In addition, the temperature responses of microbial growth (net growth rate) and activity (soil respiration rate) were tested by laboratory experiments. The major conclusions of the study are as follows: 1. Multivariate analysis of the data revealed significant differences in microbial activity. SOC clay content was positively related to clay content. Soil texture and SOC exhibited the dominant effect on soil microbial parameters, while the vegetation and climatic effects (expressed as a function of latitude) were weaker but still significant. The effect of vegetation cover is linked to SOC quality, which can control soil microbial activity. 2. When compared to fine‐textured soils, coarse‐textured soils have (i) proportionally more SOC bound in microbial biomass, which might result in higher susceptibility of SOC transformation to fluctuation of environmental factors, and (ii) low mineralization potential, but with a substantial part of the consumed C being transformed to microbial products. 3. The soil microbial community from the northernmost study region located within the permafrost zone appears to be adapted to cold conditions. As a result, microbial net growth rate became negative when temperature rose above 5 °C and C mineralization then exceeded C accumulation.  相似文献   

5.
Recent observations indicate that long-term N additions can slow decomposition, leading to C accumulation in soils, but this process has received limited consideration by models. To address this, we developed a model of soil organic matter (SOM) dynamics to be used with the PnET model and applied it to simulate N addition effects on soil organic carbon (SOC) stocks. We developed the model’s SOC turnover times and responses to experimental N additions using measurements from the Harvard Forest, Massachusetts. We compared model outcomes to SOC stocks measured during the 20th year of the Harvard Forest Chronic Nitrogen Amendment Study, which includes control, low (5 g N m?2 yr?1) and high (15 g N m?2 yr?1) N addition to hardwood and red pine stands. For unfertilized stands, simulated SOC stocks were within 10 % of measurements. Simulations that used measured changes in decomposition rates in response to N accurately captured SOC stocks in the hardwood low N and pine high N treatment, but greatly underestimated SOC stocks in the hardwood high N and the pine low N treatments. Simulated total SOC response to experimental N addition resulted in accumulation of 5.3–7.9 kg C per kg N following N addition at 5 g N m?2 yr?1 and 4.1–5.3 kg C per kg N following N addition at 15 g N m?2 yr?1. Model simulations suggested that ambient atmospheric N deposition at the Harvard Forest (currently 0.8 g N m?2 yr?1) has led to an increase in cumulative O, A, and B horizons C stocks of 211 g C m?2 (3.9 kg C per kg N) and 114 g C m?2 (2.1 kg C per kg N) for hardwood and pine stands, respectively. Simulated SOC accumulation is primarily driven by the modeled decrease in SOM decomposition in the Oa horizon.  相似文献   

6.
Surface soils, which contain the largest pool of terrestrial organic carbon (C), may be able to sequester atmospheric C and thus mitigate climate change. However, this remains controversial, largely due to insufficient data and knowledge gaps in respect of organic C contents and stocks in soils and the main factors of their control. Up to now and despite numerous evaluations of soil organic carbon (SOC) stocks worldwide, the sloping lands of southeast Asia, one of the most biogeochemically active regions of the world, remain uninvestigated. Our main objective was to quantify SOC stocks and to evaluate the impact of various environmental factors. We, therefore, selected Laos with 230 566 km2 of mostly forested steep slopes, and where cultivation is still mainly traditional, i.e. a system of shifting cultivation without fertilization or mechanical tillage. Analytical data from 3471 soil profiles demonstrated that the top 1 m of soil depth holds an estimated 4.64 billion tons of SOC, 65% of which is in the first 0.3 m. SOC stocks to 0.3 m exhibit a high coefficient of variation (CV=62%) with values from 1.8 to 771 Mg C ha?1 and a mean at 129 Mg C ha?1. Furthermore, these stocks are significantly (at P<0.05 level) affected by land use as shown by principal components analysis and t‐tests with the largest amount being found under forest, less under shifting cultivation and the smallest under continuous cultivation. Moreover, SOC stocks correlated regionally to total annual rainfalls and latitude, and locally at the hill‐slope level to the distance to the stream network and the slope angle. It is hypothesized that this correlation is through actions on mineral weathering, soil clay content, soil fertility and SOC redistributions in landscapes. These relationships between SOC stocks and environmental factors may be of further use in (1) predicting the impact of global changes on future SOC stocks; and (2) identifying optimal strategies for land use planning so as to minimize soil C emissions to the atmosphere while maximizing carbon sequestration in soils.  相似文献   

