首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The structure of the 60 kDa pyrophosphate (PP(i))-dependent phosphofructokinase (PFK) from Borrelia burgdorferi has been solved and refined (R(free) = 0.243) at 2.55 A resolution. The domain structure of eubacterial ATP-dependent PFKs is conserved in B. burgdorferi PFK, and there are three large insertions relative to E. coli PFK, including a helical domain containing a hairpin structure that interacts with the active site. Asp177, conserved in all PP(i) PFKs, negates the binding of the alpha-phosphate group of ATP and likely contacts the essential Mg(2+) cation via a water molecule. Asn181 blocks the binding of the adenine moiety of ATP. Lys203 hydrogen bonds to a sulfate anion that likely mimics PP(i) substrate binding.  相似文献   

2.
3.
Phosphofructokinase (PFK) is a key enzyme of the glycolytic pathway in all domains of life. Two related PFKs, ATP-dependent and PP(i)-dependent PFK, have been distinguished in bacteria and eucarya, as well as in some archaea. Hyperthermophilic archaea of the order Thermococcales, including Pyrococcus and Thermococcus spp., have recently been demonstrated to possess a unique ADP-dependent PFK (ADP-PFK) that appears to be phylogenetically distinct. Here, we report the presence of ADP-PFKs in glycogen-producing members of the orders Methanococcales and Methanosarcinales, including both mesophilic and thermophilic representatives. To verify the substrate specificities of the methanogenic kinases, the gene encoding the ADP-PFK from Methanococcus jannaschii was functionally expressed in Escherichia coli, and the produced enzyme was purified and characterized in detail. Compared to its counterparts from the two members of the order Thermococcales, the M. jannaschii ADP-PFK has an extremely low K(m) for fructose 6-phosphate (9.6 microM), and it accepts both ADP and acetyl-phosphate as phosphoryl donors. Phylogenetic analysis of the ADP-PFK reveals it to be a key enzyme of the modified Embden-Meyerhof pathway of heterotrophic and chemolithoautotrophic archaea. Interestingly, uncharacterized homologs of this unusual kinase are present in several eucarya.  相似文献   

4.
The enzyme phosphofructokinase (PFK) is a defining activity of the highly conserved glycolytic pathway, and is present in the domains Bacteria, Eukarya, and Archaea. PFK subtypes are now known that utilize either ATP, ADP, or pyrophosphate as the primary phosphoryl donor and share the ability to catalyze the transfer of phosphate to the 1-position of fructose-6-phosphate. Because of the crucial position in the glycolytic pathway of PFKs, their biochemical characteristics and phylogenies may play a significant role in elucidating the origins of glycolysis and, indeed, of metabolism itself. Despite the shared ability to phosphorylate fructose-6-phosphate, PFKs that have been characterized to date now fall into three sequence families: the PFKA family, consisting of the well-known higher eukaryotic ATP-dependent PFKs together with their ATP- and pyrophosphate-dependent bacterial cousins (including the crenarchaeal pyrophosphate-dependent PFK of Thermoprotetus tenax) and plant pyrophosphate-dependent phosphofructokinases; the PFKB family, exemplified by the minor ATP-dependent PFK activity of Escherichia coli (PFK 2), but which also includes at least one crenarchaeal enzyme in Aeropyrum pernix; and the tentatively named PFKC family, which contains the unique ADP-dependent PFKs from the euryarchaeal genera of Pyrococcus and Thermococcus, which are indicated by sequence analysis to be present also in the methanogenic species Methanococcus jannaschii and Methanosarcina mazei.  相似文献   

5.
The biochemical inhibition by Cu2+ on eight phylogenetically and biochemically different phosphofructokinases (PFKs) was investigated. The enzymes screened included representatives from thermophilic and mesophilic bacteria, a hyperthermophilic archaeon and a eukaryote, covering all three phosphoryl donor subtypes (ATP, ADP and pyrophosphate). The sensitivities of the enzymes to Cu2+ varied greatly, with the archaeal ADP-PFK being the least and the eukaryote ATP-PFK being the most sensitive. The bacterial ATP- and pyrophosphate-dependent PFKs showed intermediate sensitivity with the exception of the Spirochaeta thermophila enzyme (pyrophosphate-dependent) which was relatively resistant.  相似文献   

