首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
生长素是最重要的植物激素之一,对植物生长发育起着关键调控作用。生长素作用于植物后,早期生长素响应基因家族Aux/IAA、GH3和SAUR等被迅速诱导,基因表达上调。其中Aux/IAA基因家族编码的蛋白一般由4个保守结构域组成,结构域Ⅰ具有抑制生长素信号下游基因表达的作用,结构域Ⅱ在生长素信号转导中主要被TIR1调控进而影响Aux/IAA的稳定性,结构域Ⅲ/Ⅳ通过与生长素响应因子ARF相互作用调控生长素信号。Aux/IAA基因家族在双子叶植物拟南芥(Arabidopsis thaliana)的器官发育、根形成、茎伸长和叶扩张等方面发挥重要作用;在单子叶植物水稻(Oryza sativa)和小麦(Triticum aestivum)中,主要影响根系发育和株型,但大多数Aux/IAA基因的功能尚不清楚。该文主要从Aux/IAA蛋白的结构、功能和生长素信号转导途径方面综述Aux/IAA家族在拟南芥、禾谷类作物及其它植物中的研究进展,以期为全面揭示Aux/IAA家族基因的生物学功能提供线索。  相似文献   

3.
4.
Since auxin was first isolated and characterized as a plant hormone, the underlying molecular mechanism of auxin signaling has been elucidated primarily in dicot plants represented by Arabidopsis. In monocot plants, the molecular mechanism of auxin signaling has remained unclear, despite various physiological experiments. To understand the function and mechanism of auxin signaling in rice ( Oryza sativa ), we focused on the IAA gene, a well-studied gene in Arabidopsis that serves as a negative regulator of auxin signaling. We found 24 IAA gene family members in the rice genome. OsIAA3 is one of these family members whose expression is rapidly increased in response to auxin. We produced transgenic rice harboring m OsIAA3 - GR , which can overproduce mutant OsIAA3 protein containing an amino acid change in domain II to cause a gain-of-function phenotype, by treatment with dexamethasone. The transgenic rice was insensitive to auxin and gravitropic stimuli, and exhibited short leaf blades, reduced crown root formation, and abnormal leaf formation. These results suggest that , in rice, auxin is important for development and its signaling is mediated by IAA genes.  相似文献   

5.
6.
A semi-dominant mutant suppressor of hy2 (shy2-1D) of Arabidopsis thaliana, originally isolated as a photomorphogenesis mutant, shows altered auxin responses. Recent molecular cloning revealed that the SHY2 gene is identical to the IAA3 gene, a member of the primary auxin-response genes designated the Aux/IAA gene family. Because Aux/IAA proteins are reported to interact with auxin response factors, we investigated the pattern of expression of early auxin genes in the iaa3/shy2-1D mutant. RNA hybridization analysis showed that levels of mRNA accumulation of the early genes were reduced dramatically in the iaa3/shy2-1D mutants, although auxin still enhanced gene expression in the iaa3/shy2-1D mutant. Histochemical analysis using a fusion gene of the auxin responsive domain (AuxRD) and the GUS gene showed no IAA-inducible GUS expression in the root elongation zone of the iaa3/shy2-1D mutant. On the other hand, ectopic GUS expression occurred in the hypocotyl, cotyledon, petiole and root vascular tissues in the absence of auxin. These results suggest that IAA3/SHY2 functions both negatively and positively on early auxin gene expression.  相似文献   

7.
In multicellular organisms, the balance between cell division and differentiation determines organ size, and represents a central unknown in developmental biology. In Arabidopsis roots, this balance is mediated between cytokinin and auxin through a regulatory circuit converging on the IAA3/SHORT HYPOCOTYL 2 (SHY2) gene. Here, we show that crosstalk between brassinosteroids (BRs) and auxin occurs in the vascular transition zone to promote root meristem development. We found that BR increases root meristem size by up‐regulating expression of the PINFORMED 7 (PIN7) gene and down‐regulating expression of the SHY2 gene. In addition, BES1 could directly bind to the promoter regions of both PIN7 and SHY2, indicating that PIN7 and SHY2 mediate the BR‐induced growth of the root meristem by serving as direct targets of BES1. Moreover, the PIN7 overexpression and loss‐of‐function SHY2 mutant were sensitive to the effects of BR and could partially suppress the short‐root phenotypes associated with deficient BR signaling. Interestingly, BRs could inhibit the accumulation of SHY2 protein in response to cytokinin. Taken together, these findings suggest that a complex equilibrium model exists in which regulatory interactions among BRs, auxin, and cytokinin regulate optimal root growth.  相似文献   