7.
It is widely recognized that global warming promotes soil organic carbon (SOC) decomposition, and soils thus emit more CO2 into the atmosphere because of the warming; however, the response of SOC decomposition to this warming in different soil textures is unclear. This lack of knowledge limits our projection of SOC turnover and CO2 emission from soils after future warming. To investigate the CO2 emission from soils with different textures, we conducted a 107-day incubation experiment. The soils were sampled from temperate forest and grassland in northern China. The incubation was conducted over three short-term cycles of changing temperature from 5°C to 30°C, with an interval of 5°C. Our results indicated that CO2 emissions from sand (>50 µm), silt (2–50 µm), and clay (<2 µm) particles increased exponentially with increasing temperature. The sand fractions emitted more CO2 (CO2-C per unit fraction-C) than the silt and clay fractions in both forest and grassland soils. The temperature sensitivity of the CO2 emission from soil particles, which is expressed as Q10, decreased in the order clay>silt>sand. Our study also found that nitrogen availability in the soil facilitated the temperature dependence of SOC decomposition. A further analysis of the incubation data indicated a power-law decrease of Q10 with increasing temperature. Our results suggested that the decomposition of organic carbon in fine-textured soils that are rich in clay or silt could be more sensitive to warming than those in coarse sandy soils and that SOC might be more vulnerable in boreal and temperate regions than in subtropical and tropical regions under future warming.  相似文献   

8.
Dijkstra FA  Cheng W 《Ecology letters》2007,10(11):1046-1053
Decomposition of soil organic carbon (SOC) is the main process governing the release of CO2 into the atmosphere from terrestrial systems. Although the importance of soil–root interactions for SOC decomposition has increasingly been recognized, their long-term effect on SOC decomposition remains poorly understood. Here we provide experimental evidence for a rhizosphere priming effect, in which interactions between soil and tree roots substantially accelerate SOC decomposition. In a 395-day greenhouse study with Ponderosa pine and Fremont cottonwood trees grown in three different soils, SOC decomposition in the planted treatments was significantly greater (up to 225%) than in soil incubations alone. This rhizosphere priming effect persisted throughout the experiment, until well after initial soil disturbance, and increased with a greater amount of root-derived SOC formed during the experiment. Loss of old SOC was greater than the formation of new C, suggesting that increased C inputs from roots could result in net soil C loss.  相似文献   

9.
Quantifying soil organic carbon (SOC) decomposition under warming is critical to predict carbon–climate feedbacks. According to the substrate regulating principle, SOC decomposition would decrease as labile SOC declines under field warming, but observations of SOC decomposition under warming do not always support this prediction. This discrepancy could result from varying changes in SOC components and soil microbial communities under warming. This study aimed to determine the decomposition of SOC components with different turnover times after subjected to long‐term field warming and/or root exclusion to limit C input, and to test whether SOC decomposition is driven by substrate lability under warming. Taking advantage of a 12‐year field warming experiment in a prairie, we assessed the decomposition of SOC components by incubating soils from control and warmed plots, with and without root exclusion for 3 years. We assayed SOC decomposition from these incubations by combining inverse modeling and microbial functional genes during decomposition with a metagenomic technique (GeoChip). The decomposition of SOC components with turnover times of years and decades, which contributed to 95% of total cumulative CO2 respiration, was greater in soils from warmed plots. But the decomposition of labile SOC was similar in warmed plots compared to the control. The diversity of C‐degradation microbial genes generally declined with time during the incubation in all treatments, suggesting shifts of microbial functional groups as substrate composition was changing. Compared to the control, soils from warmed plots showed significant increase in the signal intensities of microbial genes involved in degrading complex organic compounds, implying enhanced potential abilities of microbial catabolism. These are likely responsible for accelerated decomposition of SOC components with slow turnover rates. Overall, the shifted microbial community induced by long‐term warming accelerates the decomposition of SOC components with slow turnover rates and thus amplify the positive feedback to climate change.  相似文献   