6.
A procedure was developed for the purification of inorganic pyrophosphate: fructose-6-phosphate 1-phospho-transferase (PPi-PFK) from potato tubers. The enzyme has the structure alpha 4 beta 4 with a subunit of 68 kDa and a beta subunit of 60 kDa. The structural relationship of this enzyme to other PFKs and to fructose bisphosphatase was examined by immunoprecipitation and immunoblotting. Antibodies to the plant enzyme did not react with E. coli PFK. No cross-reaction was seen among the following enzymes or their antibodies: yeast fructose bisphosphatase; rabbit PFKs A, B, or the enzyme from brain; and the two subunits of the potato PPi-PFK. On the other hand, antibody to E. coli PFK-1 strongly cross-reacts with the 60 kDa polypeptide but not 68 kDa peptide.  相似文献   

7.
The crystal structure of the ATP-bound form of the tetrameric phosphofructokinase (PFK) from Trypanosoma brucei enables detailed comparisons to be made with the structures of the apoenzyme form of the same enzyme, as well as with those of bacterial ATP-dependent and PPi-dependent PFKs. The active site of T. brucei PFK (which is strictly ATP-dependent but belongs to the PPi-dependent family by sequence similarities) is a chimera of the two types of PFK. In particular, the active site of T. brucei PFK possesses amino acid residues and structural features characteristic of both types of PFK. Conformational changes upon ATP binding are observed that include the opening of the active site to accommodate the two substrates, MgATP and fructose 6-phosphate, and a dramatic ordering of the C-terminal helices, which act like reaching arms to hold the tetramer together. These conformational transitions are fundamentally different from those of other ATP-dependent PFKs. The substantial differences in structure and mechanism of T. brucei PFK compared with bacterial and mammalian PFKs give optimism for the discovery of species-specific drugs for the treatment of diseases caused by protist parasites of the trypanosomatid family.  相似文献   

8.
Yeast phosphofructokinase (PFK) exists in two forms, an ATP-sensitive form, PFKs, and a desensitized form, PFKd(MgF+). PFKs exhibits sigmoidal kinetics with respect to Fru-6-P, whereby the S0.5, Fru-6-P is determined by [ATP]. This form of PFK is inhibited by ATP and citrate and allosterically activated by Fru-6-P and AMP. NH4+ activates PFKs and enhances its affinity for substrate Fru-6-P (1–3).PFKd(MgF+) in contrast is not inhibited by ATP and citrate, nor activated by Fru-6-P and AMP. Kinetics of the reaction with PFKd(MgF+) with respect to Fru6-P are hyperbolic, with Km = 14?15 of S0.5, Fm-6-P for PFKs. NH4+ strongly activates this form.In terms of the model of Monod et al. (4), PFKd(MgF+) corresponds to a fixed R-conformation, while PFKs is a limiting T-conformation.  相似文献   

9.
In order to study the uptake and metabolism of PP(i) by bone, (32)PP(i) was added to the medium surrounding explanted mouse calvaria maintained in organ culture. Most of the PP(i) was hydrolysed during incubation, but there was a measurable entry of intact PP(i) into bone. When (32)P(i) was added to the medium, synthesis of PP(i) and organic phosphates from P(i) was observed in bone. There was no detectable passage of PP(i) from bone into the medium. These results are discussed in terms of two models of pyrophosphate hydrolysis and exchange. Some quantitative estimates about the fate of PP(i) in bone were made.  相似文献   