8.
Auxin is important for lateral root (LR) initiation and subsequent LR primordium development. However, the roles of tissue-specific auxin signaling in these processes are poorly understood. We analyzed transgenic Arabidopsis plants expressing the stabilized mutant INDOLE-3 ACETIC ACID 14 (IAA14)/SOLITARY-ROOT (mIAA14) protein as a repressor of the auxin response factors (ARFs), under the control of tissue-specific promoters. We showed that plants expressing the mIAA14-glucocorticoid receptor (GR) fusion protein under the control of the native IAA14 promoter had the solitary-root/iaa14 mutant phenotypes, including the lack of LR formation under dexamethasone (Dex) treatment, indicating that mIAA14-GR is functional in the presence of Dex. We then demonstrated that expression of mIAA14-GR under the control of the stele-specific SHORT-ROOT promoter suppressed LR formation, and showed that mIAA14-GR expression in the protoxylem-adjacent pericycle also blocked LR formation, indicating that the normal auxin response mediated by auxin/indole-3 acetic acid (Aux/IAA) signaling in the protoxylem pericycle is necessary for LR formation. In addition, we demonstrated that expression of mIAA14-GR under either the ARF7 or the ARF19 promoter also suppressed LR formation as in the arf7 arf19 double mutants, and that IAA14 interacted with ARF7 and ARF19 in yeasts. These results strongly suggest that mIAA14-GR directly inactivates ARF7/ARF19 functions, thereby blocking LR formation. Post-embryonic expression of mIAA14-GR under the SCARECROW promoter, which is expressed in the specific cell lineage during LR primordium formation, caused disorganized LR development. This indicates that normal auxin signaling in LR primordia, which involves the unknown ARFs and Aux/IAAs, is necessary for the establishment of LR primordium organization. Thus, our data show that tissue-specific expression of a stabilized Aux/IAA protein allows analysis of tissue-specific auxin responses in LR development by inactivating ARF functions.  相似文献   

9.
Genetics of Aux/IAA and ARF action in plant growth and development   总被引:33,自引:0,他引:33  
  相似文献   

10.
黄瓜果实中ARF和Aux/IAA基因对外源激素的应答   总被引:1,自引:0,他引:1  
以非单性结实黄瓜自交系‘6429’为试验材料,对当天开花的果实进行CPPU、Spd、NAA、2,4-D和IAA等5种生长物质处理,以清水为对照,选取9个ARF基因(Csa019264、Csa019265、Csa009209、Csa009210、Csa021954、Csa012237、Csa012805、Csa015176、Csa010564)和5个Aux/IAA基因(Csa003118、Csa012115、Csa016715、Csa006680、Csa018571)设计特异引物,取开花当天与花后第2、4天的果实及其茎、叶作RT-PCR分析。结果显示,9个ARF基因的表达水平显示出了很大的差异,Csa012805在所有激素处理后的果实中都有较高水平的表达而清水处理中未检测到;5个Aux/IAA基因中的4个在6种处理后的果实及茎叶中都有表达,推测是组成型表达基因,Csa016715在激素处理后的果实中比清水处理的未发育果实中的表达水平高。推测Csa012805和Csa016715这2个基因对黄瓜果实膨大起促进作用。  相似文献   

11.
12.
Indole acetic acid (IAA/auxin) profoundly affects wood formation but the molecular mechanism of auxin action in this process remains poorly understood. We have cloned cDNAs for eight members of the Aux/IAA gene family from hybrid aspen (Populus tremula L. x Populus tremuloides Michx.) that encode potential mediators of the auxin signal transduction pathway. These genes designated as PttIAA1-PttIAA8 are auxin inducible but differ in their requirement of de novo protein synthesis for auxin induction. The auxin induction of the PttIAA genes is also developmentally controlled as evidenced by the loss of their auxin inducibility during leaf maturation. The PttIAA genes are differentially expressed in the cell types of a developmental gradient comprising the wood-forming tissues. Interestingly, the expression of the PttIAA genes is downregulated during transition of the active cambium into dormancy, a process in which meristematic cells of the cambium lose their sensitivity to auxin. Auxin-regulated developmental reprogramming of wood formation during the induction of tension wood is accompanied by changes in the expression of PttIAA genes. The distinct tissue-specific expression patterns of the auxin inducible PttIAA genes in the cambial region together with the change in expression during dormancy transition and tension wood formation suggest a role for these genes in mediating cambial responses to auxin and xylem development.  相似文献   

