首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Glutamate dehydrogenase (L-glutamate:NAD(P) oxidoreductase, EC 1.4.1.3) from rat liver has been crystallized with a method carefully avoiding all denaturating agents. A 236-fold purification was achieved at a yield of 20%. The specific activity was 185 units/mg protein. The enzyme was homogeneous by analytical zone electrophoresis and sedimentation studies. The s0(20),w value was 13.2. 2. Sedimentation studies in the analytical ultracentrifuge and the behaviour of the enzyme in the disc-electrophoresis revealed that glutamate dehydrogenase from rat liver did not undergo a reversible association-dissociation reaction as reported of glutamate dehydrogenase of nearly all other mammalians. 3. Using antibodies prepared against crystalline bovine liver glutamate dehydrogenase, no immunological differences between the rat and the bovine liver enzyme could be observed.  相似文献   

2.
The oxidation of proline to glutamate in mitochondria requires two enzymes, proline oxidase and pyrroline 5-carboxylate (P5C) dehydrogenase. In this paper we report an 800-fold purification P5C dehydrogenase from rat liver mitochondria to yield an essentially homogenous protein. The protein, whose Mr is 59,000, is an alpha 2 dimer (Mr = 115,000) in solution with an isoionic point at pH 5.7. The substrates P5C and NAD+ have apparent dissociation constants of 0.16 and 1.0 mM, respectively. Studies have been conducted to see if the conversion of glutamate and NADH to P5C and NAD+ is catalyzed by this enzyme. These studies have established that if the reverse reaction occurs the rate is 1/15,000th of the rate at which P5C is oxidized to glutamate. The concentration of the substrates needed in the assay results in a high background that interferes with accurate spectrophotometric analysis of the rate of NADH production; therefore a radiochemical (2) or a new colorimetric (3) assay was used here. A number of aldehydes were tested as substrates. It was found that the rat and human enzymes (4) have similar requirements for an aldehyde to be a substrate. Both of these proteins interacted with a polyclonal rabbit anti-rat P5C dehydrogenase serum.  相似文献   

3.
N Lan  E H Frieden  A B Rawitch 《Enzyme》1979,24(6):416-419
A procedure has been developed for characterizing the various molecular forms of placental and liver glutamate dehydrogenases through a combination of activity staining and varying gel pore size in electrophoresis. At a concentration of 2 mg/ml, the bovine liver GDH remained associated in a very high molecular weight form, while the placental enzyme was substantially dissociated to a molecular species of near 240,000 molecular weight and several charge isomeric species of near 160,000 molecular weight. The general approach outlined here provides a means of definitely correlating the electrophoretic behavior of various dehydrogenase isozymes with both glutamate and alanine dehydrogenase activities and molecular size and should be applicable, even in crude extracts to other dehydrogenase enzymes which exhibit multiple forms or states of association.  相似文献   

4.
The glutamate dehydrogenase from a single human liver has been studied. The subunit size was found to be 55,200 +/- 1,500 by sedimentation equilibrium. The partial specific volume is 0.732 as calculated from the amino acid composition. The sequence was determined by isolation of peptides after cyanogen bromide (CNBr) cleavage; the fraction containing the largest peptides was hydrolyzed by trypsin after maleylation. Studies on these peptides accounted for 454 residues of the 505 residues that are presumably present in the protein. For the 51 residues that were not represented in isolated peptides, we have tentatively assumed that the sequence is the same as that of the bovine enzyme. Methionine and arginine residues in these peptides could be placed on the basis of the specificity of cleavage by CNBr or trypsin. In all, 349 residues were placed in sequence, and were aligned by homology with the corresponding peptides of the bovine and chicken enzymes. From the present information, there are 24 known differences in sequence between the human and bovine enzymes and 41 between the human and chicken enzymes. In addition, the human enzyme contains 4 additional residues at the NH2 terminus as compared to the bovine enzyme. In a peptide from the human enzyme, an additional residue, isoleucine 385, was detected by automated Edman degradation. Reinvestigation of the bovine sequence demonstrated that this residue is also present in the bovine enzyme (and presumably in the chicken enzyme also). Residue 384 of the bovine enzyme, previously reported as Glx has now been shown to be glutamine.  相似文献   