10.
1. Short-chain fatty acyl-CoA synthetase from seeds of Pinus radiata was examined by acetate- and propionate-dependent PP(i)-ATP exchange. Reaction mixtures came to equilibrium almost instantly as judged by rates of exchange and analysis of an incubation mixture. 2. The activity of the enzyme was correlated with the concentration of MgP(2)O(7) (2-) but not with the concentration of Mg(2+), as judged by PP(i)-ATP exchange and fatty acyl AMP-dependent synthesis of ATP in the presence of PP(i). In PP(i)-ATP exchange assays, no clear relationship between activity and any single species of ATP was apparent. 3. High concentrations of fatty acid inhibited PP(i)-ATP exchange. PP(i)-dATP exchange was less than PP(i)-ATP exchange at low concentrations of fatty acid, but at higher concentrations PP(i)-dATP exchange exceeded PP(i)-ATP exchange. The rate of synthesis of fatty acyl-CoA in the presence of dATP was less than with ATP. 4. ATP and propionate inhibited the synthesis of ATP from propionyl-AMP and PP(i). The inhibition by ATP was competitive with respect to propionyl-AMP and non-competitive with respect to PP(i). The inhibition by propionate was non-competitive with respect to propionyl-AMP and PP(i). 5. AMP was a competitive inhibitor of propionyl-AMP-dependent synthesis of ATP and competitively inhibited propionate-dependent PP(i)-ATP exchange when ATP was the variable substrate. 6. It was concluded that the first partial reaction catalysed by the enzyme is ordered; ATP is the first substrate to react with the enzyme and PP(i) is probably the only product released.  相似文献   

11.
The characterization of the gene encoding Leishmania donovani phosphofructokinase (PFK) and the biochemical properties of the expressed enzyme are reported. L. donovani has a single PFK gene copy per haploid genome that encodes a polypeptide with a deduced molecular mass of 53 988 and a pI of 9.26. The predicted amino acid sequence contains a C-terminal tripeptide that conforms to an established signal for glycosome targeting. L. donovani PFK showed most sequence similarity to inorganic pyrophosphate (PPi)-dependent PFKs, despite being ATP-dependent. It thereby resembles PFKs from other Kinetoplastida such as Trypanosoma brucei, Trypanoplasma borreli (characterized in this study), and a PFK found in Entamoeba histolytica. It exhibited hyperbolic kinetics with respect to ATP whereas the binding of the other substrate, fructose 6-phosphate, showed slight positive cooperativity. PPi, even at high concentrations, did not have any effect. AMP acted as an activator of PFK, shifting its kinetics for fructose 6-phosphate from slightly sigmoid to hyperbolic, and increasing considerably the affinity for this substrate, whereas GDP did not have any effect. Modelling studies and site-directed mutagenesis were employed to shed light on the structural basis for the AMP effector specificity and on ATP/PPi specificity among PFKs.  相似文献   

12.
1. Pig kidney enzyme resembles other non-specific alkaline phosphatases in its ability to hydrolyse inorganic pyrophosphate (PP(i)). 2. Studies of enzyme velocity as a function of PP(i) concentration show that Michaelis-Menten kinetics are obeyed when a constant PP(i)/Mg(2+) concentration ratio is maintained, but velocity-substrate concentration curves are sigmoid when the concentration of PP(i) is increased but that of Mg(2+) is kept constant. The enzyme is inhibited when the total PP(i) concentration is greater than the total concentration of Mg(2+). Pyrophosphatase activity is activated by Mg(2+), but if the concentration of the metal ion is increased to a value in excess of the total PP(i) concentration Mg(2+) is then strongly inhibitory. 4. It appears that the enzyme is most active towards the complex ion MgPP(i) (2-). The enzyme probably hydrolyses PP(i) (4-) also, but this is a poorer substrate and its competition with MgPP(i) (2-) leads to inhibition. At high Mg(2+) concentrations Mg(2)PP(i) is formed. This complex appears to be a potent inhibitor. 5. Sigmoid plots of v against s and of v against i result from interactions occurring between Mg(2+) and PP(i) (4-) leading to MgPP(i) (2-) and Mg(2)PP(i), and are not indicative of allosteric behaviour.  相似文献   