10.
《Global Change Biology》2018,24(7):2841-2849
Understanding the temperature sensitivity (Q10) of soil organic C (SOC) decomposition is critical to quantifying the climate–carbon cycle feedback and predicting the response of ecosystems to climate change. However, the driving factors of the spatial variation in Q10 at a continental scale are fully unidentified. In this study, we conducted a novel incubation experiment with periodically varying temperature based on the mean annual temperature of the soil origin sites. A total of 140 soil samples were collected from 22 sites along a 3,800 km long north–south transect of forests in China, and the Q10 of soil microbial respiration and corresponding environmental variables were measured. Results showed that changes in the Q10 values were nonlinear with latitude, particularly showing low Q10 values in subtropical forests and high Q10 values in temperate forests. The soil C:N ratio was positively related to the Q10 values, and coniferous forest soils with low SOC quality had higher Q10 values than broadleaved forest soils with high SOC quality, which supported the “C quality temperature” hypothesis. Out of the spatial variations in Q10 across all ecosystems, gram‐negative bacteria exhibited the most importance in regulating the variation in Q10 and contributed 25.1%, followed by the C:N ratio (C quality), fungi, and the fungi:bacteria ratio. However, the dominant factors that regulate the regional variations in Q10 differed among the tropical, subtropical, and temperate forest ecosystems. Overall, our findings highlight the importance of C quality and microbial controls over Q10 value in China's forest ecosystems. Meanwhile, C dynamics in temperate forests under a global warming scenario can be robustly predicted through the incorporation of substrate quality and microbial property into models.  相似文献   

11.
长三角典型水稻土有机碳组分构成及其主控因子   总被引:4,自引:0,他引:4  
王玺洋  于东升  廖丹  潘剑君  黄标  史学正 《生态学报》2016,36(15):4729-4738
准确把握水稻土有机碳组分构成特征及其主控因子,对定量化评价土壤有机碳质量和未来演变趋势具有重要意义。通过室内土壤呼吸培养实验结合有机碳三库一级动力学方程,模拟得到长三角地区典型水稻土剖面(0—100 cm)各土层有机碳组分含量及其分布特征;并利用主成分分析获取主控因子,建立有机碳组分回归预测模型。结果表明:水稻土活性碳、慢性碳和惰性碳含量随剖面深度增加而降低,上层土壤(0—40 cm)有机碳组分含量下降速度明显快于下层土壤(40—100 cm);水稻土活性碳构成比例不超过5.3%,惰性碳构成比例大于活性碳与慢性碳比例之和,达到60%以上,水稻土有机碳总量变异主要取决于慢性碳和惰性碳组分变异。因此,水稻土固碳重点在于慢性和惰性组分。同时,研究还发现水稻土类型和剖面深度主要在表层对有机碳组分含量和比例构成产生显著影响,土壤有机碳量、全氮和pH是影响水稻土有机碳组分含量分异的主控因子,利用主控因子可较好预测水稻土有机碳组分含量。  相似文献   