5.
Adult male and female Haemonchus contortus were homogenized and subjected to differential centrifugation. The crude, high-speed, supernatant fraction contained more than 95% of the glutamate dehydrogenase activity. The enzyme was purified through use of DEAE-cellulose columns and sucrose density gradient centrifugation. The enzyme from both crude and purified preparations was detected as a single band of activity following starch or polyacrylamide-gel electrophoresis. The Haemonchus enzyme was compared with ovine and bovine liver glutamate dehydrogenases. The three enzymes were similar in molecular size, Michaelis constants, and pH optimums but differed in electrophoretic mobility in polyacrylamide-gels, activity with NADP as coenzyme, and effect of AMP and ADP on activity. Sheep anti-Haemonchus glutamate dehydrogenase serum inhibited Haemonchus glutamate dehydrogenase, but did not inhibit the ovine or bovine enzymes.  相似文献   

6.
Bovine liver glutamate dehydrogenase reacts covalently with 2-(4-bromo-2,3-dioxobutylthio)adenosine 5'-monophosphate (2-BDB-TAMP) with incorporation of 1 mol reagent/mol enzyme subunit and loss of one of the two ADP sites of native enzyme [S. P. Batra and R. F. Colman, J. Biol. Chem. 261, 15565-15571 (1986)]. Incorporation of reagent is prevented specifically by ADP. The modified enzyme has now been digested with trypsin. The nucleotidyl peptide has been purified by chromatography on phenylboronate-agarose, followed by reverse-phase HPLC. On the basis of amino acid composition following acid hydrolysis, and gas-phase sequencing, the modified tryptic peptide was established as Ala-Gln-His-Ser-Gln-His-Arg, corresponding to amino acids 80-86 of the known glutamate dehydrogenase primary structure. The evidence presented indicates that the target amino acid attacked by 2-BDB-TAMP is histidine-82 and that this residue is located within the high-affinity ADP-activating site of glutamate dehydrogenase. In the course of this work, it was found that the positions of Gln84 and His85 had been reported as reversed in the revised sequence of bovine liver glutamate dehydrogenase [J. H. Julliard and E. L. Smith, J. Biol. Chem. 254, 3427-3438 (1979)]. Three additional corrections are here reported in the amino acid sequence of the native enzyme on the basis of gas-phase sequencing of other peptides purified by HPLC: Asp168 (not Asn); His221-Gly222 (not Gly-His); and Glu355 (not Gln).  相似文献   

7.
D H Ozturk  D Safer  R F Colman 《Biochemistry》1990,29(30):7112-7118
Bovine liver glutamate dehydrogenase reacts with 8-[(4-bromo-2,3-dioxobutyl)thio]adenosine 5'-diphosphate (8-BDB-TA-5'-DP) and 5'-triphosphate (8-BDB-TA-5'-TP) to yield enzyme with about 1 mol of reagent incorporated/mol of enzyme subunit. The modified enzyme is catalytically active but has decreased sensitivity to inhibition by GTP, reduced extent of activation by ADP, and diminished inhibition by high concentrations of NADH. Since modified enzyme, like native glutamate dehydrogenase, reversibly binds more than 1 mol each of ADP and GTP, it is unlikely that 8-BDB-TA-5'-TP reacts directly within either the ADP or GTP regulatory sites. The rate constant for reaction of enzyme exhibits a nonlinear dependence on reagent concentration with KD = 89 microM for 8-BDB-TA-5'-TP and 240 microM for 8-BDB-TA-5'-DP. The ligands ADP and GTP alone and NADH alone produce only small decreases in the rate constant for the reaction of enzyme with 8-BDB-TA-5'-TP, but the combined addition of 5 mM NADH + 200 microM GTP reduces the reaction rate constant more than 10-fold and the reagent incorporation to about 0.1 mol/mol of enzyme subunit. These results suggest that 8-BDB-TA-5'-TP reacts as a nucleotide affinity label in the region of the GTP-dependent NADH regulatory site of bovine liver glutamate dehydrogenase.  相似文献   

8.
We have purified the soluble form of guanylate cyclase from human placenta greater than 2400-fold. The enzyme shared several characteristics with the enzyme purified from other sources including molecular mass and subunit composition, activation by divalent cations, inhibition by ATP and Michaelis constants. The enzyme, however, had a lower absorption maximum in the Soret region (417 +/- 1 nm) than the enzyme from other sources and was activated only one-fifth as much by nitric oxide as the bovine lung enzyme. It appears that the heme prosthetic group in the human placental enzyme may be hexa-coordinate and in the bovine lung enzyme the heme group may be penta-coordinate.  相似文献   