13.
The fluoride ion is a potent and specific inhibitor of cytoplasmic pyrophosphatase (PPase). Fluoride action on yeast PPase during PP(i) hydrolysis involves rapid and slow phases, the latter being only slowly reversible [Smirnova, I. N., and Baykov, A. A. (1983) Biokhimiya 48, 1643-1653]. A similar behavior is observed during yeast PPase catalyzed PP(i) synthesis. The amount of enzyme.PP(i) complex formed from solution P(i) exhibits a rapid drop upon addition of fluoride, followed, at pH 7.2, by a slow increase to nearly 100% of the total enzyme. The slow reaction results in enzyme inactivation, which is not immediately reversed by dilution. These data show that fluoride binds to an enzyme.PP(i) intermediate during the slow phase and to an enzyme.P(i) intermediate during the rapid phase of the inhibition. In Escherichia coli PPase, the enzyme.PP(i) intermediate binds F(-) rapidly, explaining the lack of time dependence in the inhibition of this enzyme. The enzyme.PP(i) intermediate formed during PP(i) hydrolysis binds fluoride much faster (yeast PPase) or tighter (E. coli PPase) than the similar complex existing at equilibrium with P(i). It is concluded that PPase catalysis involves two enzyme.PP(i) intermediates, of which only one (immediately following PP(i) addition and predominating at acidic pH) can bind fluoride. Simulation experiments have indicated that interconversion of the enzyme.PP(i) intermediates is a partially rate-limiting step in the direction of hydrolysis and an exclusively rate-limiting step in the direction of synthesis.  相似文献   

14.
Inorganic pyrophosphate (PP(i)) produced by cells inhibits mineralization by binding to crystals. Its ubiquitous presence is thought to prevent "soft" tissues from mineralizing, whereas its degradation to P(i) in bones and teeth by tissue-nonspecific alkaline phosphatase (Tnap, Tnsalp, Alpl, Akp2) may facilitate crystal growth. Whereas the crystal binding properties of PP(i) are largely understood, less is known about its effects on osteoblast activity. We have used MC3T3-E1 osteoblast cultures to investigate the effect of PP(i) on osteoblast function and matrix mineralization. Mineralization in the cultures was dose-dependently inhibited by PP(i). This inhibition could be reversed by Tnap, but not if PP(i) was bound to mineral. PP(i) also led to increased levels of osteopontin (Opn) induced via the Erk1/2 and p38 MAPK signaling pathways. Opn regulation by PP(i) was also insensitive to foscarnet (an inhibitor of phosphate uptake) and levamisole (an inhibitor of Tnap enzymatic activity), suggesting that increased Opn levels did not result from changes in phosphate. Exogenous OPN inhibited mineralization, but dephosphorylation by Tnap reversed this effect, suggesting that OPN inhibits mineralization via its negatively charged phosphate residues and that like PP(i), hydrolysis by Tnap reduces its mineral inhibiting potency. Using enzyme kinetic studies, we have shown that PP(i) inhibits Tnap-mediated P(i) release from beta-glycerophosphate (a commonly used source of organic phosphate for culture mineralization studies) through a mixed type of inhibition. In summary, PP(i) prevents mineralization in MC3T3-E1 osteoblast cultures by at least three different mechanisms that include direct binding to growing crystals, induction of Opn expression, and inhibition of Tnap activity.  相似文献   

15.
The growth of an anaerobic, spore-forming rod we have isolated from the cockroach gut after enrichment on media containing PP(i) was stimulated by the presence of PP(i). The doubling time decreased and cell yield increased proportionately to PP(i) concentrations of up to 0.35%. A similar stimulation of the growth of Desulfotomaculum sp. by PP(i) has been reported. The PP(i)-stimulated Clostridium sp. fermented a number of sugars with the production of hydrogen, acetate, and butyrate, with smaller amounts of ethanol and butanol being produced from some substrates. The fermentation products were not qualitatively changed by the presence of PP(i), but significantly more hydrogen was produced. The organism contained several of the enzymes previously reported from Entamoeba sp. and Propionibacterium sp., in which PP(i) serves as a source of a high-energy bond in place of ATP. These include significant amounts of pyruvate-phosphate dikinase and phosphoenolpyruvate carboxytransphosphorylase. The activities of many of the catabolic enzymes of the organism, as well as of its phosphatases and pyrophosphatase, were similar whether it was grown in the presence or absence of PP(i). The organism did not accumulate intracellular polyphosphate granules but stored large amounts of glycogen.  相似文献   

