首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
Molecular regulation of mechanotransduction   总被引:9,自引:0,他引:9  
  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Recent studies have shown that mechanical forces on airway epithelial cells can induce upregulation of genes involved in airway remodeling in diseases such as asthma. However, the relevance of these responses to airway wall remodeling is still unclear since 1). mechanotransduction is highly dependent on environment (e.g., matrix and other cell types) and 2). inflammatory mediators, which strongly affect remodeling, are also present in asthma. To assess the effects of mechanical forces on the airway wall in a relevant three-dimensional inflammatory context, we have established a tissue culture model of the human airway wall that can be induced to undergo matrix remodeling. Our model contains differentiated human bronchial epithelial cells characterized by tight junctions, cilia formation, and mucus secretion atop a collagen gel embedded with human lung fibroblasts. We found that addition of activated eosinophils and the application of 50% strain to the same system increased the epithelial thickness compared with either condition alone, suggesting that mechanical strain affects airway wall remodeling synergistically with inflammation. This integrated model more closely mimics airway wall remodeling than single-cell, conditioned media, or even two-dimensional coculture systems and is relevant for examining the importance of mechanical strain on airway wall remodeling in an inflammatory environment, which may be crucial for understanding and treating pathologies such as asthma.  相似文献   

16.
17.
18.
19.
CCL5 (or RANTES (regulated upon activation, normal T cell expressed and secreted)) recruits T lymphocytes and monocytes. The source and regulation of CCL5 in pulmonary tuberculosis are unclear. Infection of the human alveolar epithelial cell line (A549) by Mycobacterium tuberculosis caused no CCL5 secretion and little monocyte secretion. Conditioned medium from tuberculosis-infected human monocytes (CoMTB) stimulated significant CCL5 secretion from A549 cells and from primary alveolar, but not upper airway, epithelial cells. Differential responsiveness of small airway and normal human bronchial epithelial cells to CoMTB but not to conditioned medium from unstimulated human monocytes was specific to CCL5 and not to CXCL8. CoMTB induced CCL5 mRNA accumulation in A549 cells and induced nuclear translocation of nuclear factor kappaB (NFkappaB) subunits p50, p65, and c-rel at 1 h; nuclear binding of activator protein (AP)-1 (c-Fos, FosB, and c-Jun) at 4-8 h; and binding of NF-interleukin (IL)-6 at 24 h. CCL5 promoter-reporter analysis using deletion and site-specific mutagenesis constructs demonstrated a key role for AP-1, NF-IL-6, and NFkappaB in driving CoMTB-induced promoter activity. The IL-1 receptor antagonist inhibited A549 and small airway epithelial cell CCL5 secretion, gene expression, and promoter activity. CoMTB contained IL-1beta, and recombinant IL-1beta reproduced CoMTB effects. Monocyte alveolar, but not upper airway, epithelial cell networks in pulmonary tuberculosis cause AP-1-, NF-IL-6-, and NFkappaB-dependent CCL5 secretion. IL-1beta is the critical regulator of tuberculosis-stimulated CCL5 secretion in the lung.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号