12.
Soil organic carbon (SOC) dynamics are regulated by the complex interplay of climatic, edaphic and biotic conditions. However, the interrelation of SOC and these drivers and their potential connection networks are rarely assessed quantitatively. Using observations of SOC dynamics with detailed soil properties from 90 field trials at 28 sites under different agroecosystems across the Australian cropping regions, we investigated the direct and indirect effects of climate, soil properties, carbon (C) inputs and soil C pools (a total of 17 variables) on SOC change rate (rC, Mg C ha?1 yr?1). Among these variables, we found that the most influential variables on rC were the average C input amount and annual precipitation, and the total SOC stock at the beginning of the trials. Overall, C inputs (including C input amount and pasture frequency in the crop rotation system) accounted for 27% of the relative influence on rC, followed by climate 25% (including precipitation and temperature), soil C pools 24% (including pool size and composition) and soil properties (such as cation exchange capacity, clay content, bulk density) 24%. Path analysis identified a network of intercorrelations of climate, soil properties, C inputs and soil C pools in determining rC. The direct correlation of rC with climate was significantly weakened if removing the effects of soil properties and C pools, and vice versa. These results reveal the relative importance of climate, soil properties, C inputs and C pools and their complex interconnections in regulating SOC dynamics. Ignorance of the impact of changes in soil properties, C pool composition and C input (quantity and quality) on SOC dynamics is likely one of the main sources of uncertainty in SOC predictions from the process‐based SOC models.  相似文献   

13.
Controls on the fate of ~277 Pg of soil organic carbon (C) stored in permafrost peatland soils remain poorly understood despite the potential for a significant positive feedback to climate change. Our objective was to quantify the temperature, moisture, organic matter, and microbial controls on soil organic carbon (SOC) losses following permafrost thaw in peat soils across Alaska. We compared the carbon dioxide (CO2) and methane (CH4) emissions from peat samples collected at active layer and permafrost depths when incubated aerobically and anaerobically at ?5, ?0.5, +4, and +20 °C. Temperature had a strong, positive effect on C emissions; global warming potential (GWP) was >3× larger at 20 °C than at 4 °C. Anaerobic conditions significantly reduced CO2 emissions and GWP by 47% at 20 °C but did not have a significant effect at ?0.5 °C. Net anaerobic CH4 production over 30 days was 7.1 ± 2.8 μg CH4‐C gC?1 at 20 °C. Cumulative CO2 emissions were related to organic matter chemistry and best predicted by the relative abundance of polysaccharides and proteins (R2 = 0.81) in SOC. Carbon emissions (CO2‐C + CH4‐C) from the active layer depth peat ranged from 77% larger to not significantly different than permafrost depths and varied depending on the peat type and peat decomposition stage rather than thermal state. Potential SOC losses with warming depend not only on the magnitude of temperature increase and hydrology but also organic matter quality, permafrost history, and vegetation dynamics, which will ultimately determine net radiative forcing due to permafrost thaw.  相似文献   

14.
Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long‐term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse‐textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2‐equivalents could theoretically be stored in A horizons of cultivated soils – four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity.  相似文献   

15.
Since the decomposition rate of soil organic carbon (SOC) varies as a function of environmental conditions, global climate change is expected to alter SOC decomposition dynamics, and the resulting changes in the amount of CO2 emitted from soils will feedback onto the rate at which climate change occurs. While this soil feedback is expected to be significant because the amount of SOC is substantially more than the amount of carbon in the atmosphere, the environmental dependencies of decomposition at global scales that determine the magnitude of the soil feedback have remained poorly characterized. In this study, we address this issue by fitting a mechanistic decomposition model to a global dataset of SOC, optimizing the model’s temperature and moisture dependencies to best match the observed global distribution of SOC. The results of the analysis indicate that the temperature sensitivity of decomposition at global scales (Q 10=1.37) is significantly less than is assumed by many terrestrial ecosystem models that directly apply temperature sensitivity from small-scale studies, and that the maximal rate of decomposition occurs at higher moisture values than is assumed by many models. These findings imply that the magnitude of the soil decomposition feedback onto rate of global climate change will be less sensitive to increases in temperature, and modeling of temperature and moisture dependencies of SOC decomposition in global-scale models should consider effects of scale.  相似文献   

