首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gene products of the mutL and mutS loci play essential roles in the dam-directed mismatch repair in both Salmonella typhimurium LT2 and Escherichia coli K-12. Mutations in these genes result in a spontaneous mutator phenotype. We have cloned the mutL and mutS genes from S. typhimurium by generating mutL- and mutS-specific probes from an S. typhimurium mutL::Tn10 and an mutS::Tn10 strain and using these to screen an S. typhimurium library. Both the mutL and mutS genes from S. typhimurium were able to complement E. coli mutL and mutS strains, respectively. By a combination of Tn1000 insertion mutagenesis and the maxicell technique, the products of the mutL and mutS genes were shown to have molecular weights of 70,000 and 98,000 respectively. A phi (mutL'-lacZ+) gene fusion was constructed; no change in the expression of the fusion could be detected by treatment with DNA-damaging agents. In crude extracts, the MutS protein binds single-stranded DNA, but not double-stranded DNA, with high affinity.  相似文献   

2.
Salmonella typhimurium LT2 mutH, mutL, mutS, and uvrD mutants were especially sensitive to mutagenesis by both the recA+-dependent mutagen methyl methane sulfonate and the recA+-independent mutagen ethyl methane sulfonate, but not to mutagenesis by agents such as 4-nitroquinoline-1-oxide and UV irradiation. Similarly, these mutator strains were very sensitive to mutagenesis by the methylating agents N-methyl-N'-nitro-N-nitrosoguanidine and N-methyl-N-nitrosourea. The increased susceptibility to mutagenesis by small alkylating agents due to mutH, mutL, mutS, and uvrD mutations was not accompanied by an increased sensitivity to killing by these agents. Various models are discussed in an effort to explain why strains thought to be deficient in methyl-instructed mismatch repair are sensitive to mutagenesis by methylating and ethylating agents.  相似文献   

3.
4.
Derepression of F factor function in Salmonella typhimurium   总被引:9,自引:0,他引:9  
In Salmonella typhimurium LT2 the F factor of Escherichia coli K-12 replicates normally but is repressed; Flac+ cells give no visible lysis on solid media with male-specific phages, low frequency transfer of Flac+ (0.001-0.007 per donor cell), few f2 infective centers (0.002-0.006 per cell), and they propagate male-specific phages to low titers. Thus they display a Fin+ (fertility inhibition) phenotype. This repression, owing to pSLT, a 60 Mdal plasmid normally resident in S. typhimurium, was circumvented by the following materials: (i) Flac+ plasmids from E. coli with mutations in finP or traO; (ii) a S. typhimurium line which had been cured of pSLT; (iii) pKZl, a KmR plasmid in the same Inc group as pSLT, which caused expulsion of pSLT and made Fin- lines; (iv) F-Fin- mutants which originated spontaneously and which are present in most Hfr strains of S. typhimurium. Strains which are derepressed for F function by the above methods give visible lysis on solid media with male-specific phages, ca. 1.0 Lac+ recombinants per donor cell in conjugal transfer, ca. 0.82 f2 infective centers per cell, over 80% of cells with visible F pili, and propagation of male-specific phages to high titer. These data confirm earlier observations that pSLT represses F by the FinOP system. In addition, it shows that there is no other mechanism which represses F function in S. typhimurium. If donor function is derepressed by one of the above methods, and if rough recipient strains are used, F-mediated conjugation in S. typhimurium LT2 is as efficient as in E. coli K-12.  相似文献   

5.

Background

All life forms need both high genetic stability to survive as species and a degree of mutability to evolve for adaptation, but little is known about how the organisms balance the two seemingly conflicting aspects of life: genetic stability and mutability. The DNA mismatch repair (MMR) system is essential for maintaining genetic stability and defects in MMR lead to high mutability. Evolution is driven by genetic novelty, such as point mutation and lateral gene transfer, both of which require genetic mutability. However, normally a functional MMR system would strongly inhibit such genomic changes. Our previous work indicated that MMR gene allele conversion between functional and non-functional states through copy number changes of small tandem repeats could occur spontaneously via slipped-strand mis-pairing during DNA replication and therefore may play a role of genetic switches to modulate the bacterial mutability at the population level. The open question was: when the conversion from functional to defective MMR is prohibited, will bacteria still be able to evolve by accepting laterally transferred DNA or accumulating mutations?