9.
Substrate specificity of bovine liver formaldehyde dehydrogenase   总被引:1,自引:0,他引:1  
Formaldehyde dehydrogenases isolated from several different biological sources have been reported to catalyze the NAD+-dependent oxidative acylation of glutathione by methylglyoxal to form S-pyruvylglutathione, suggesting the involvement of this enzyme in the metabolism of methylglyoxal. However, formaldehyde dehydrogenase from bovine liver is found not to use methylglyoxal or related alpha-ketoaldehydes as substrates. Using methylglyoxal with the enzyme under conditions favoring the forward reaction did not result in the formation of S-pyruvylglutathione. Using independently synthesized S-pyruvylglutathione with the enzyme under conditions favoring the reverse reaction did not result in the production of methylglyoxal. In addition, methylglyoxal and several related alpha-ketoaldehydes did not exhibit detectable activity with formaldehyde dehydrogenase partially purified from human liver, contrary to a previous report. Some, if not all, past reports that methylglyoxal serves as a substrate for the dehydrogenase may be due to the demonstrated presence of contaminating formaldehyde in some commercially available preparations of methylglyoxal. In a related study, S-hydroxymethylglutathione, formed by pre-equilibrium addition of formaldehyde to glutathione, is concluded to be direct substrate for the dehydrogenase. This follows from the observation that the catalytic turnover number of the enzyme in the forward direction exceeds by a factor of approximately 20 the first order rate constant for decomposition of S-hydroxymethylglutathione to glutathione and formaldehyde (k = 5.03 +/- 0.30 min-1, pH 8, 25 degrees C).  相似文献   

10.
3-Hydroxybutyrate dehydrogenase is a lipid-requiring enzyme with an absolute requirement of phosphatidylcholine for enzymatic activity. Purification of the enzyme to homogeneity from bovine heart mitochondria was described more than a decade ago [H. G. Bock and S. Fleischer (1975) J. Biol. Chem. 250, 5774-5781]. We have modified the purification procedure so that it is faster, the yield has been improved, and the specific activity is greater by approximately 50%. The updated procedure has also been applied to isolate the enzyme from rat liver mitochondria. Characteristics of the enzyme from bovine heart and rat liver mitochondria have been compared and found to be similar with respect to: (1) purification characteristics; (2) amino acid composition; (3) pH optimum for enzymatic activity; (4) kinetic characteristics; (5) molecular weight as determined by sedimentation equilibrium in guanidine hydrochloride; (6) peptide maps; (7) immunological cross-reactivity. These studies show that 3-hydroxybutyrate dehydrogenase from bovine heart and rat liver mitochondria, though similar, are not identical.  相似文献   

11.
The NADP-specific glutamate dehydrogenase (EC 1.4.1.4) of Neurospora crassa is inhibited by reaction with 1,2-cyclohexanedione which binds to arginine residues. With the 14C-labeled reagent, a peptide was isolated with the sequence: Gly-Gly-Leu-Arg-Leu-His-Pro-Ser-Val-Asn-Leu, corresponding to residues 78 through 88 in the protein. The arginine, residue 81, was present as N7,N8-(1,2-dihydroxycyclohex-1,2-ylene)-arginyl (or DHCH-arginine). Present evidence indicates that this arginine residue resides at or near the nicotinamide binding domain of the enzyme. Similar sequences are present in the bovine liver enzyme (EC 1.4.1.3) and the NAD-specific glutamate dehydrogenase of Neurospora (EC 1.4.1.2).  相似文献   

12.
Competitive inhibition of glutamate dehydrogenase reaction   总被引:1,自引:0,他引:1  
Choudhury R  Punekar NS 《FEBS letters》2007,581(14):2733-2736
Irrespective of their pyridine nucleotide specificity, all glutamate dehydrogenases share a common chemical mechanism that involves an enzyme bound 'iminoglutarate' intermediate. Three compounds, structurally related to this intermediate, were tested for the inhibition of purified NADP-glutamate dehydrogenases from two Aspergilli, as also the bovine liver NAD(P)-glutamate dehydrogenase. 2-Methyleneglutarate, closely resembling iminoglutarate, was a potent competitive inhibitor of the glutamate dehydrogenase reaction. This is the first report of a non-aromatic structure with a better glutamate dehydrogenase inhibitory potency than aryl carboxylic acids such as isophthalate. A suitably located 2-methylene group to mimic the iminium ion could be exploited to design inhibitors of other amino acid dehydrogenases.  相似文献   