16.
Carbon sequestration in soils is considered to be an important option for the mitigation of increasing atmospheric CO2 concentrations as a result of climate change. High carbon accumulation was observed in Lei bamboo (Phyllostachys praecox) soils when using large amounts of organic material in a mulching technique. Soil samples were collected from Lei bamboo fields in a chronosequence. The composition and stability of soil organic carbon (SOC) in the bamboo soils was investigated by a combination of 13C CPMAS NMR analysis and with a decomposition incubation experiment in the laboratory. SOC content decreased in the first 5 years after planting of Lei bamboo from the original paddy soil and increased strongly subsequently. The stability of SOC after application of the winter mulch was higher as compared to the original paddy soil with no mulching, indicating that SOC can be stored effectively within Lei bamboo fields under intensive management.  相似文献   

17.
We compared the properties of the clay mineral fraction and the composition of soil solutions in a Fagus sylvatica coppice (native forest) and four adjacent plantations of Pseudotsuga menziesii, Pinus nigra, Picea abies and Quercus sessiliflora planted in 1976. The results revealed changes of clay fraction properties due to tree species effect. Clay samples from Douglas fir and pine stands differ when compared to other species. Twenty-eight years after planting, we observed the following changes: a more pronounced swelling after citrate extraction and ethylene glycol solvation, a higher CEC and a smaller poorly crystallised aluminium content. All these changes affecting the clay fraction agreed well with soil solution analyses which revealed high NO3 ?, H+ and Al concentrations under Douglas fir and pine. These changes were explained by a strong net nitrification under Douglas fir and pine stands when compared with other tree species. The higher NO3 ? concentrations in soil solutions should be linked to the presence, type and activity of ammonia-oxiding bacteria which are likely influenced by tree species. The production of NO3 ? in excess of biological demand leads to a net production of hydrogen ion and enhances the dissolution of poorly crystallised Al-minerals. Secondary Al-bearing minerals constituted the principal acid-consuming system in these soils. As a consequence, the depletion of interlayer spaces of hydroxyinterlayered minerals increases the number of sites for exchangeable cation fixation and increases CEC of the clay fraction. The dissolution of Al oxy-hydroxides explain the increase in Al concentrations of soil solutions under Douglas fir and pine stands when compared to other species. Nitrate and dissolved aluminium were conjointly leached in the soil solutions. A change in environmental conditions, like an introduction of tree species, enough modifies soil processes to induce significant changes in the soil mineralogical composition even over a period of time as short as some tens of years. Generally, mineral weathering has been considered to be very slow and unlikely to change over tens of years, resulting in few studies capable of detecting changes in mineralogy. This study appears to have detected changes in clay mineralogy during a period of 28 years after the planting of forest species. Our study represents a single location with a limited block design, but causes us to conclude that the observed changes could be widely representative. Where available, archived samples should be utilized and long-term experiments set up so that similar changes can be tested for and detected using more robust designs. The plausible hypothesis we present to explain apparent changes in clay mineralogy has strong relevance to the sustainable management of land.  相似文献   