Results

To prohibit allele conversion, we "locked" the MMR genes through nucleotide replacements. We then scored changes in bacterial mutability and found that Salmonella strains with MMR locked at the functional state had significantly decreased mutability. To determine the generalizability of this kind of mutability 'switching' among a wider range of bacteria, we examined the distribution of tandem repeats within MMR genes in over 100 bacterial species and found that multiple genetic switches might exist in these bacteria and may spontaneously modulate bacterial mutability during evolution.

Conclusions

MMR allele conversion through repeats-mediated slipped-strand mis-pairing may function as a spontaneous mechanism to switch between high genetic stability and mutability during bacterial evolution.
  相似文献   

6.
We have recently described the presence of a high proportion of Pseudomonas aeruginosa isolates (20%) with an increased mutation frequency (mutators) in the lungs of cystic fibrosis (CF) patients. In four out of 11 independent P. aeruginosa strains, the high mutation frequency was found to be complemented with the wild-type mutS gene from P. aeruginosa PAO1. Here, we report the cloning and sequencing of two additional P. aeruginosa mismatch repair genes and the characterization, by complementation of deficient strains, of these two putative P. aeruginosa mismatch repair genes (mutL and uvrD). We also describe the alterations in the mutS, mutL and uvrD genes responsible for the mutator phenotype of hypermutable P. aeruginosa strains isolated from CF patients. Seven out of the 11 mutator strains were found to be defective in the MMR system (four mutS, two mutL and one uvrD). In four cases (three mutS and one mutL), the genes contained frameshift mutations. The fourth mutS strain showed a 3.3 kb insertion after the 10th nucleotide of the mutS gene, and a 54 nucleotide deletion between two eight nucleotide direct repeats. This deletion, involving domain II of MutS, was found to be the main one responsible for mutS inactivation. The second mutL strain presented a K310M mutation, equivalent to K307 in Escherichia coli MutL, a residue known to be essential for its ATPase activity. Finally, the uvrD strain had three amino acid substitutions within the conserved ATP binding site of the deduced UvrD polypeptide, showing defective mismatch repair activity. Interestingly, cells carrying this mutant allele exhibited a fully active UvrABC-mediated excision repair. The results shown here indicate that the putative P. aeruginosa mutS, mutL and uvrD genes are mutator genes and that their alteration results in a mutator phenotype.  相似文献   

7.
Salmonella typhimurium prototrophs carrying a trpR mutation synthesize tryptophan biosynthetic enzymes constitutively. When feedback inhibition of anthranilate synthetase but not 5'-phosphoribosylpyrophosphate phosphoribosyltransferase activity was by-passed by growing cells on media supplemented with anthranilic acid, all trpR prototrophs overproduced and excreted tryptophan. However, the rate of tryptophan production depended on both the ancestry of the trpR strain and the integrity of its trpA gene. Prototrophs with trp genes derived from S. typhimurium strain LT2 produced tryptophan more efficiently than those with trp genes derived from strain LT7. This strain difference was cryptic insofar as it did not affect the growth rate; it was revealed only as a rate-limiting step in the constitutive biosynthesis of tryptophan in the presence of anthranilic acid, and was due to a lesion in the LT7-derived trpB gene. Strains with LT7-derived trp genes bearing a deletion in trpA produced tryptophan as readily as LT2 trpR prototrophs. This indicated that LT7-specific 5-phosphoribosylpyrophosphate phosphoribosyltransferase must be aggregated with the trpA gene produce to give an observable reduction of constitutive tryptophan production. The discovery of this strain difference has particular implications for studies involving the activities of trpA and B genes and their products in S. typhimurium and may have general significance for other studies involving different strains of Salmonella.  相似文献   

8.
Spontaneous mutators of Salmonella typhimurium LT2 were generated by inserting the transposable element Tn5 or Tn10 into the bacterial chromosome. Two mutators mapped at the position of the mutH and mutL loci of S. typhimurium, and two other mutators mapped at positions corresponding to the mutS and uvrD loci of Escherichia coli. A fifth mutator, mutB, did not map at a position corresponding to any of the known mutators of S. typhimurium or E. coli. The mutH,L,S and uvrD alleles increased the frequency of both spontaneous base substitution and frameshift mutations, whereas the mutB allele increased the frequency only of spontaneous base substitution mutations. The increased frequency of base substitution mutations was recA+ independent in the mutH, mutL, and uvrD strains and partially recA+ independent in the mutS strain. The uvrD mutation decreased the resistance of the cells to killing by ultraviolet irradiation. The mutH,L,S and uvrD strains showed an increased sensitivity to mutagenesis by the alkylating agents methyl methane sulfonate and ethyl methane sulfonate, but not to mutagenesis by 4-nitroquinoline-1-oxide.  相似文献   