16.
Five catalytic functions of yeast inorganic pyrophosphatase were measured over wide pH ranges: steady-state PP(i) hydrolysis (pH 4. 8-10) and synthesis (6.3-9.3), phosphate-water oxygen exchange (pH 4. 8-9.3), equilibrium formation of enzyme-bound PP(i) (pH 4.8-9.3), and Mg(2+) binding (pH 5.5-9.3). These data confirmed that enzyme-PP(i) intermediate undergoes isomerization in the reaction cycle and allowed estimation of the microscopic rate constant for chemical bond breakage and the macroscopic rate constant for PP(i) release. The isomerization was found to decrease the pK(a) of the essential group in the enzyme-PP(i) intermediate, presumably nucleophilic water, from >7 to 5.85. Protonation of the isomerized enzyme-PP(i) intermediate decelerates PP(i) hydrolysis but accelerates PP(i) release by affecting the back isomerization. The binding of two Mg(2+) ions to free enzyme requires about five basic groups with a mean pK(a) of 6.3. An acidic group with a pK(a) approximately 9 is modulatory in PP(i) hydrolysis and metal ion binding, suggesting that this group maintains overall enzyme structure rather than being directly involved in catalysis.  相似文献   

17.
1. Sulphate-dependent PP(i)-ATP exchange, catalysed by purified spinach leaf ATP sulphurylase, was correlated with the concentration of MgATP(2-) and MgP(2)O(7) (2-); ATP sulphurylase activity was not correlated with the concentration of free Mg(2+). 2. Sulphate-dependent PP(i)-ATP exchange was independent of PP(i) concentration, but dependent on the concentration of ATP and sulphate. The rate of sulphate-dependent PP(i)-ATP exchange was quantitatively defined by the rate equation applicable to the initial rate of a bireactant sequential mechanism under steady-state conditions. 3. Chlorate, nitrate and ADP inhibited the exchange reaction. The inhibition by chlorate and nitrate was uncompetitive with respect to ATP and competitive with respect to sulphate. The inhibition by ADP was competitive with respect to ATP and non-competitive with respect to sulphate. 4. ATP sulphurylase catalysed the synthesis of [(32)P]ATP from [(32)P]PP(i) and adenosine 5'-sulphatophosphate in the absence of sulphate; some properties of the reaction are described. Enzyme activity was dependent on the concentration of PP(i) and adenosine 5'-sulphatophosphate. 5. The synthesis of ATP from PP(i) and adenosine 5'-sulphatophosphate was inhibited by sulphate and ATP. The inhibition by sulphate was non-competitive with respect to PP(i) and adenosine 5'-sulphatophosphate; the inhibition by ATP was competitive with respect to adenosine 5'-sulphatophosphate and non-competitive with respect to PP(i). It was concluded that the reaction catalysed by spinach leaf ATP sulphurylase was ordered; expressing the order in the forward direction, MgATP(2-) was the first product to react with the enzyme and MgP(2)O(7) (2-) was the first product released. 6. The expected exchange reaction between sulphate and adenosine 5'-sulphatophosphate could not be demonstrated.  相似文献   