18.
Given the importance of soil organic carbon (SOC) as a pool in the global carbon cycle and an indicator for soil quality, there exits an urgent need to monitor this dynamic soil property. Here, we present a modelling approach to analyze the spatial patterns and temporal evolution of organic carbon in mineral soils under agricultural land use in Belgium. An empirical model, predicting the SOC concentration in the top 0.3 m, as a function of precipitation, land use, soil type and management has been constructed and applied within a spatial context using data from different time slices. The results show that SOC content is strongly correlated with precipitation and temperature under cropland and with texture and drainage under grassland. Total SOC stock increased with 1.3% from 6.18 ± 0.03 kg C m?2 in 1960 to 6.26 ± 0.07 kg C m?2 in 2006. Although this increase was not significant (P>0.05), a significant discrepancy between cropland (?8%) and grassland (+10%) was observed. Foremost, the grasslands in the hilly southern part of the country, under relatively wet climate conditions, acted as important sinks of CO2. Under cropland, all soil types were characterized by a decrease in SOC, except for the clay soils in the north‐west. Currently, croplands in the central loam region have SOC concentrations close to 10 g C kg?1 indicating that these soils are at risk of a decline in aggregate stability. An overall strong SOC decline in poorly drained soils is probably caused by artificial drainage. Further research is needed to gain more insight into the processes driving the observed SOC trends. Moreover, the use of updated drainage class information and land management history would improve the empirical models.  相似文献   

19.
Terrestrial biogeochemical feedbacks to the climate are strongly modulated by the temperature response of soil microorganisms. Tropical forests, in particular, exert a major influence on global climate because they are the most productive terrestrial ecosystem. We used an elevation gradient across tropical forest in the Andes (a gradient of 20°C mean annual temperature, MAT), to test whether soil bacterial and fungal community growth responses are adapted to long‐term temperature differences. We evaluated the temperature dependency of soil bacterial and fungal growth using the leucine‐ and acetate‐incorporation methods, respectively, and determined indices for the temperature response of growth: Q10 (temperature sensitivity over a given 10oC range) and Tmin (the minimum temperature for growth). For both bacterial and fungal communities, increased MAT (decreased elevation) resulted in increases in Q10 and Tmin of growth. Across a MAT range from 6°C to 26°C, the Q10 and Tmin varied for bacterial growth (Q10–20 = 2.4 to 3.5; Tmin = ?8°C to ?1.5°C) and fungal growth (Q10–20 = 2.6 to 3.6; Tmin = ?6°C to ?1°C). Thus, bacteria and fungi did not differ significantly in their growth temperature responses with changes in MAT. Our findings indicate that across natural temperature gradients, each increase in MAT by 1°C results in increases in Tmin of microbial growth by approximately 0.3°C and Q10–20 by 0.05, consistent with long‐term temperature adaptation of soil microbial communities. A 2°C warming would increase microbial activity across a MAT gradient of 6°C to 26°C by 28% to 15%, respectively, and temperature adaptation of microbial communities would further increase activity by 1.2% to 0.3%. The impact of warming on microbial activity, and the related impact on soil carbon cycling, is thus greater in regions with lower MAT. These results can be used to predict future changes in the temperature response of microbial activity over different levels of warming and over large temperature ranges, extending to tropical regions.  相似文献   

20.
Soil organic carbon (SOC) dynamics depend on soil properties derived from the geoclimatic conditions under which soils develop and are in many cases modified by land conversion. However, SOC stabilization and the responses of SOC to land use change are not well constrained in deeply weathered tropical soils, which are dominated by less reactive minerals than those in temperate regions. Along a gradient of geochemically distinct soil parent materials, we investigated differences in SOC stocks and SOC (Δ14C) turnover time across soil profile depth between montane tropical forest and cropland situated on flat, non-erosive plateau landforms. We show that SOC stocks and soil Δ14C patterns do not differ significantly with land use, but that differences in SOC can be explained by the physicochemical properties of soils. More specifically, labile organo-mineral associations in combination with exchangeable base cations were identified as the dominating controls over soil C stocks and turnover. We argue that due to their long weathering history, the investigated tropical soils do not provide enough reactive minerals for the stabilization of C input in either high input (tropical forest) or low-input (cropland) systems. Since these soils exceeded their maximum potential for the mineral related stabilization of SOC, potential positive effects of reforestation on tropical SOC storage are most likely limited to minor differences in topsoil without major impacts on subsoil C stocks. Hence, in deeply weathered soils, increasing C inputs may lead to the accumulation of a larger readily available SOC pool, but does not contribute to long-term SOC stabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号