9.
Electrotransformation in Salmonella typhimurium LT2   总被引:15,自引:0,他引:15  
Electroporation gives high efficiency of transformation in Salmonella typhimurium LT2, yielding 10(8)-10(9) electrotransformants per microgram of pBR322 DNA. Lipopolysaccharide (LPS) composition has little influence on electrotransformation efficiency by electroporation, unlike Ca2+ shock methods, which give ca. 10(6) transformants/microgram DNA with strains with Rc or Rd2 LPS, 10(4) transformants with most smooth and rough strains, and 10(2) transformants with strains with Re LPS. Thus cell envelope properties are less crucial in electrotransformation than in Ca2+ shock methods. The reciprocal restriction barrier between Escherichia coli K-12 and S. typhimurium LT2 reduces electrotransformation by ca. 100-fold, but host-restriction mutants reduce or eliminate the barrier.  相似文献   

10.
The imp operon is carried on a transmissible plasmid, ColIa, in original isolates of Salmonella typhimurium LT7. LT2 strain recipients of F' factors from LT7 strains harboring ColIa can acquire ColIa and imp under nonselective conditions. Thus, S. typhimurium LT2 strains that have received plasmids by conjugal transfer from LT7 strains might be inadvertently harboring ColI factors.  相似文献   

11.
The mutL gene of Salmonella typhimurium LT2 is required for dam-dependent methyl-directed DNA mismatch repair. We have cloned and sequenced the mutL gene of S. typhimurium LT2 and compared its sequence with those of the hexB gene product of the gram-positive bacterium Streptococcus pneumoniae and the PMS1 gene product of the yeast Saccharomyces cerevisiae. MutL was found to be quite similar to the HexB mismatch repair protein of S. pneumoniae and to the mismatch repair protein PMS1 of the yeast S. cerevisiae. The significant similarities among these proteins were confined to their amino-terminal regions and suggest common evolution of the mismatch repair machinery in those organisms. The DNA sequence for mutL predicted a gene encoding a protein of 618 amino acid residues with a molecular weight of 67,761. The assignment of reading frame was confirmed by the construction of a chimeric protein consisting of the first 30 amino acids of LacZ fused to residues 53 through 618 of MutL. Interestingly, the presence of excess amounts of this fusion protein in wild-type mutL+ cells resulted in a trans-dominant effect causing the cell to exhibit a high spontaneous mutation frequency.  相似文献   

12.
Pantothenate (pan) auxotrophs of Escherichia coli K-12 and Salmonella typhimurium LT2 were characterized by enzymatic and genetic analyses. The panB mutants of both organisms and the pan-6 ("panA") mutant of S. typhimurium are deficient in ketopantoate hydroxymethyltransferase, whereas the panC mutants lack pantothenate synthetase. panD mutants of E. coli K-12 were previously shown to be deficient in aspartate 1-decarboxylase. All mutants showed only a single enzyme defect. The finding that the pan-6 mutant was deficient in ketopantoate hydroxymethyltransferase indicates that the genetic lesion is a panB allele. The pan-6 mutant therefore is deficient in the utilization of alpha-ketoisovalerate rather than the synthesis of alpha-ketoisovalerate, as originally proposed. The order of the pan genes of E. coli K-12 was determined by phage P1-mediated three-factor crosses. The clockwise order was found to be aceF panB panD panC tonA on the genetic map of E. coli K-12. The three-factor crosses were greatly facilitated by use of a closely linked Tn10 transposon as the outside marker. We also found that supplementation of E. coli K-12 auxotrophs with a high concentration of pantothenate or beta-alanine increased the intracellular coenzyme A level two- to threefold above the normal level. Supplementation with pantoate or ketopantoate resulted in smaller increases.  相似文献   

