首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The majority of Kaposi's sarcoma-associated herpesvirus (KSHV)-infected cells identified in vivo contain latent KSHV, with lytic replication in only a few percent of cells, as is the case for the cells of Kaposi's sarcoma (KS) lesions. Factors that influence KSHV latent or lytic replication are not well defined. Because persons with KS are often immunosuppressed and susceptible to many infectious agents, including human cytomegalovirus (HCMV), we have investigated the potential for HCMV to influence the replication of KSHV. Important to this work was the construction of a recombinant KSHV, rKSHV.152, expressing the green fluorescent protein (GFP) and neo (conferring resistance to G418). The expression of GFP was a marker of KSHV infection in cells of both epithelial and endothelial origin. The rKSHV.152 virus was used to establish cells, including human fibroblasts (HF), containing only latent KSHV, as demonstrated by latency-associated nuclear antigen expression and Gardella gel analysis. HCMV infection of KSHV latently infected HF activated KSHV lytic replication with the production of infectious KSHV. Dual-color immunofluorescence detected both the KSHV lytic open reading frame 59 protein and the HCMV glycoprotein B in coinfected cells, and UV-inactivated HCMV did not activate the production of infectious KSHV-GFP. In addition, HCMV coinfection increased the production of KSHV from endothelial cells and activated lytic cycle gene expression in keratinocytes. These data demonstrate that HCMV can activate KSHV lytic replication and suggest that HCMV could influence KSHV pathogenesis.  相似文献   

2.
Lin CL  Li H  Wang Y  Zhu FX  Kudchodkar S  Yuan Y 《Journal of virology》2003,77(10):5578-5588
Herpesviruses utilize different origins of replication during lytic versus latent infection. Latent DNA replication depends on host cellular DNA replication machinery, whereas lytic cycle DNA replication requires virally encoded replication proteins. In lytic DNA replication, the lytic origin (ori-Lyt) is bound by a virus-specified origin binding protein (OBP) that recruits the core replication machinery. In this report, we demonstrated that DNA sequences in two noncoding regions of the Kaposi's sarcoma-associated herpesvirus (KSHV) genome, between open reading frames (ORFs) K4.2 and K5 and between K12 and ORF71, are able to serve as origins for lytic cycle-specific DNA replication. The two ori-Lyt domains share an almost identical 1,153-bp sequence and a 600-bp downstream GC-rich repeat sequence, and the 1.7-kb DNA sequences are sufficient to act as a cis signal for replication. We also showed that an AT-palindromic sequence in the ori-Lyt domain is essential for the DNA replication. In addition, a virally encoded bZip protein, namely K8, was found to bind to a DNA sequence within the ori-Lyt by using a DNA binding site selection assay. The binding of K8 to this region was confirmed in cells by using a chromatin immunoprecipitation method. Further analysis revealed that K8 binds to an extended region, and the entire region is 100% conserved between two KSHV ori-Lyt's. K8 protein displays significant similarity to the Zta protein of Epstein-Barr virus (EBV), which is a known OBP of EBV. This notion, together with the ability of K8 to bind to the KSHV ori-Lyt, suggests that K8 may function as an OBP in KSHV.  相似文献   

3.
The Epstein-Barr virus (EBV) latent origin of DNA replication (oriP) is composed of two elements that contain binding sites for the sole viral gene product required for latent cycle replication, EBNA-1. One of these elements, region I, functions as an EBNA-1-dependent enhancer for RNA polymerase II-transcribed genes, may play a role in plasmid segregation, and is required for origin function in B cells latently infected with EBV. The second element, region II, contains or is very near the site of initiation of DNA replication. A genetic approach was taken to determine the contribution of the EBNA-1 binding sites in oriP to origin function. Although region I is required for the transient replication of plasmids bearing region II in EBV-infected B cells, a plasmid lacking region I but containing region II, was observed to replicate transiently in both D98/Raji and HeLa cells expressing EBNA-1. Thus, binding of EBNA-1 to region I is not absolutely required for the molecular events that lead to initiation of DNA replication at region II. Site-directed mutagenesis of the four EBNA-1-binding sites in region II, individually and in various combinations, demonstrated that only two EBNA-1-binding sites are required for region II function. The results obtained with these mutants, together with the analysis of the replicative ability of plasmids containing insertions between EBNA-1-binding sites, suggested that the spatial relationship of the two sites is critical. Mutants that contain only two EBNA-1-binding sites separated by 26 to 31 bp in region II were not maintained as plasmids over many cell generations and were greatly reduced in their ability to replicate transiently in D98/Raji cells. The EBNA-1-induced bending or untwisting of the DNA in EBNA-1-binding sites 1 and 4 in region II did not, however, demonstrate this spatial constraint. It may be concluded from these results that specific protein-protein interactions between EBNA-1 and/or between EBNA-1 and a cellular protein(s) are required for origin function.  相似文献   