13.
In previous studies it was found that: (a) aspartate aminotransferase increases the aspartate dehydrogenase activity of glutamate dehydrogenase; (b) the pyridoxamine-P form of this aminotransferase can form an enzyme-enzyme complex with glutamate dehydrogenase; and (c) the pyridoxamine-P form can be dehydrogenated to the pyridoxal-P form by glutamate dehydrogenase. It was therefore concluded (Fahien, L.A., and Smith, S.E. (1974) J. Biol. Chem 249, 2696-2703) that in the aspartate dehydrogenase reaction, aspartate converts the aminotransferase into the pyridoxamine-P form which is then dehydrogenated by glutamate dehydrogenase. The present results support this mechanism and essentially exclude the possibility that aspartate actually reacts with glutamate dehydrogenase and the aminotransferase is an allosteric activator. Indeed, it was found that aspartate is actually an activator of the reaction between glutamate dehydrogenase and the pyridoxamine-P form of the aminotransferase. Aspartate also markedly activated the alanine dehydrogenase reaction catalyzed by glutamate dehydrogenase plus alanine aminotransferase and the ornithine dehydrogenase reaction catalyzed by ornithine aminotransferase plus glutamate dehydrogenase. In these latter two reactions, there is no significant conversion of aspartate to oxalecetate and other compounds tested (including oxalacetate) would not substitute for aspartate. Thus aspartate is apparently bound to glutamate dehydrogenase and this increases the reactivity of this enzyme with the pyridoxamine-P form of aminotransferases. This could be of physiological importance because aspartate enables the aspartate and ornithine dehydrogenase reactions to be catalyzed almost as rapidly by complexes between glutamate dehydrogenase and the appropriate mitochondrial aminotransferase in the absence of alpha-ketoglutarate as they are in the presence of this substrate. Furthermore, in the presence of aspartate, alpha-ketoglutarate can have little or no affect on these reactions. Consequently, in the mitochondria of some organs these reactions could be catalyzed exclusively by enzyme-enzyme complexes even in the presence of alpha-ketoglutarate. Rat liver glutamate dehydrogenase is essentially as active as thebovine liver enzyme with aminotransferases. Since the rat liver enzyme does not polymerize, this unambiguously demonstrates that monomeric forms of glutamate dehydrogenase can react with aminotransferases.  相似文献   

14.
A comparison of rat brain and liver β-hydroxybutyrate dehydrogenase (EC 1.1.1.30) has revealed that significant differences exist between the enzymes with regard to their kinetic and physical properties. In contrast to the liver enzyme, brain β-hydroxybutyrate dehydrogenase is rapidly inactivated at 46° and is unstable when stored at ?20°. The brain dehydrogenase was found to have a larger Km (apparent) for the 3-acetylpyridine analog of NAD+, and a greater energy of activation in the direction of β-hydroxybutyrate oxidation than the liver enzyme. In the reverse direction, the brain and liver dehydrogenase exhibit substrate inhibition by NADH (0.22 mM and 0.36 mM, respectively). The brain and liver β-hydroxybutyrate dehydrogenase did not differ significantly with regard to the Michaelis-Menten constants measured for NAD+ and β-hydroxybutyrate. The Km constants of brain β-hydroxybutyrate dehydrogenase for acetoacetate (0.39 mM) and NADH (0.05 mM) were lower than those determined for the liver enzyme, acetoacetate (0.73 mM) and NADH (0.35 mM) respectively. These results suggest that the β-hydroxybutyrate dehydrogenase from rat brain and liver are isozymic variants.  相似文献   

15.
G Prisco  F Garofano 《Biochemistry》1975,14(21):4673-4679
Glutamate dehydrogenase have been obtained in crystalline form from purified ox liver nuclear fractions. The enzyme appeared homogeneous, as judged by several electrophoretic techniques at two pH values. A comparative study with the widely known ox liver mitochondrial glutamate dehydrogenase revealed several common features, such as the allosteric effect of the nucleotides ADP and GTP, the activation at high concentrations of the cofactor NAD+, and the existence of a concentration-dependent reversible monomer-polymer(s) equilibrium. However, the two enzymes differed in many other respects. Inorganic phosphate activated nuclear glutamate dehydrogenase to a much greater extent than the mitochondrial enzyme; the substrate NH4+ showed cooperative homotropic interactions only with nuclear glutamate dehydrogenase; kinetic differences were detected with most of the reaction substrates, as well as different rates of oxidative deamination of other L-amino acids, the nuclear enzyme had a higher anodic mobility and a different chromatographic behavior on anionic exchangers. The latter evidence indicates that the glutamate dehydrogenase activity in liver is associated with two proteins which are structurally different, thus confirming the results of a separate immunological study. Preliminary evidence suggests that the enzyme in nuclei is attached to the nuclear envelope, probably the inner membrane, from which it can be solubilized by the addition of salts.  相似文献   