13.
Nitrate reduction mutants of fusarium moniliforme (gibberella fujikuroi)   总被引:9,自引:1,他引:8  
Klittich C  Leslie JF 《Genetics》1988,118(3):417-423
Twelve strains of Fusarium moniliforme were examined for their ability to sector spontaneously on toxic chlorate medium. All strains sectored frequently; 91% of over 1200 colonies examined formed chlorate-resistant, mutant sectors. Most of these mutants had lesions in the nitrate reduction pathway and were unable to utilize nitrate (nit mutants). nit mutations occurred in seven loci: a structural gene for nitrate reductase (nit1), a regulatory gene specific for the nitrate reduction pathway (nit3), and five genes controlling the production of a molybdenum-containing cofactor that is necessary for nitrate reductase activity (nit2, nit4, nit5, nit6, nit7). No mutations affecting nitrite reductase or a major nitrogen regulatory locus were found among over 1000 nit mutants. Mutations of nit1 were recovered most frequently (39-66%, depending on the strain) followed by nit3 mutations (23-42%). The frequency of isolation of each mutant type could be altered, however, by changing the source of nitrogen in the chlorate medium. We concluded that genetic control of nitrate reduction in F. moniliforme is similar to that in Aspergillus and Neurospora, but that the overall regulation of nitrogen metabolism may be different.  相似文献   

14.
Salmonella typhimurium cob mutants are not hyper-virulent   总被引:1,自引:0,他引:1  
Abstract It was previously reported that Salmonella typhimurium LT2 cob mutants defective in the biosynthesis of vitamin B12 (cobalamin) are more virulent than the wild type in mice. Here we show that the strains used previously are non-isogenic and that the proposed increase in virulence of the cob mutant strain results from an uncharacterized mutation in the 'wild type' which attenuates virulence, most likely by decreasing expression of the spv genes on the virulence plasmid. As a result the cob mutant will appear as hyper-virulent. Examination of the virulence of reconstructed wild-type and cob mutant strains showed that their growth rates were similar in mice, and we conclude that vitamin B12 does not affect the virulence of S. typhimurium LT2.  相似文献   

15.
Nearly all of 62 strains of Salmonella paratyphi B were sensitive to colicin M and phage T5 but resistant to phages T1 and ES18 and to colicin B. All tested S. typhimurium strains were resistant to colicin M and phage T5, and many were sensitive to phage ES18. A rough S. typhimurium LT2 strain given the tonA region of Escherichia coli or S. paratyphi B became sensitive to colicin M and phage T5. We infer that the tonA allele of S. paratyphi B, like that of E. coli, determines an outer membrane protein that adsorbs T5 and colicin M but not phage ES18, whereas the S. typhimurium allele determines a protein able to adsorb only ES18. The partial T1 sensitivity of a rough LT2 strain with a tonA allele from E. coli or S. paratyphi B and also the tonB(+) phentotype of an E. coli B trp-tonB Delta mutant carrying an F' trp of LT2 origin showed that S. typhimurium LT2 has a tonB allele like that of E. coli with respect to determination of sensitivity to colicins and phage T1. Rough S. paratyphi B, although T5 sensitive, remained resistant to T1 even when given F' tonB(+) of E. coli origin. Classes of Salmonella mutants selected as resistant to colicin M included: T5-resistant mutants, probably tonA(-); mutants unchanged except for M resistance, perhaps tolerant; and Exb(+) mutants, producing a colicin inhibitor (presumably enterochelin). Some Exb(+) mutants were resistant to a bacteriocin inactive on E. coli but active on all tested S. paratyphi B and S. typhimurium strains (and on nearly all other tested Salmonella). A survey showed sensitivity to colicin M in several other species of Salmonella.  相似文献   

16.
已有研究证明,编码阻遏蛋白的调节基因purR能调节嘌呤从头合成途径中除purB外所有结构基因的表达。但迄今还缺乏阻遏蛋白与这些基因的操纵基因相结合的直接证据。本文报道以嘌呤结构基因purD和purG的MudJ(lacZ,Kan~5)插入物为出发株,在外加过量腺嘌呤核苷(2mmol/L)的MacConkey平板上通过选择红色菌落分离O~c突变体的结果。从上述两株出发株分别获得了8株和9株独立的消阻遏突变体。共转导分析和顺反试验证明,两组突变体中各有1株顺式作用突变体(O~c)。这是在鼠伤寒沙门氏菌中首次获得的嘌呤O~c突变体,为研究阻遏蛋白与操纵基因相互作用提供了重要材料。  相似文献   