4.
Human herpesvirus 7 (HHV-7) DNA sequences colinear with the HHV-6 lytic-phase origin of DNA replication (oriLyt) were amplified by PCR. Plasmid constructs containing these sequences were replicated in HHV-7-infected cord blood mononuclear cells but not in HHV-6-infected cells. In contrast, plasmids bearing HHV-6 oriLyt were replicated in both HHV-6- and HHV-7-infected cells. Finally, the minimal HHV-7 DNA element necessary for replicator activity was mapped to a 600-bp region which contains two sites with high homology to the consensus binding site for the HHV-6 origin binding protein. At least one of these binding sites was shown to be essential for replicator function of HHV-7 oriLyt.  相似文献   

5.
6.
Primase synthesizes decaribonucleotides for priming of lagging and possibly leading strand synthesis at a replication fork. The sites of initiation by purified mouse primase were shown to be highly specific within the SV40 origin of replication. This study further examines the role of the 27-bp inverted repeat in the origin for initiation. A site is observed on the L-strand template at nucleotide position (np) 22 positioned a similar distance from the 27-bp inverted repeat as sites previously reported on the E-strand. The initiations adjacent to the 27-bp repeat have a higher Km for rATP than other sites. A deletion within the inverted repeat eliminated initiation at sites proximal to the hairpin on both E and L strands but had no effect at more distant sites. A deletion mutant which left the inverted repeat intact but deleted the initiation sites at np 5210-5220 on the E-strand was not active as a template for proximal sites. These results indicate that primase has two modes of recognition, one that requires the SV40 inverted repeat structure and a specific sequence and another that requires sequence alone. Additional regions of the SV40 genome have also been examined and of approximately 2000 nucleotides of single stranded template examined, only one additional site was observed at np 2412 on the E-strand. This indicates that primase initiations are highly specific for the SV40 origin and their potential functional role is discussed.  相似文献   

7.
C Welter  S Dooley  K D Zang    N Blin 《Nucleic acids research》1989,17(15):6077-6086
DNA bending has been suggested to play a role in the regulation of gene expression, initiation of DNA-replication, site specific recombination, and DNA packaging. In the human mitochondrial DNA we have found a DNA curvature structure within the 3'-region of ther URF2 sequence in front of the L-strand origin of replication. This structure interacts specifically with a protein factor isolated from mitochondria. Based on the localization of this DNA curvature structure and the known function of such structures the data suggest a model in which this DNA signal sequence and its specific protein binding is involved in the regulatory initiation event of L-strand replication.  相似文献   

8.
Human replication protein A (hRPA) is an essential single-stranded-DNA-binding protein that stimulates the activities of multiple DNA replication and repair proteins through physical interaction. To understand DNA binding and its role in hRPA heterologous interaction, we examined the physical structure of hRPA complexes with single-stranded DNA (ssDNA) by scanning transmission electron microscopy. Recent biochemical studies have shown that hRPA combines with ssDNA in at least two binding modes: by interacting with 8 to 10 nucleotides (hRPA8nt) and with 30 nucleotides (hRPA30nt). We find the relatively unstable hRPA8nt complex to be notably compact with many contacts between hRPA molecules. In contrast, on similar lengths of ssDNA, hRPA30nt complexes align along the DNA and make few intermolecular contacts. Surprisingly, the elongated hRPA30nt complex exists in either a contracted or an extended form that depends on ssDNA length. Therefore, homologous-protein interaction and available ssDNA length both contribute to the physical changes that occur in hRPA when it binds ssDNA. We used activated DNA-dependent protein kinase as a biochemical probe to detect alterations in conformation and demonstrated that formation of the extended hRPA30nt complex correlates with increased phosphorylation of the hRPA 29-kDa subunit. Our results indicate that hRPA binds ssDNA in a multistep pathway, inducing new hRPA alignments and conformations that can modulate the functional interaction of other factors with hRPA.  相似文献   