18.
Mineralization of growth plate cartilage is a critical event during endochondral bone formation, which allows replacement of cartilage by bone. Ankylosis protein (Ank), which transports intracellular inorganic pyrophosphate (PP(i)) to the extracellular milieu, is expressed by hypertrophic and, especially highly, by terminally differentiated mineralizing growth plate chondrocytes. Blocking Ank transport activity or ank expression in terminally differentiated mineralizing growth plate chondrocytes led to increases of intra- and extracellular PP(i) concentrations, decreases of alkaline phosphatase (APase) expression and activity, and inhibition of mineralization, whereas treatment of these cells with the APase inhibitor levamisole led to an increase of extracellular PP(i) concentration and inhibition of mineralization. Ank-overexpressing hypertrophic nonmineralizing growth plate chondrocytes showed decreased intra- and extracellular PP(i) levels; increased mineralization-related gene expression of APase, type I collagen, and osteocalcin; increased APase activity; and mineralization. Treatment of Ank-expressing growth plate chondrocytes with a phosphate transport blocker (phosphonoformic acid [PFA]) inhibited uptake of inorganic phosphate (P(i)) and gene expression of the type III Na(+)/P(i) cotransporters Pit-1 and Pit-2. Furthermore, PFA or levamisole treatment of Ank-overexpressing hypertrophic chondrocytes inhibited APase expression and activity and subsequent mineralization. In conclusion, increased Ank activity results in elevated intracellular PP(i) transport to the extracellular milieu, initial hydrolysis of PP(i) to P(i), P(i)-mediated upregulation of APase gene expression and activity, further hydrolysis and removal of the mineralization inhibitor PP(i), and subsequent mineralization.  相似文献   

19.
Duodenal alkaline phosphatase of juvenile (11-day-old) mice, like other non-specific alkaline phosphatases, has the ability to hydrolyse PP(i). When a constant Mg(2+)/PP(i) concentration ratio is maintained, plots of velocity as a function of PP(i) concentration are consistent with Michaelis-Menten kinetics. Mg(2+) activates pyrophosphate hydrolysis and maximal activity is obtained at a constant Mg(2+)/PP(i) concentration ratio of 0.66. At higher ratios there is strong inhibition. At constant concentrations of Mg(2+) and increasing concentrations of PP(i), the velocity-substrate (PP(i)) concentration plots show sigmoidal dependence. By assuming that the true substrate is MgP(2)O(7) (2-) complex, and using complexity constants, the concentrations of free Mg(2+), Mg(2)P(2)O(7) and MgP(2)O(7) (2-) were calculated in assay mixtures ranging in PP(i) concentration from 0.1 to 2.5mm and in total Mg(2+) concentration from 0.6 to 2.6mm. From these data, the concentrations of added Mg(2+) and PP(i) in the assay mixtures were selected so that the velocity could be measured (1) at three fixed concentrations of free Mg(2+) ions with varied concentrations of MgP(2)O(7) (2-) and (2) at four fixed concentrations of Mg(2)P(2)O(7) with varied concentrations of MgP(2)O(7) (2-). Lineweaver-Burk and Hill plots from these data showed that the inhibition is caused by free Mg(2+) ions, of a mixed type and consistent with Michaelis-Menten kinetics. The sigmoidal dependence observed between velocity and PP(i) concentration at constant concentration of total Mg(2+) is therefore not due to allosteric inhibition. It is due to a combined effect of (1) inhibition by free Mg(2+) ions, (2) depletion of the true substrate, MgP(2)O(7) (2-), owing to the formation of Mg(2)P(2)O(7) and (3) the manner in which the concentrations of these three molecular or ionic species change when PP(i) concentration is increased maintaining the total Mg(2+) concentration constant.  相似文献   

20.
Two structures of Escherichia coli soluble inorganic pyrophosphatase (EPPase) complexed with calcium pyrophosphate (CaPP(i)-EPPase) and with Ca(2+) (Ca(2+)-EPPase) have been solved at 1.2 and 1.1 A resolution, respectively. In the presence of Mg(2+), this enzyme cleaves pyrophosphate (PP(i)) into two molecules of orthophosphate (P(i)). This work has enabled us to locate PP(i) in the active site of the inorganic pyrophosphatases family in the presence of Ca(2+), which is an inhibitor of EPPase.Upon PP(i) binding, two Ca(2+) at M1 and M2 subsites move closer together and one of the liganded water molecules becomes bridging. The mutual location of PP(i) and the bridging water molecule in the presence of inhibitor cation is catalytically incompetent. To make a favourable PP(i) attack by this water molecule, modelling of a possible hydrolysable conformation of PP(i) in the CaPP(i)-EPPase active site has been performed. The reasons for Ca(2+) being the strong PPase inhibitor and the role in catalysis of each of four metal ions are the mechanistic aspects discussed on the basis of the structures described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号