17.
Haemophilus influenzae (Hi), an obligate upper respiratory tract commensal/pathogen, uses phase variation (PV) to adapt to host environment changes. Switching occurs by slippage of nucleotide repeats (microsatellites) within genes coding for virulence molecules. Most such microsatellites in Hi are tetranucleotide repeats, but an exception is the dinucleotide repeats in the pilin locus. To investigate the effects on PV rates of mutations in genes for mismatch repair (MMR), insertion/deletion mutations of mutS, mutL, mutH, dam, polI, uvrD, mfd and recA were constructed in Hi strain Rd. Only inactivation of polI destabilized tetranucleotide (5'AGTC) repeat tracts of chromosomally located reporter constructs, whereas inactivation of mutS, but not polI, destabilized dinucleotide (5'AT) repeats. Deletions of repeats were predominant in polI mutants, which we propose are due to end-joining occurring without DNA polymerization during polI-deficient Okazaki fragment processing. The high prevalence of tetranucleotides mediating PV is an exceptional feature of the Hi genome. The refractoriness to MMR of hypermutation in Hi tetranucleotides facilitates adaptive switching without the deleterious increase in global mutation rates that accompanies a mutator genotype.  相似文献   

18.
High-frequency, reversible switches in expression of surface antigens, referred to as phase variation (PV), are characteristic of Haemophilus influenzae. PV enables this bacterial species, an obligate commensal and pathogen of the human upper respiratory tract, to adapt to changes in the host environment. Phase-variable hemagglutinating pili are expressed by many H. influenzae isolates. PV involves alterations in the number of 5' TA repeats located between the -10 and -35 promoter elements of the overlapping, divergently orientated promoters of hifA and hifBCDE, whose products mediate biosynthesis and assembly of pili. Dinucleotide repeat tracts are destabilized by mismatch repair (MMR) mutations in Escherichia coli. The influence of mutations in MMR genes of H. influenzae strain Rd on dinucleotide repeat-mediated PV rates was investigated by using reporter constructs containing 20 5' AT repeats. Mutations in mutS, mutL, and mutH elevated rates approximately 30-fold, while rates in dam and uvrD mutants were increased 14- and 3-fold, respectively. PV rates of constructs containing 10 to 12 5' AT repeats were significantly elevated in mutS mutants of H. influenzae strains Rd and Eagan. An intact hif locus was found in 14 and 12% of representative nontypeable H. influenzae isolates associated with either otitis media or carriage, respectively. Nine or more tandem 5' TA repeats were present in the promoter region. Surprisingly, inactivation of mutS in two serotype b H. influenzae strains did not alter pilin PV rates. Thus, although functionally analogous to the E. coli MMR pathway and active on dinucleotide repeat tracts, defects in H. influenzae MMR do not affect 5' TA-mediated pilin PV.  相似文献   

19.
Comparisons of the genetic maps of Escherichia coli K-12 and Salmonella typhimurium LT2 suggest that the size and organization of bacterial chromosomes are highly conserved. Employing pulsed-field gel electrophoresis, we have estimated the extent of variation in genome size among 14 natural isolates of E. coli. The BlnI and NotI restriction fragment patterns were highly variable among isolates, and genome sizes ranged from 4,660 to 5,300 kb, which is several hundred kilobases larger than the variation detected between enteric species. Genome size differences increase with the evolutionary genetic distance between lineages of E. coli, and there are differences in genome size among the major subgroups of E. coli. In general, the genomes of natural isolates are larger than those of laboratory strains, largely because of the fact that laboratory strains were derived from the subgroup of E. coli with the smallest genomes.  相似文献   

20.
T C Zahrt  G C Mora    S Maloy 《Journal of bacteriology》1994,176(5):1527-1529
P22 transduction of chromosomal genes from Salmonella typhimurium into Salmonella typhi occurs at a low frequency. Transduction of plasmids from S. typhimurium into S. typhi occurs at a frequency similar to that between S. typhimurium strains, indicating that the barrier to transduction of chromosomal genes is not due to an inability of P22 to inject DNA into S. typhi or a restriction endonuclease that rapidly degrades foreign DNA. Furthermore, transduction of mutS and mutL derivatives of S. typhi with chromosomal genes from S. typhimurium occurs efficiently. These results indicate that the transduction barrier is due to activity of the recipient mismatch repair system, which senses sequence divergence and disrupts heteroduplexes in favor of recipient sequences. Inactivation of the mismatch repair system allows P22 transduction to be used as an effective tool for constructing S. typhi-S. typhimurium hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号