9.
Herpes simplex virus (HSV) types 1 and 2 contain two classes of origins of DNA replication, oriS and oriL, which are closely related. A series of plasmids was constructed which contained specifically altered versions of the HSV type 2 oriS replication origin. Their ability to replicate in an in vivo replicon assay allowed a core origin of 75 base pairs (bp) to be defined. It included both arms of a 56-bp palindrome and from 13 to 20 bp of sequence leftward of the palindrome. The AT-rich sequence at the center of the palindrome was essential. Sequences on either side of the core origin enhanced replication. When additional copies of the -AT-dinucleotide were introduced progressively into the center of the palindrome, an oscillating effect on origin function was observed. These and other data implicate a linear rather than a cruciform conformation of the oriS palindrome in the initiation of HSV replication.  相似文献   

10.
A previously identified human herpesvirus 6B (HHV-6B) origin of DNA replication contains two binding sites for the origin-binding protein (OBPH6B). We have investigated the functional significance of these sites by determining the replication efficiencies of mutated origin sequences, using a transient replication assay. The results indicate that both sites are required for DNA replication. In addition, we have tested the functional consequences of linear sequence amplifications in the origin. The data show that tandemized origin elements are more efficiently replicated than single-copy origins. Finally, we have determined the extent of interstrain origin sequence variation that exists among HHV-6 isolates by cloning, sequencing, and analyzing origins from a number of virus isolates, including examples of both HHV-6A and HHV-6B.  相似文献   

11.
The RepK protein, which is encoded by the rolling-circle plasmid pKYM, binds to the PR I site in the pKYM DNA replication origin. We have identified HU as a protein that binds to the PR II and PR III sites in the replication-enhancing region which is downstream of PR I. DNA footprinting assays show that HU binds to these two sites only when RepK is bound to PR I, and that HU also enhances the binding of RepK to PR I. In vivo, pKYM was unable to transform an HU null strain. Two mutant RepK proteins, RepKW179Y, which contains a Trp-to-Tyr exchange at position 179, and RepKD277L, which contains an Asp-to-Leu mutation at residue 277, initiate DNA replication in vivo in the absence of HU. In vitro, these mutant RepK proteins form more stable complexes with the pKYM origin region than does the wild-type RepK protein. These results indicate that HU plays a role in the formation of a stable RepK-origin complex, which is required for the initiation of pKYM DNA replication. Received: 24 July 1996 / Accepted: 30 December 1996  相似文献   

12.
We have previously shown that a cell cycle-dependent nucleoprotein complex assembles in vivo on a 74 bp sequence within the human DNA replication origin associated to the Lamin B2 gene. Here, we report the identification, using a one-hybrid screen in yeast, of three proteins interacting with the 74 bp sequence. All of them, namely HOXA13, HOXC10 and HOXC13, are orthologues of the Abdominal-B gene of Drosophila melanogaster and are members of the homeogene family of developmental regulators. We describe the complete open reading frame sequence of HOXC10 and HOXC13 along with the structure of the HoxC13 gene. The specificity of binding of these two proteins to the Lamin B2 origin is confirmed by both band-shift and in vitro footprinting assays. In addition, the ability of HOXC10 and HOXC13 to increase the activity of a promoter containing the 74 bp sequence, as assayed by CAT-assay experiments, demonstrates a direct interaction of these homeoproteins with the origin sequence in mammalian cells. We also show that HOXC10 expression is cell-type-dependent and positively correlates with cell proliferation.  相似文献   