13.
Exogenously applied brassinolide (BL) increased both gravitropic curvature and length of primary roots of Arabidopsis at low concentration (10(-10) M), whereas at higher concentration, BL further increased gravitropic curvature while it inhibited primary root growth. BRI1-GFP plants possessing a high steady-state expression level of a brassinosteroid (BR) receptor kinase rendered the plant's responses to gravity and root growth more sensitive, while BR-insensitive mutants, bri1-301 and bak1, delayed root growth and reduced their response to the gravitropic stimulus. The stimulatory effect of BL on the root gravitropic curvature was also enhanced in auxin transport mutants, aux1-7 and pin2, relative to wild-type plants, and increasing concentration of auxin attenuated BL-induced root sensitivity to gravity. Interestingly, IAA treatment to the roots of bri1-301 and bak1 plants or of plants pretreated with a BL biosynthetic inhibitor, brassinazole, increased their sensitivity to gravity, while these treatments for the BL-hypersensitive transgenic plants, BRI1-GFP and 35S-BAK1, were less effective. Expression of a CYP79B2 gene, encoding an IAA biosynthetic enzyme, was suppressed in BL-hypersensitive plant types and enhanced in BL-insensitive or -deficient plants. In conclusion, our results indicate that BL interacts negatively with IAA in the regulation of plant gravitropic response and root growth, and its regulation is achieved partly by modulating biosynthetic pathways of the counterpart hormone.  相似文献   

14.
15.
The maize (Zea mays L.) rum1‐R (rootless with undetectable meristems 1‐Reference) mutant does not initiate embryonic seminal roots and post‐embryonic lateral roots at the primary root. Map‐based cloning revealed that Rum1 encodes a 269 amino acid (aa) monocot‐specific Aux/IAA protein. The rum1‐R protein lacks 26 amino acids including the GWPPV degron sequence in domain II and part of the bipartite NLS (nuclear localization sequence). Significantly reduced lateral root density (approximately 35%) in heterozygous plants suggests that the rum1‐R is a semi‐dominant mutant. Overexpression of rum1‐R under the control of the maize MSY (Methionine SYnthase) promoter supports this notion by displaying a reduced number of lateral roots (31–37%). Functional characterization suggests that Rum1 is auxin‐inducible and encodes a protein that localizes to the nucleus. Moreover, RUM1 is unstable with a half life time of approximately 22 min while the mutant rum1‐R protein is very stable. In vitro and in vivo experiments demonstrated an interaction of RUM1 with ZmARF25 and ZmARF34 (Z. mays AUXIN RESPONSE FACTOR 25 and 34). In summary, the presented data suggest that Rum1 encodes a canonical Aux/IAA protein that is required for the initiation of embryonic seminal and post‐embryonic lateral root initiation in primary roots of maize.  相似文献   

16.
The plant hormone auxin controls many aspects of plant development. Membrane trafficking processes, such as secretion, endocytosis and recycling, regulate the polar localization of auxin transporters in order to establish an auxin concentration gradient. Here, we investigate the function of the Arabidopsis thaliana R-SNAREs VESICLE-ASSOCIATED MEMBRANE PROTEIN 721 (VAMP721) and VAMP722 in the post-Golgi trafficking required for proper auxin distribution and seedling growth. We show that multiple growth phenotypes, such as cotyledon development, vein patterning and lateral root growth, were defective in the double homozygous vamp721 vamp722 mutant. Abnormal auxin distribution and root patterning were also observed in the mutant seedlings. Fluorescence imaging revealed that three auxin transporters, PIN-FORMED 1 (PIN1), PIN2 and AUXIN RESISTANT 1 (AUX1), aberrantly accumulate within the cytoplasm of the double mutant, impairing the polar localization at the plasma membrane (PM). Analysis of intracellular trafficking demonstrated the involvement of VAMP721 and VAMP722 in the endocytosis of FM4-64 and the secretion and recycling of the PIN2 transporter protein to the PM, but not its trafficking to the vacuole. Furthermore, vamp721 vamp722 mutant roots display enlarged trans-Golgi network (TGN) structures, as indicated by the subcellular localization of a variety of marker proteins and the ultrastructure observed using transmission electron microscopy. Thus, our results suggest that the R-SNAREs VAMP721 and VAMP722 mediate the post-Golgi trafficking of auxin transporters to the PM from the TGN subdomains, substantially contributing to plant growth.  相似文献   

17.
In comparison to wild type Arabidopsis thaliana, the auxin resistant mutants axr1 and axr2 exhibit reduced inhibition of root elongation in response to auxins. Several auxin-regulated physiological processes are also altered in the mutant plants. When wild-type, axr1 and axr2 seedlings were grown in darkness on media containing indoleacetic acid (IAA), promotion of root growth was observed at low concentrations of IAA (10?11 to 10?7M) in 5-day-old axr2 seedlings, but not in axr1 or wild-type seedlings. In axr1 there was little or no measurable root growth response over the same concentration range. In wild type, root growth was inhibited at concentrations greater than 10?10M and no detectable root growth response was observed at lower concentrations. In addition, production of lateral roots in response to IAA increased in axr2 seedlings and decreased in axr1 seedlings relative to wild type. Promotion of root elongation and initiation of lateral roots in axr2 seedlings in response to auxin indicate that axr2 seedlings are able to perceive and respond to IAA.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号