16.
The data concerning the chemical and kinetic mechanisms of the glutamate dehydrogenase reaction have been reviewed. Based on the differences between two catalytically active glutamate dehydrogenase conformations induced by the substrates as well as on some other evidence, it has been proposed that the amino groups of lysine residues 27 and 126 in the beef liver enzyme are interchangeable depending on the direction of the glutamate dehydrogenase reaction.  相似文献   

17.
J Vińa  R Hems    H A Krebs 《The Biochemical journal》1978,170(3):711-713
1. Kinetic aspects of the reaction between crystalline bovine liver glutamate dehydrogenase and formiminoglutamate were investigated to establish the conditions under which the latter may interfere with the assay of glutamate by using glutamate dehydrogenase and to explain why formiminoglutamate accumulates in vivo after histidine loading, although it can react with glutamate dehydrogenase. The Km and Vmax. values were compared with those of the enzyme reacting with glutamate. At pH 7.4 Km for formiminoglutamate was much higher and Vmax. much lower than the values for glutamate. 2. The equilibrium constant at pH 7.0 was 0.017 micrometer with formiminoglutamate, i.e. about one two-hundredths that with glutamate. 3. In vivo the interaction between glutamate dehydrogenase and formiminoglutamate is minimal even when the concentration of the latter in the liver is greatly raised, as in cobalamine or folate deficiency after histidine loading. 4. At pH 9.3, i.e. under the conditions for the assay of glutamate by glutamate dehydrogenase, formiminoglutamate reacts readily with the enzyme.  相似文献   

18.
A new bifunctional affinity label, 5'-p-(fluorosulfonyl)benzoyl-8-azidoadenosine (5'-FSBAzA), has been synthesized by condensation of p-(fluorosulfonyl)benzoyl chloride with 8-azidoadenosine. 5'-FSBAzA has been characterized by elemental analysis, thin-layer chromatography, and ultraviolet and 1H NMR spectroscopy. The affinity label contains both an electrophilic fluorosulfonyl moiety and a photoactivatable azido group which are capable of reacting with several classes of amino acids found in enzymes. 5'-FSBAzA reacts with bovine liver glutamate dehydrogenase in a two-step process: a dark reaction yielding about 0.5 mol of the sulfonylbenzoyl-8-azidoadenosine (SBAzA) group bound/mol enzyme subunit by reaction of the enzyme at the fluorosulfonyl group, followed by photolysis in which 25% of the covalently bound SBAzA becomes crosslinked to the enzyme. 5'-FSBAzA-modified glutamate dehydrogenase, both before and after photolysis, retains full catalytic activity but is less sensitive to allosteric inhibition by GTP, to activation by ADP, and to inhibition by 1 mM NADH. These results suggest the modification in the dark reaction of a regulatory nucleotide binding site. Photoactivation of the covalently bound reagent may have general applicability in relating modified amino acids which are close to each other in the region of the purine nucleotide binding sites of glutamate dehydrogenase and other proteins.  相似文献   

19.
Aldehyde dehydrogenase from bovine liver has been purified to homogeneity. Amino acid composition showed a high content of cysteine of 32 mol/mol enzyme. The enzyme is composed of four identical subunits as judged by sodium dodecyl sulfate gel electrophoresis and end-group analysis. The molecular weight was determined to be 220 000 +/- 10 000 by sedimentation equilibrium analysis in an analytical ultracentrifuge. The Michaelis constants for NAD+, glyceraldehyde and acetaldehyde were found to be 47 micron, 170 micron and 130 micron, respectively.  相似文献   

20.
Using either human placental microsomal 5-deiodinase as enzyme (5-DI) and thyroxine as substrate or rat liver (RL) microsomal 5'-deiodinase (5'DI) as enzyme and reverse [(3'- or 5'-)-125I]triiodo-L-thyronine ([125I]rT3) as substrate, activation of 5'-DI in the presence of NADPH was observed using either human placental or rat liver cytosolic components, but there was no activation of 5-DI. Both could be activated by DTT, with higher concentrations being required for 5-DI than for 5'-DI. Iopanoic acid, dicumarol, and sodium arsenite inhibited 5'-DI and 5-DI activated by DTT. In the presence of DTT, 1 mM 6-propyl-2-thiouracil had no effect on 5-DI but inhibited 5'DI. Thus, human placental and rat liver cytosolic components are interchangeable in activating hepatic 5'-DI in the presence of NADPH. However, if an endogenous cofactor system involved in the activation of human placental 5-DI exists, it probably differs from the activator of liver 5'-DI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号