13.
The origin binding protein (OBP) of herpes simplex virus (HSV), which is essential for viral DNA replication, binds specifically to sequences within the viral replication origin(s) (for a review, see Challberg, M.D., and Kelly, T. J. (1989) Annu. Rev. Biochem. 58, 671-717). Using either a COOH-terminal OBP protein A fusion or the full-length protein, each expressed in Escherichia coli, we investigated the interaction of OBP with one HSV origin, OriS. Binding of OBP to a set of binding site variant sequences demonstrates that the 10-base pair sequence, 5' CGTTCGCACT 3', comprises the OBP-binding site. This sequence must be presented in the context of at least 15 total base pairs for high affinity binding, Ka = approximately 0.3 nM. Single base pair mutations in the central CGC sequence lower the affinity by several orders of magnitude, whereas a substitution at any of the other seven positions reduces the affinity by 10-fold or less. OBP binds with high affinity to duplex DNA containing mismatched base pairs. This property is exploited to analyze OBP binding to DNA heteroduplexes containing singly substituted mutant and wild-type DNA strands. For positions 2, 3, 5, 6, 7, 8, and 9, substitutions are tolerated on one or the other DNA strand, indicating that base-mediated interactions are limited to one base of each pair. For both Boxes I and II, these interactions are localized to one face of the DNA helix, forming a recognition surface in the major groove. In OriS, the 31 base pairs which separate Boxes I and II orient the two interaction surfaces to the same side of the DNA.  相似文献   

14.
A 12-kD protein, isolated from the membrane ofEscherichia coli, binds specifically to the 1.8-kb region containing the replication origin,oriC. It has two attachment sites within the 526-bporiC DNA fragment (HinfI3977-PstI1488), one of which is located in the positionHinfI3977-BglII22 and the other between base pairs 244 and 417.  相似文献   

15.
The adenovirus (Ad) DNA-binding protein (DBP) is essential for the elongation phase of Ad DNA replication by unwinding the template in an ATP-independent fashion, employing its capacity to form multimers. DBP also enhances the rate of initiation, with the highest levels obtained at low concentrations of Ad DNA polymerase (Pol). Here, we show that stimulation of initiation depends on the template conformation. Maximal stimulation, up to 15-fold, is observed on double-stranded or viral TP-containing origins. The stimulation is reduced on partially single-stranded origins and DBP does not enhance initiation any more once the origin is completely unwound. This suggests a role for DBP in origin unwinding that is comparable to its unwinding capacity during elongation. However, mutant DBP proteins defective in unwinding and elongation can still enhance initiation on ds templates. DBP also stimulates the binding of nuclear factor I (NFI) to the origin and lowers the K(m) for coupling of the first nucleotide to the precursor terminal protein by Pol. Mobility shift experiments reveal that DBP stimulates the binding of Pol on double-stranded origin and nonorigin DNA but not on single-stranded DNA. This effect is specific for DBP and is also seen with other DNA Pols. Our results suggest that, rather than by origin unwinding, DBP enhances initiation by modulating the origin conformation such that DNA Pol can bind more efficiently.  相似文献   

16.
The initiation of adenovirus DNA takes place at the termini of the viral genome and requires the presence of specific nucleotide sequence elements. To define the sequence organization of the viral origin, we tested a large number of deletion, insertion, and base substitution mutants for their ability to support initiation and replication in vitro. The data demonstrate that the origin consists of at least three functionally distinct domains, A, B, and C. Domain A (nucleotides 1 to 18) contains the minimal sequence sufficient for origin function. Domains B (nucleotides 19 to 40) and C (nucleotides 41 to 51) contain accessory sequences that significantly increase the activity of the minimal origin. The presence of domain B increases the efficiency of initiation by more than 10-fold in vitro, and the presence of domains B and C increases the efficiency of initiation by more than 30-fold. Mutations that alter the distance between the minimal origin and the accessory domains by one or two base pairs dramatically decrease initiation efficiency. This critical spacing requirement suggests that there are specific interactions between the factors that recognize the two regions.  相似文献   

17.
18.
In vitro studies have demonstrated that linear duplex, protein-free DNA molecules containing an inverted terminal repeat (ITR) sequence of the PRD1 genome at one end can undergo replication by a protein-primed mechanism. No DNA replication was observed when the ITR sequence was deleted or was not exposed at the terminus of the template DNA. We have determined the minimal origin of replication by analyzing the template activity of various deletion derivatives. Our results showed that the terminal 20 base-pairs of ITR are required for efficient in vitro DNA replication. We have found that, within the minimal replication origin region, there are complementary sequences. A site-specific mutagenesis analysis showed that most of the point mutations in the complementary sequences markedly reduced the template activity. The analyses of the results obtained with synthetic oligonucleotides have revealed that the specificity of the replication origin is strand specific and even on a single-stranded template a particular DNA sequence including a 3'-terminal C residue is required for the initiation of PRD1 DNA replication in vitro.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号